5% still alive?

Dmitri Kazakov JINR/ITEP

15th INTERNATIONAL MOSCOW SCHOOL OF PHYSICS (40th ITEP WINTER SCHOOL OF PHYSICS) 14-21 February 2012

Unification Paradigm

Weak

Electromagnetic

Unification Theories

Electricity and magnetism are different manifestations of a unified "electromagnetic" force. Electromagnetism, gravity, and the nuclear forces may be parts of a single unified force or interaction. Grand Unification and Superstring theories attempt to describe this unified force and make predictions which can be tested with the Tevatron.

Jnifier

• Unification of strong, weak and electromagnetic interactions within Grand Unified Theories is the new step in unification of all forces of Nature

GUT

Electroweak

Strong

• Creation of a unified theory of everything based on string paradigm seems to be possible 2

New Dimensions

вторник, 21 февраля 12 г.

Superalgebra

(Super) Algebra

Lorentz Algebra

$$[P_{\mu}, P_{\nu}] = 0, [P_{\mu}, M_{\rho\sigma}] = i(g_{\mu\rho}P_{\sigma} - g_{\mu\sigma}P_{\rho}),$$

$$[M_{\mu\nu}, M_{\rho\sigma}] = i(g_{\nu\rho}M_{\mu\sigma} - g_{\nu\sigma}M_{\mu\rho} - g_{\mu\rho}M_{\nu\sigma} + g_{\mu\sigma}M_{\nu\rho}),$$

SUSY Algebra

$$[Q_{\alpha}^{i}, P_{\mu}] = [\overline{Q}_{\alpha}^{i}, P_{\mu}] = 0,$$

$$[Q_{\alpha}^{i}, M_{\mu\nu}] = \frac{1}{2}(\sigma_{\mu\nu})_{\alpha}^{\beta}Q_{\beta}^{i}, [\overline{Q}_{\alpha}^{i}, M_{\mu\nu}] = -\frac{1}{2}\overline{Q}_{\beta}^{i}(\overline{\sigma}_{\mu\nu})_{\alpha}^{\beta},$$

$$\{Q_{\alpha}^{i}, \overline{Q}_{\beta}^{j}\} = 2\delta^{ij}(\sigma^{\mu})_{\alpha\beta}P_{\mu},$$

$$\alpha, \alpha, \beta, \beta = 1, 2; i, j = 1, 2, ..., N.$$

Superspace $x_{\mu} \rightarrow x_{\mu}, \theta_{\alpha}, \overline{\theta}_{\dot{\alpha}}$ Grassmannian $\alpha, \dot{\alpha} = 1, 2$ parameters $\vartheta_{\alpha}^2 = 0, \ \overline{\vartheta}_{\dot{\alpha}}^2 = 0$

SUSY Generators

$$Q_{\alpha} = \frac{\partial}{\partial \vartheta_{\alpha}} - i\sigma_{\alpha\dot{\alpha}}^{\mu}\overline{\theta}^{\alpha}\partial_{\mu}$$
$$\overline{Q}_{\dot{\alpha}} = -\frac{\partial}{\partial \overline{\vartheta}_{\dot{\alpha}}} + i\vartheta_{\alpha}\sigma_{\alpha\dot{\alpha}}^{\mu}\partial_{\mu}$$

 $Q_{\alpha} = 0, \ Q_{\dot{\alpha}} = 0$

Supertranslation $\begin{aligned} x_{\mu} \to x_{\mu} + i\theta\sigma_{\mu}\bar{\xi} - i\xi\sigma_{\mu}\bar{\theta}, \\ \theta \to \theta + \xi, \\ \bar{\theta} \to \bar{\theta} + \bar{\xi} \end{aligned}$

5

SUSY Multiplets

Chiral multiplet $N = 1, \lambda = 0$

Vector multiplet N = 1, $\lambda = 1/2$

6

Members of a supermultiplet are called superpartners

N=4	SUSY YM	helicity -1 -1/2 0 1/2 1			
	λ = -1	# of states 1 4 6 4 1			
N=8	SUGRA	helicity -2 -3/2 -1 -1/2 0 1/2 1 3/2 2			
	λ = -2	# of states 1 8 28 56 70 56 28 8 1			
$N \leq 4$	$N \le 4S$ — spin $N \le 4$ For renormalizable theories (YM) $N \le 8$ For (super)gravity				

Minimal Supersymmetric Standard Model (MSSM)

• SUSY: # of fermions = # of bosons N=1 SUSY: (φ, ψ) (λ, A_{μ})

• SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f.

There are no particles in the SM that can be superpartners

SUSY associates known bosons with new fermions and known fermions with new bosons

Even number of the Higgs doublets – min = 2
 Cancellation of axial anomalies (in each generation)

$$Tr Y^{3} = 3(\frac{1}{27} + \frac{1}{27} - \frac{64}{27} + \frac{8}{27}) - 1 - 1 + 8 = 0$$

colour $u_{L} d_{L} u_{R} d_{R} v_{L} e_{L} e_{R}$

Higgsinos -1+1=0

Particle Content of the MSSM

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_{Y}(1)$
Gauge					
G^{a}	gluon g ^a	gluino ĝ ^a	8	1	0
V^k	Weak $W^{k}(W^{\pm},Z)$	wino, zino $ ilde{w}^k(ilde{w}^{\pm}, ilde{z})$) 1	3	0
V'	<i>Hypercharge</i> В(ү)	bino $\tilde{b}(\tilde{\gamma})$	1	1	0
Matter			_		
L_i ster	$\tilde{L}_i = (\tilde{v}, \tilde{e})_L$	$L_i = (v, e)_L$	1	2	-1
E_i	$\tilde{E}_i = \tilde{e}_R$	$E_i = e_R$	1	1	2
Q_i	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$Q_i = (u,d)_L$	3	2	1/3
$U_i^{} m squ$	arks $\frac{1}{2} \tilde{U}_i = \tilde{u}_R$	$uarks \downarrow U_i = u_R^c$	3*	1	-4/3
D_i	$\tilde{D}_i = \tilde{d}_R$	$D_i = d_R^c$	3*	1	2/3
Higgs		~			
H_1	H_1	H_1	1	2	-1
H_2	H_2	\tilde{H}_2	1	2	1

вторник, 21 февраля 12 г.

How to write SUSY Lagrangians

<u>1st step</u>

Take your favorite Lagrangian written in terms of fields

• 2nd step

Replace Field $(\varphi, \psi, A_{\mu}) \Rightarrow$ Superfield (Φ, V)

• 3rd step

Replace Action = $\int d^4 x L(x) \implies \int d^4 x d^4 \theta L(x, \theta, \overline{\theta})$

Grassmannian integration in superspace

 $\int d\theta_{\alpha} = 0, \ \int \theta_{\beta} d\theta_{\alpha} = \delta_{\alpha\beta}$

$$\begin{array}{c} \mbox{ } \mbo$$

R-parity

The Usual Particle : R = + 1

SUSY Particle : R = -1

B - Baryon Number L - Lepton Number S - Spin

The consequences:

 $R = (-)^{3(B-L)+2S}$

The superpartners are created in pairsThe lightest superparticle is stable

- The lightest superparticle (LSP) should be neutral - the best candidate is neutralino (photino or higgsino) χ_0
- It can survive from the Big Bang and form the Dark matter in the Universe

Interactions in the MSSM

вторник, 21 февраля 12 г.

Superpartners Production at LHC

Decay of Superpartners

squarks

 $\tilde{q}_{L,R} \rightarrow q + \chi_i$ $\tilde{q}_L \rightarrow q' + \chi_i^{\pm}$ $q_{L,R} \rightarrow q + g$ $\tilde{l} \rightarrow l + \chi_{l}^{\sim 0}$ sleptons $\tilde{l}_L \rightarrow v_I + \tilde{\chi}_I^{\pm}$ chargino $\widetilde{\chi}_{i}^{\pm} \rightarrow e + V_{e} + \widetilde{\chi}_{i}^{0}$ $\widetilde{\chi}_{i}^{\pm} \rightarrow q + \overline{q'} + \widetilde{\chi}_{i}^{0}$ gluino $g \rightarrow q + q + \gamma$ $\tilde{g} \rightarrow g + \tilde{\gamma}$

neutralino $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + l^{+} + l^{-}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + q + \overline{q}'$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{\pm} + l^{\pm} + v_{l}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + v_{l} + \overline{v}_{l}$

Final states 2 jets + $\mathbf{\not{P}}_T$

 $\gamma + \not E_T$ \mathbf{F}_T 15

Over 100 of free parameters !

MSSM Parameter Space

- Three gauge couplings
- Three (four) Yukawa matrices
- The Higgs mixing parameter

versus

Soft SUSY breaking terms

Universality hypothesis (gravity is colour and flavour blind): **mSUGRA** Soft parameters are equal at Planck (GUT) scale

$$-L_{Soft} = A\{y_{i}Q_{L}H_{2}U_{R} + y_{b}Q_{L}H_{1}D_{R} + y_{L}L_{L}H_{1}E_{R}\} + B\mu H_{1}H_{2} + m_{0}^{2}\sum_{i} |\varphi_{i}|^{2} + \frac{1}{2}M_{1/2}\sum_{\alpha}\widetilde{\lambda_{\alpha}}\widetilde{\lambda_{\alpha}}$$

Five universal soft parameters:

A, m_0 , $M_{1/2}$, $B \iff \tan\beta = v_2 / v_1$ and in the SM *m* and λ . 17

вторник, 21 февраля 12 г.

Mass Spectrum (spin=0)

$$\begin{aligned}
& \text{Mass Spectrum (spin=0)} \\
& \text{Metric Landon (spin=0)} \\
& \tilde{m}_{l}^{2} = \begin{pmatrix} \tilde{m}_{d.}^{2} & m_{l}(\mathcal{A}_{l} - \mu \cot \beta) \\ m_{l}(\mathcal{A}_{l} - \mu \cot \beta) & \tilde{m}_{l}^{2} \end{pmatrix} \implies \begin{pmatrix} \tilde{l}_{1} \\ \tilde{l}_{2} \end{pmatrix} \\
& \tilde{m}_{b}^{2} = \begin{pmatrix} \tilde{m}_{d.}^{2} & m_{b}(\mathcal{A}_{b} - \mu \tan \beta) \\ m_{b}(\mathcal{A}_{b} - \mu \tan \beta) & \tilde{m}_{b}^{2} \end{pmatrix} \implies \begin{pmatrix} \tilde{b}_{1} \\ \tilde{b}_{2} \end{pmatrix} \\
& \tilde{m}_{b}^{2} = \tilde{m}_{b}^{2} + m_{l}^{2} + \frac{1}{6}(4M_{W}^{2} - M_{z}^{2})\cos 2\beta, \\ \tilde{m}_{bL}^{2} = \tilde{m}_{b}^{2} + m_{l}^{2} - \frac{1}{6}(2M_{W}^{2} + M_{z}^{2})\cos 2\beta, \\ \tilde{m}_{bL}^{2} = \tilde{m}_{b}^{2} + m_{b}^{2} + \frac{1}{3}(M_{W}^{2} - M_{z}^{2})\cos 2\beta, \\ \tilde{m}_{c}^{2} = \tilde{m}_{b}^{2} + m_{b}^{2} + \frac{1}{3}(M_{W}^{2} - M_{z}^{2})\cos 2\beta, \\ \tilde{m}_{c}^{2} = \tilde{m}_{b}^{2} + m_{b}^{2} + \frac{1}{3}(M_{W}^{2} - M_{z}^{2})\cos 2\beta, \\ \tilde{m}_{c}^{2} = (\tilde{m}_{c}^{2} & m_{c}(\mathcal{A}_{c} - \mu \tan \beta) \\ m_{c}(\mathcal{A}_{c} - \mu \tan \beta) & \tilde{m}_{c}^{2} \end{pmatrix} \implies \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \\ \tilde{\mathbf{1}} \end{pmatrix} \\
& \Rightarrow \begin{pmatrix} \tilde$$

SUSY Masses in MSSM

Gauginos+Higgsinos

Squarks and Sleptons

SUSY Higgs Bosons

$$H = \begin{pmatrix} H^0 \\ H^- \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \frac{S + iP}{\sqrt{2}} \\ H^- \end{pmatrix} = \exp(i\frac{\vec{\xi}\vec{\sigma}}{2}) \begin{pmatrix} \mathbf{v} + \frac{S}{\sqrt{2}} \\ 0 \end{pmatrix}$$

4=2+2=3+1

$$H \to H' = \exp(i\frac{\vec{\alpha}\vec{\sigma}}{2})H \xrightarrow{(\vec{\alpha}=-\vec{\xi})} H' = \begin{pmatrix} v + \frac{S}{\sqrt{2}} \\ 0 \end{pmatrix}$$

8=4+4=3+5

$$H_{1} = \begin{pmatrix} H_{1}^{0} \\ H_{1}^{-} \end{pmatrix} = \begin{pmatrix} v_{1} + \frac{S_{1} + iP_{1}}{\sqrt{2}} \\ H_{1}^{-} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ v_{2} + \frac{S_{2} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ v_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ v_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}$$

The Higgs Potential

$$V_{tree}(H_1, H_2) = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 - m_3^2 (H_1 H_2 + h.c.) + \frac{g^2 + {g'}^2}{8} (|H_1|^2 - |H_2|^2)^2 + \frac{g^2}{2} |H_1^+ H_2|^2$$

At the GUT scale: $m_1^2 = m_2^2 = \mu_0^2 + m_0^2$, $m_3^2 = -B\mu_0$ Minimization

$$\frac{1}{2}\frac{\delta V}{\delta H_1} = m_1^2 v_1 - m_3^2 v_2 + \frac{g^2 + {g'}^2}{4}(v_1^2 - v_2^2)v_1 = 0,$$

$$\frac{1}{2}\frac{\delta V}{\delta H_2} = m_2^2 v_2 - m_3^2 v_1 - \frac{g^2 + {g'}^2}{4}(v_1^2 - v_2^2)v_2 = 0.$$

$$v^{2} = \frac{4(m_{1}^{2} - m_{2}^{2} \tan^{2} \beta)}{(g^{2} + g'^{2})(\tan^{2} \beta - 1)},$$

$$\sin 2\beta = \frac{2m_{3}^{2}}{m_{1}^{2} + m_{2}^{2}}$$

Solution

$$< H_1 >= v_1 = v \cos \beta, < H_2 >= v_2 = v \sin \beta,$$

No SSB in SUSY theory !

At the GUT scale

Radiative EW Symmetry Breaking

Due to RG controlled running the mass terms from the Higgs potential may change sign and trigger the appearance of non-trivial minimum leading to spontaneous breaking of EW symmetry - this is called <u>Radiative EWSB</u>

вторник, 21 февраля 12 г.

Higgs Boson's Masses

$$\begin{split} M^{odd} &= \frac{\partial^2 V}{\partial P_i \partial P_j} \bigg|_{H_i = v_i} = \begin{pmatrix} \tan \beta & 1 \\ 1 & \cot \beta \end{pmatrix} m_5^2 \\ M^{even} &= \frac{\partial^2 V}{\partial S_i \partial S_j} \bigg|_{H_i = v_i} = \begin{pmatrix} \tan \beta & -1 \\ -1 & \cot \beta \end{pmatrix} m_3^2 + \begin{pmatrix} \cot \beta & -1 \\ -1 & \tan \beta \end{pmatrix} M_Z^2 \cos \beta \sin \beta \\ M^{ch} &= \frac{\partial^2 V}{\partial H_i^+ \partial H_j^-} \bigg|_{H_i = v_i} = \begin{pmatrix} \tan \beta & 1 \\ 1 & \cot \beta \end{pmatrix} (m_3^2 + M_W^2 \cos \beta \sin \beta) \end{split}$$

 $G^0 = -\cos\beta P_1 + \sin\beta P_2$ $A = \sin \beta P_1 + \cos \beta P_2$ $G^{+} = -\cos\beta (H_{1}^{-})^{*} + \sin\beta H_{2}^{+}$ $H^+ = \sin \beta (H_1^-)^* + \cos \beta H_2^+$ Charged Higgs $h = -\sin\alpha S_1 + \cos\alpha S_2$ $H = \cos \alpha S_1 + \sin \alpha S_2$

Goldstone boson $\rightarrow Z_0$ Neutral CP = -1 Higgs Goldstone boson $\rightarrow W^+$ SM Higgs boson CP = 1Extra heavy Higgs boson

 $\tan 2\alpha = \tan 2\beta \frac{m_A^2 + m_Z^2}{m_A^2 + m_Z^2}$

The Higgs Bosons Masses

CP-odd neutral Higgs A CP-even charged Higgses H

CP-even neutral Higgses h,H

$$m_A^2 = m_1^2 + m_2^2 \qquad M_W^2 = \frac{g^2}{2}v^2$$

$$m_{H^{\pm}}^2 = m_A^2 + M_W^2 \qquad M_Z^2 = \frac{g^2 + g'^2}{2}v^2$$

$$m_{h,H}^{2} = \frac{1}{2} \left[m_{A}^{2} + M_{Z}^{2} \pm \sqrt{(m_{A}^{2} + M_{Z}^{2})^{2} - 4m_{A}^{2}M_{Z}^{2}\cos^{2}2\beta} \right]$$

 $m_h \approx M_Z |\cos 2\beta| < M_Z ! \implies$ Radiative corrections

$$m_h^2 \approx M_Z^2 \cos^2 2\beta + \frac{3g^2 m_t^4}{16\pi^2 M_W^2} \log \frac{\widetilde{m_{t_1}} m_{t_2}}{m_t^4} + 2 \ loops$$

The Higgs Mass Limit (MSSM)

Modern Higgs Boson Window

The Lightest Superparticle

	0	property	signature
• Gravity mediation	$LSP = \chi_1^{\sim 0}$	stable	jets/leptons $+ \not E_T$
• <u>Gauge mediation</u>	$LSP = \widetilde{G}$	stable	$\not E_T$
NL	$\mathbf{SP} = \begin{cases} \mathbf{\sim}_{0} \\ \mathbf{\chi}_{1} \end{cases}$	$\widetilde{\chi}_1^0 \to \gamma \widetilde{G}, h$	$\widetilde{G}, Z\widetilde{G}$ photons/jets + \mathscr{E}_T
	$\begin{bmatrix} \tilde{l}_{R} \\ \tilde{l}_{R} \end{bmatrix}$	$\tilde{l}_R \to \tau \widetilde{G}$	lepton $+ \not E_T$
• <u>Anomaly mediation</u>	$LSP = \begin{cases} \lambda \\ \tilde{\nu} \end{cases}$	stable L	lepton $+ \not E_T$
• <u>R-parity violation</u>	LSP is unsta	able -> SM partic	les
	Rare Neutr	decays inoless double β d	ecay 28

SUSY Search Strategy (Theory)

- ✓ Choose the model (MSSM)
- \checkmark Choose the parameter space
- ✓ Impose all (reasonable) constraints MSSM -> CMSSM
- ✓ Define the allowed parameter space
- \checkmark Make predictions for allowed regions

In what follows we choose the mSUGRA framework

Min parameter set:

$$[m_0, \ m_{1/2}, \ A_0, \ aneta]$$

Constrained MSSM

Requirements:

- LEP II limits on SUSY particle massesHiggs searches
- Rare decays $(B_s \to s\gamma, B_s \to \mu^+\mu^-, B_s \to \tau\nu)$
- Relic abundancy of Dark Matter in the Universe
- Direct search for the DM
- g-2 of the muon
- Radiative electroweak symmetry breaking
- Unification of the gauge couplings
- Neutrality of the LSP
- Tevatron & LHC limits on SUSY

Allowed region in the parameter space of the MSSM $100 \text{ GeV} \le m_0, M_{1/2}, \mu \le 2 \text{ TeV} \\ -3m_0 \le A_0 \le 3m_0, \ 1 \le \tan\beta \le 70$

 $A_0, m_0, M_{1/2}, \mu, \tan \beta$

30

• ...

Creation and Decay of Superpartners in Cascade Processes *(a)* LHC

SUSY x-sections at the LHC @ 7 TeV

Background Processes of the SM for creation of Superpartners

Search for Supersymmetry @ LHC

5 σ reach in jets + $\not E_T$ channel

Reach limits for various channels at 100 fb $^{\mbox{--}1}$

Search for high-mass squark and gluino production in events with large missing transverse energy and two or more jets

Expanded the excluded range established during The last 20 years (!) by factor of two with only 35 pb^-1

Search for lepton + jets + missing transverse energy with 35 pb^-1

414

SUSY in 1-lepton channel

gg, gq, qq may give isolated leptons

Single e/μ , jets, E miss

SUSY in 0-lepton channel

Simplified model with two q generations, $m(\chi 0) \sim 0.1 \text{mg} > 800 \text{ GeV}$ mq>850 GeV Equal mass case: mg=mq>1.075 TeV

MSUGRA/CMSSM: tanβ=10, A0=0, μ>0 Equal mass case: mq=mg > 980 GeV

Within the constrained SSM models we are crossing the border of excluding gluinos and squarks up to 1TeV and beyond. The air is getting thin for constrained SUSY. More conclusive results after summer.

G. Tonelli, CERN/INFN/UNIPI

HEP_2011_GRENOBLE

Search for supersymmetry in events involving third generation squarks and sleptons with ATLAS

LHC Seminar February 14, 2012

Ximo Poveda (University of Wisconsin-Madison) on behalf of the ATLAS Collaboration

Summary

- Variety of searches for SUSY events with third generation squarks and sleptons
- Exploring signatures with heavy quarks or tau leptons using 2 fb⁻¹ of data:
 - $\circ~$ 1 or 2 τ leptons: gluino or squark mediated $\tilde{\tau}_1$ production
 - \circ 2 *b*-jets + lepton veto: direct $ilde{b}_1 ilde{b}_1^*$ production
 - \circ 0 lepton + *b*-jets: gluino mediated \tilde{b}_1 production
 - \circ 1 lepton + *b*-jets: direct $\tilde{t}_1 \tilde{t}_1^*$ and gluino mediated \tilde{t}_1 production
 - \circ 2 SS leptons: gluino mediated \tilde{t}_1 production
- No significant excess observed over SM expectations \rightarrow Limits on the masses of the sparticles in a various SUSY scenarios

$ ilde{b}_1 ilde{b}_1^*$ (MSSM)	${ ilde b}_1 o b { ilde \chi}_1^0$	$m_{ ilde{b}_1} = 390 ext{GeV} (m_{ ilde{\chi}^0_1} = 0)$	2 <i>b</i> -jets
$ ilde{b}_1 ilde{b}_1^*$ (MSSM)	${ ilde b}_1 o b { ilde \chi}_1^0$	$m_{\tilde{b}_1} = 350 \text{ GeV} (m_{\tilde{\chi}_1^0} = 120 \text{ GeV})$	2 <i>b</i> -jets
$ ilde{g} ilde{g}$, $ ilde{b}_1 ilde{b}_1^*$ (MSSM)	$ ilde{g} ightarrow ilde{b}_1 b$, $ ilde{b}_1 ightarrow b ilde{\chi}_1^0$	$m_{ ilde{g}} = 920 { m GeV} (m_{ ilde{b}_1} < 800 { m GeV})$	$0\ell + b$ -jets
$\widetilde{g}\widetilde{g}$ (simpl. model)	$ ilde{g} ightarrow ar{b} ilde{\chi}_1^0$	$m_{ ilde{g}} = 900 ext{GeV} (m_{ ilde{\chi}_1^0} < 300 ext{GeV})$	0ℓ + <i>b</i> -jets
$ ilde{g} ilde{g}$, $ ilde{t}_1 ilde{t}_1^*$ (MSSM)	$ ilde{g} ightarrow ilde{t}_1 t$, $ ilde{t}_1 ightarrow t ilde{\chi}_1^0$	$m_{ ilde{g}} = 620 { m GeV} (m_{ ilde{t}_1} < 440 { m GeV})$	$1\ell+b$ -jets
$ ilde{g} ilde{g}$, $ ilde{t}_1 ilde{t}_1^*$ (MSSM)	${ ilde g} ightarrow { ilde t}_1 t$, ${ ilde t}_1 ightarrow t { ilde \chi}_1^0$	$m_{ ilde{g}} = 650 { m GeV} (m_{ ilde{t}_1} - 450 { m GeV})$	2ℓSS
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow t ar{t} ilde{\chi}_1^0$	$m_{ ilde{g}} = 700 \; ext{GeV} \; (m_{ ilde{\chi}_1^0} < 100 \;\; ext{GeV})$	1ℓ + <i>b</i> -jets
ĝĝ (simpl. model)	$ ilde{g} ightarrow t ar{t} ilde{\chi}_1^0$	$m_{ ilde{g}} = 650 { m GeV} (m_{ ilde{\chi}_1^0} < 215 { m GeV})$	2lSS
ĝĝ (simpl. model)	$ ilde{g} ightarrow tb + ilde{\chi}_1^0$	$m_{ ilde{g}} = 710 { m GeV} (m_{ ilde{\chi}_1^0} < 100 { m GeV})$	$1\ell + b$ -jets

B->sy decay rate

Standard Model

MSSM

41

Experiment $\mathbf{B}(\mathbf{B} \rightarrow \mathbf{X_s}\gamma) = (\mathbf{3.43} \pm \mathbf{0.36}) \times \mathbf{10^{-4}}$

Anomalous magnetic moment

g-2 Constraint on Parameter space

Fixes the sign of μ

The only requirement that limits the SUSY masses from above

Rare Decays: $Br[B_s \rightarrow \mu^+ \mu^-]$

Probing New Physics in loop decays: $B_s \rightarrow \mu \mu$

✓ sensitive to New Physics, can be strongly enhanced in SUSY with scalar Higgs exchange
 ✓ sensitive probe for MSSM with large tanβ:
 B(B_S→μ⁺μ⁻) ~ tanβ⁶/M_A⁴

- ✓ analysis of 2010 data well advanced, "un-blinding" for winter conferences!
- expect competitive result with best world measurements, with this years data set
- potential to discover New Physics down to the SM predictions with next year's data

Council open session

Rare Decays: $Br[B_s \rightarrow \mu^+ \mu^-]$ Constraint

 $Br[B_s \to \mu^+ \mu^-] < 4.7 \cdot 10^{-8}$

95% C.L. Excluded regions for

$$Br[B_s \to \mu^+ \mu^-] < 1.1 \cdot 10^{-8}$$

 $Br[B_s \to \mu^+ \mu^-] < 0.66 \cdot 10^{-8}$

Pre-LHC Constraints

Allowed parameter space (95% CL contour) in the m₀-m_{1/2} plane including all constraints

SUSY Limits including the LHC without Direct DM Search

This includes:

- the Higgs searches,
- the rare decays,
- the relic abundancy
- and collider limits

The values of A_0 and $\tan\beta$ are ajusted

Heavy Higgs Production at the LHC

$$\begin{split} \sigma_{Higgs} &= \frac{1}{32} \int_{0}^{1} dx_{1} dx_{2} \ g[x_{1}] \ g[x_{2}] \ |\mathcal{M}_{Higgs}|^{2} \frac{2\pi}{m_{Higgs}^{2}} \delta(E^{2}x_{1}x_{2} - m_{Higgs}^{2}) \\ \mathcal{M}_{h} &= \frac{\alpha_{s}}{4\pi} \frac{m_{h}^{2}}{2\sqrt{2}v} \left(\frac{\cos\alpha}{\sin\beta} F_{1/2}^{h} [\frac{4m_{t}^{2}}{m_{h}^{2}}] - \frac{\sin\alpha}{\cos\beta} F_{1/2}^{h} [\frac{4m_{b}^{2}}{m_{h}^{2}}] \right), \\ \mathcal{M}_{H} &= \frac{\alpha_{s}}{4\pi} \frac{m_{H}^{2}}{2\sqrt{2}v} \left(\frac{\sin\alpha}{\sin\beta} F_{1/2}^{H} [\frac{4m_{t}^{2}}{m_{H}^{2}}] + \frac{\cos\alpha}{\cos\beta} F_{1/2}^{H} [\frac{4m_{b}^{2}}{m_{H}^{2}}] \right), \\ \mathcal{M}_{A} &= \frac{\alpha_{s}}{4\pi} \frac{m_{A}^{2}}{2\sqrt{2}v} \left(\frac{\cos\beta}{\sin\beta} F_{1/2}^{A} [\frac{4m_{t}^{2}}{m_{H}^{2}}] + \frac{\sin\beta}{\cos\beta} F_{1/2}^{A} [\frac{4m_{b}^{2}}{m_{H}^{2}}] \right) \end{split}$$

Dark Matter Detection

Why WIMP?

Boltzman Equation Hubble constant $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle (n_{\chi}^2 - n_{\chi,eq}^2), \qquad H = \dot{R} / R$ $\Omega_{\chi} h^{2} = \frac{m_{\chi} n_{\chi}}{\rho_{c}} \approx \frac{3 \cdot 10^{-27} \, cm^{3} \, \text{sec}^{-1}}{\langle \sigma v \rangle}$ **Relic Abundance** $\Omega_{\gamma}h^2 \sim 0.113 \pm 0.009,$ $\sigma \sim 10^{-34} \, cm^2 = 100 \, pb$ $v \sim 300 \ km / sec$

Typical EW x-section

Relic Abundace of the Dark Matter

Relic Abundace of the DM Constraint

The value of $\tan\beta$

 $\tan \beta \approx 50$ almost everywhere except for the coannihilation regions

The value of m_A

 m_A may be as low as 500 Ge except for the coannihilation regions

The Chicagoland Observatory for Underground Particle Physics (COUPP)

Cryogenic Dark Matter Search (CDMS)

Direct DM Searches

$$\sigma = \frac{4}{\pi} \frac{m_{\rm DM}^2 m_N^2}{(m_{\rm DM} + m_N)^2} \left(Zf_p + (A - Z)f_n\right)^2$$

$$f_{p,n} = \sum_{q=u,d,s} G_q f_{Tq}^{(p,n)} \frac{m_{p,n}}{m_q} + \frac{2}{27} f_{TG}^{(p,n)} \sum_{q=c,b,t} G_q \frac{m_{p,n}}{m_q} \qquad m_p f_{Tq}^{(p)} \equiv \langle p | m_q \bar{q} q | p \rangle$$

$$\begin{aligned} G_{q}(A) &= 0, \\ G_{u}(h) &= \frac{-e^{2}m_{u}}{2\sin^{2}2\theta_{W}M_{Z}} \left(N_{21}\cos\theta_{W} - N_{11}\sin\theta_{W}\right) \frac{\cos\alpha}{\sin\beta} \frac{\left(N_{41}\cos\alpha + N_{31}\sin\alpha\right)}{M_{h}^{2}}, \\ G_{d}(h) &= \frac{e^{2}m_{d}}{2\sin^{2}2\theta_{W}M_{Z}} \left(N_{21}\cos\theta_{W} - N_{11}\sin\theta_{W}\right) \frac{\sin\alpha}{\cos\beta} \frac{\left(N_{41}\cos\alpha + N_{31}\sin\alpha\right)}{M_{h}^{2}}, \\ G_{u}(H) &= \frac{-e^{2}m_{u}}{2\sin^{2}2\theta_{W}M_{Z}} \left(N_{21}\cos\theta_{W} - N_{11}\sin\theta_{W}\right) \frac{\sin\alpha}{\sin\beta} \frac{\left(N_{41}\sin\alpha - N_{31}\cos\alpha\right)}{M_{H}^{2}}. \\ G_{d}(H) &= \frac{-e^{2}m_{d}}{2\sin^{2}2\theta_{W}M_{Z}} \left(N_{21}\cos\theta_{W} - N_{11}\sin\theta_{W}\right) \frac{\cos\alpha}{\cos\beta} \frac{\left(N_{41}\sin\alpha - N_{31}\cos\alpha\right)}{M_{H}^{2}}. \end{aligned}$$

SUSYLimits including Direct DM Search

56

LHC Reach at 7 and 14 TeV

Conclusions

- LHC is on the way of covering the parameter space of the MSSM
- It is rather insensitive to large values of m_0
- This can be supplemented by direct DM searches
- Modern combined limit on $m_{1/2}$ is about 400 GeV independently of m_0
- This implies the lower limit on the WIMP mass of 160 GeV
- Today's lower limit on squark masses (except t) is 1000 GeV and gluino mass is 650 GeV

• They can reach 1700 GeV and 1000 GeV for 14 TeV

Let 2012 be the year of Higgs discovery and SUSY evidence!

SUSY: Pros and Cons

Pro:

- Provides natural framework for unification with gravity
 - Leads to gauge coupling unification (GUT)
 - Solves the hierarchy problem
 - Provides the mechanizm for spontaneous EWSB
 - Is a solid quantum field theory
 - Provides natural candidate for the WIMP cold DM
 - Predicts new particles and thus generates new job positions

Contra :

- Does not shed new light on the problem of
- Quark and lepton mass spectrum
- Quark and lepton mixing angles
- the origin of CP violation
- Number of flavours
- Baryon assymetry of the Universe

Doubles the number of particles