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Abstract
Supersymmetry, a new symmetry that relates bosons and fermions in particle
physics, still escapes observation. Search for supersymmetry is one of the main
aims of the Large Hadron Collider. The other possible manifestation of super-
symmetry is the Dark Matter in the Universe. The present lectures contain
a brief introduction to supersymmetry in particle physics. The main notions
of supersymmetry are introduced. The supersymmetric extension of the Stan-
dard Model – the Minimal Supersymmetric Standard Model – is considered
in more detail. Phenomenological features of the Minimal Supersymmetric
Standard Model as well as possible experimental signatures of supersymmetry
at the Large Hadron Collider are described. The present limits on supersym-
metric particles are presented and the allowed region of parameter space of the
MSSM is shown.
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1 Introduction: What is supersymmetry
Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature including gravity
within a singe framework [1–5]. Modern views on supersymmetry in particle physics are based on a
string paradigm, though low energy manifestations of supersymmetry (SUSY) can be possibly found at
modern colliders and in non-accelerator experiments.

Supersymmetry emerged from attempts to generalize the Poincaré algebra to mix representations
with different spin [1]. It happened to be a problematic task due to “no-go” theorems preventing such
generalizations [6]. The way out was found by introducing so-called graded Lie algebras, i. e. adding
anti-commutators to usual commutators of the Lorentz algebra. Such a generalization, described below,
appeared to be the only possible one within the relativistic field theory.

If Q is a generator of the SUSY algebra, then acting on a boson state it produces a fermion one
and vice versa

Q̄ |boson〉 = |fermion〉, Q |fermion〉 = |boson〉.

Since the bosons commute with each other and the fermions anticommute, one immediately finds
that the SUSY generators should also anticommute, they must be fermionic, i. e. they must change the
spin by a half-odd amount and change the statistics. The key element of the SUSY algebra is

{Qα, Q̄α̇} = 2σµαα̇Pµ (1)

where Q and Q̄ are the generators of the supersymmetry transformation and Pµ is the generator of
translation, the four-momentum.

In what follows we describe the SUSY algebra in more detail and construct its representations
which are needed to build the SUSY generalization of the Standard Model (SM) of fundamental interac-
tions. Such a generalization is based on a softly broken SUSY quantum filed theory and contains the SM
as the low energy theory.

Supersymmetry promises to solve some problems of the Standard Model and of Grand Unified
Theories. In what follows we describe supersymmetry as the nearest option for the new physics on the
TeV scale.
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2 Motivation for SUSY in particle physics
2.1 Unification with gravity
The general idea is a unification of all forces of Nature including quantum gravity. However, the graviton
has the spin 2, while other gauge bosons (the photon, gluons, W and Z weak bosons) have the spin 1.
Therefore, they correspond to different representations of the Poincaré algebra. To mix them one can use
supersymmetry transformations. Starting with the graviton state of the spin 2 and acting by the SUSY
generators we get the following chain of states:

spin 2 → spin
3

2
→ spin 1 → spin

1

2
→ spin 0.

Thus, the partial unification of matter (the fermions) with forces (the bosons) naturally arises from an
attempt to unify gravity with the other interactions.

Taking infinitesimal transformations δε = εαQα, δ̄ε̄ = Q̄α̇ε̄
α̇, and using Eqn. (1) one gets

{δε, δ̄ε̄} = 2 (εσµε̄)Pµ, (2)

where ε, ε̄ are transformation parameters. Choosing ε to be local, i. e. the function of the space-time
point ε = ε(x), one finds from Eqn. (2) that the anticommutator of two SUSY transformations is a local
coordinate translation, and the theory which is invariant under the local coordinate transformation is the
General Relativity. Thus, making SUSY local, one naturally obtains the General Relativity, or the theory
of gravity, or supergravity [2].

2.2 Unification of gauge couplings
According to the Grand Unification hypothesis, the gauge symmetry increases with the energy [7]. All
known interactions are different branches of the unique interaction associated with a simple gauge group.
The unification (or splitting) occurs at the high energy. To reach this goal one has to consider how the
couplings change with the energy. It is described by renormalization group equations. In the SM the
strong and weak couplings associated with the non-Abelian gauge groups decrease with the energy,
while the electromagnetic one associated with the Abelian group on the contrary increases. Thus, it is
possible that at some energy scale they are equal.

After the precise measurement of the SU(3)× SU(2)× U(1) coupling constants, it has become
possible to check the unification numerically. The three coupling constants to be compared are

α1 = (5/3)g′2/(4π) = 5α/(3 cos2 θW ),

α2 = g2/(4π) = α/ sin2 θW ,

α3 = g2
s/(4π)

(3)

where g′, g and gs are the usual U(1), SU(2) and SU(3) couplings and α is the fine structure constant.
The factor of 5/3 in α1 has been included for proper normalization of the generators.

In the modified minimal subtraction (MS) scheme, the world averaged values of the couplings at
the Z0 energy are obtained from the fit to the LEP and Tevatron data [8]:

α−1(MZ) = 128.978± 0.027

sin2 θMS = 0.23146± 0.00017

αs = 0.1184± 0.0031,

(4)
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Fig. 1: The evolution of the inverse of the three coupling constants in the Standard Model (left) and in the super-
symmetric extension of the SM (MSSM) (right).

that gives

α1(MZ) = 0.017,

α2(MZ) = 0.034,

α3(MZ) = 0.118± 0.003.

(5)

Assuming that the SM is valid up to the unification scale, one can then use the known RG equations for
the three couplings. In the leading order they are:

dα̃i
dt

= biα̃
2
i , α̃i =

αi
4π
, t = log

(
Q2

µ2

)
, (6)

where the coefficients for the SM are bi = (41/10,−19/6,−7).

The solution to Eqn. (6) is very simple

1

α̃i(Q2)
=

1

α̃i(µ2)
− bi log

(
Q2

µ2

)
. (7)

The result is demonstrated in Fig. 1 showing the evolution of the inverse of the couplings as a function of
the logarithm of energy. In this presentation, the evolution becomes a straight line in the first order. The
second order corrections are small and do not cause any visible deviation from the straight line. Fig. 1
clearly demonstrates that within the SM the coupling constant unification at a single point is impossible.
It is excluded by more than 8 standard deviations. This result means that the unification can only be
obtained if the new physics enters between the electroweak and the Planck scales.

In the SUSY case, the slopes of the RG evolution curves are modified. The coefficients bi in
Eqn. (6) now are bi = (33/5, 1,−3). The SUSY particles are assumed to contribute effectively to the
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running of the coupling constants only for the energies above the typical SUSY mass scale. It turns out
that within the SUSY model the perfect unification can be obtained as it is shown in Fig. 1. From the fit
requiring the unification one finds for the break point MSUSY and the unification point MGUT [9]

MSUSY = 103.4±0.9±0.4 GeV,

MGUT = 1015.8±0.3±0.1 GeV,

α−1
GUT = 26.3± 1.9± 1.0.

(8)

The first error originates from the uncertainty in the coupling constant, while the second one is due to
the uncertainty in the mass splitting between the SUSY particles.

This observation was considered as the first “evidence” for supersymmetry, especially sinceMSUSY

was found in the range preferred by the fine-tuning arguments.

2.3 Solution to the hierarchy problem
The appearance of two different scales V � v in the GUT theory, namely, MGUT and MW , leads to a
very serious problem which is called the hierarchy problem. There are two aspects of this problem.

The first one is the very existence of the hierarchy. To get the desired spontaneous symmetry
breaking pattern, one needs

mH ∼ v ∼ 102 GeV

mΣ ∼ V ∼ 1016 GeV

mH

mΣ
∼ 10−14 � 1, (9)

where H and Σ are the Higgs fields responsible for the spontaneous breaking of the SU(2) and GUT
group, respectively. The question arises of how to get so small number in a natural way.

The second aspect of the hierarchy problem is connected with the preservation of the given hierar-
chy. Even if we choose the hierarchy like in Eqn. (9) the radiative corrections will destroy it! To see this,
let us consider the radiative correction to the light Higgs mass given by the Feynman diagram shown
in Fig. 2. This correction which is proportional to the mass squared of the heavy particle, obviously,

Fig. 2: Radiative correction to the light Higgs boson mass

spoils the hierarchy if it is not cancelled. This very accurate cancelation with a precision ∼ 10−14 needs
a fine-tuning of the coupling constants.

The only known way of achieving this kind of cancelation of quadratic terms (also known as the
cancelation of the quadratic divergencies) is supersymmetry. Moreover, SUSY automatically cancels
the quadratic corrections in all orders of the perturbation theory. This is due to the contributions of
superpartners of ordinary particles. The contribution from boson loops cancels those from the fermion
ones because of an additional factor (−1) coming from the Fermi statistics, as shown in Fig. 3.

6



Fig. 3: Cancellation of the quadratic terms (divergencies).

One can see here two types of contribution. The first line is the contribution of the heavy Higgs
boson and its superpartner (higgsino). The strength of the interaction is given by the Yukawa coupling
constant λ. The second line represents the gauge interaction proportional to the gauge coupling constant
g with the contribution from the heavy gauge boson and its heavy superpartner (gaugino).

In both cases the cancelation of the quadratic terms takes place. This cancelation is true up to
the SUSY breaking scale, MSUSY , which should not be very large (≤ 1 TeV) to make the fine-tuning
natural. Indeed, let us take the Higgs boson mass. Requiring for consistency of the perturbation theory
that the radiative corrections to the Higgs boson mass do not exceed the mass itself gives

δM2
h ∼ g2M2

SUSY ∼M2
h . (10)

So, if Mh ∼ 102 GeV and g ∼ 10−1, one needs MSUSY ∼ 103 GeV in order that the relation (10)
is valid. Thus, we again get the same rough estimate of MSUSY ∼ 1 TeV as from the gauge coupling
unification above.

That is why it is usually said that supersymmetry solves the hierarchy problem. We show below
how SUSY can also explain the origin of the hierarchy.

2.4 Astrophysics and Cosmology
The shining matter is not the only one in the Universe. Considerable amount of the energy budget consists
of the so-called dark matter. The direct evidence for the presence of the dark matter are flat rotation curves
of spiral galaxies [10] (see Fig. 4). To explain these curves one has to assume the existence of a galactic
halo made of non-shining matter which takes part in the gravitational interaction. The halo has a size
more than twice bigger than a visible galaxy. The other manifestation of existence of the dark matter
is the so-called gravitational lensing caused by invisible gravitating matter in the sky [11], which leads
to the appearance of circular images of distant stars when the light from them passes through the dark
matter.

There are two possible types of the dark matter: the hot one, consisting of light relativistic particles
and the cold one, consisting of massive weakly interacting particles (WIMPs) [12]. The hot dark matter
might consist of neutrinos, however, this has problems with the galaxy formation. As for the cold dark
matter, it has no candidates within the SM. At the same time, SUSY provides an excellent candidate for
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Fig. 4: Rotation curves for the solar system and the spiral galaxy.

the cold dark matter, namely, the neutralino, the lightest superparticle [13]. It is neutral, heavy, stable
and takes part in weak interactions, precisely what is needed for a WIMP.

2.5 Integrability and superstrings
Considerable progress in the SUSY field theories in recent years has shown that they possess some
remarkable and attractive properties. For instance, the N = 4 maximally supersymmetric Yang-Mills
theory has all the features and seems to provide the first integrable model in 4 space-time dimensions.
This model, though being unphysical, attracts much attention nowadays. It has no ultraviolet divergences,
keeps conformal invariance at the quantum level and seems to provide exact solutions for the amplitudes.
Duality of this theory to the string theory in higher dimensions (AdS/CFT correspondence) allows to go
beyond the perturbation theory thus revealing the strong coupling regime. This properties distinguish the
SYSY theories by their mathematical nature.

Another motivation for supersymmetry follows from even more radical changes of the basic ideas
related to the ultimate goal of the construction of the consistent unified theory of everything. At the
moment the only viable conception is the superstring theory [14]. In the superstring theory, the strings
are considered as the fundamental objects, closed or open, and are nonlocal in their nature. The ordinary
particles are considered as string excitation modes. The interactions of the strings, which are local,
generate proper interactions of the usual particles, including the gravitational ones.

To be consistent, the string theory should be conformally invariant in a D-dimensional target
space and have a stable vacuum. The first requirement is valid in the classical theory but may be violated
by quantum anomalies. The cancelation of the quantum anomalies takes place when the space-time
dimension of the target space equals to the critical one which is Dc = 26 for the bosonic string and
Dc = 10 for the fermionic one.

The second requirement is that the massless string excitations (the particles of the SM) are stable.
This assumes the absence of tachyons, the states with the imaginary mass, which can be guaranteed only
in the supersymmetric string theories!

The low energy limit of string theories is a kind of supergravity theory which is a local super-

8



symmetric theory. Besides Einstein gravity it contains new interactions and particles, among them the
superpartner of a graviton – gravitino, a fermion with spin 3/2. Supergravity itself is not a consistent
quantum field theory and is usually treated as an effective theory. It is used in supersymmetric models of
particle physics to provide the soft supersymmetry breaking terms.

2.6 Where is SUSY?
After many years of unsuccessful hunt for supersymmetry in particle physics experiments the natural
question arises: where is supersymmetry? We try to answer this question describing searches for SUSY
at accelerators, in the deep sky with the help of telescopes, and with the help of the underground fa-
cilities. It is obvious, that only direct detection of superpartners can convince people in discovery of
supersymmetry, however combined information from the sky might give hints to the mass spectra and
confirm the SUSY interpretation of the data.

It seems that despite the absence of confirmation supersymmetry stays an unbeatable candidate
for physics beyond the Standard Model. The beauty of SUSY lies in the paradigm of unification of all
forces of Nature, the ultimate theory of everything. Therefore search for supersymmetry will continue at
LHC and perhaps after it.

3 Basics of supersymmetry
3.1 Algebra of SUSY
Combined with the usual Poincaré and internal symmetry algebra the Super-Poincaré Lie algebra con-
tains additional SUSY generators Qiα and Q̄iα̇ [3]

[Pµ, Pν ] = 0,

[Pµ,Mρσ] = i (gµρPσ − gµσPρ),
[Mµν ,Mρσ] = i (gνρMµσ − gνσMµρ − gµρMνσ + gµσMνρ),

[Br, Bs] = i CtrsBt,

[Br, Pµ] = [Br,Mµσ] = 0,

[Qiα, Pµ] = [Q̄iα̇, Pµ] = 0,

[Qiα,Mµν ] =
1

2
(σµν)βαQ

i
β, [Q̄iα̇,Mµν ] = −1

2
Q̄i
β̇
(σ̄µν)β̇α̇,

[Qiα, Br] = (br)
i
jQ

j
α, [Q̄iα̇, Br] = −Q̄jα̇(br)

i
j ,

{Qiα, Q̄jβ̇} = 2 δij(σµ)αβ̇Pµ,

{Qiα, Qjβ} = 2 εαβZ
ij , Zij = arijbr, Zij = Z+

ij ,

{Q̄iα̇, Q̄jβ̇} = −2 εα̇β̇Z
ij , [Zij , anything] = 0,

α, α̇ = 1, 2 i, j = 1, 2, . . . , N.

(11)

Here Pµ and Mµν are the four-momentum and angular momentum operators, respectively, Br are the
internal symmetry generators, Qi and Q̄i are the spinorial SUSY generators and Zij are the so-called
central charges; α, α̇, β, β̇ are the spinorial indices. In the simplest case one has one spinor generator Qα
(and the conjugated one Q̄α̇) that corresponds to the ordinary or N = 1 supersymmetry. When N > 1
one has the extended supersymmetry.
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A natural question arises: how many SUSY generators are possible, i. e. what is the value of N?
To answer this question, consider massless states. Let us start with the ground state labeled by the energy
and the helicity, i. e. the projection of the spin on the direction of momenta, and let it be annihilated by
Qi

Vacuum = |E, λ〉, Qi|E, λ〉 = 0.

Then one- and many-particle states can be constructed with the help of creation operators as

State Expression # of states

vacuum |E, λ〉 1
1-particle Q̄i|E, λ〉 = |E, λ+ 1

2〉i N

2-particle Q̄iQ̄j |E, λ = |E, λ+ 1〉ij N(N−1)
2

. . . . . . . . .

N -particle Q̄1 . . . Q̄N |E, λ〉 = |E, λ+ N
2 〉 1

The total # of states is:
N∑

k=0

(
N
k

)
= 2N = 2N−1 bosons + 2N−1 fermions.

The energy E is not changed, since according to (11) the operators Q̄i commute with the Hamil-
tonian.

Thus, one has a sequence of bosonic and fermionic states and the total number of the bosons
equals to that of the fermions. This is a generic property of any supersymmetric theory. However, in
CPT invariant theories the number of states is doubled, since CPT transformation changes the sign of the
helicity. Hence, in the CPT invariant theories, one has to add the states with the opposite helicity to the
above mentioned ones.

Let us consider some examples. We take N = 1 and λ = 0. Then one has the following set of
states:

N = 1 λ = 0
helicity 0 1

2 helicity 0 − 1
2

CPT
=⇒

# of states 1 1 # of states 1 1

Hence, the complete N = 1 multiplet is

N = 1 helicity −1/2 0 1/2
# of states 1 2 1

which contains one complex scalar and one spinor with two helicity states.

This is an example of the so-called self-conjugated multiplet. There are also the self-conjugated
multiplets with N > 1 corresponding to the extended supersymmetry. Two particular examples are the
N = 4 super Yang-Mills multiplet and the N = 8 supergravity multiplet

N = 4 SUSY YM λ = −1

helicity −1 −1/2 0 1/2 1
# of states 1 4 6 4 1

N = 8 SUGRA λ = −2

10



−2 −3/2 −1 −1/2 0 1/2 1 3/2 2
1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended supersymmetry are very rich and contain a vast number of
particles.

The constraint on the number of the SUSY generators comes from the requirement of consistency
of the corresponding QFT. The number of supersymmetries and the maximal spin of the particle in the
multiplet are related by

N ≤ 4S,

where S is the maximal spin. Since the theories with the spin greater than 1 are non-renormalizable and
the theories with the spin greater than 5/2 have no consistent coupling to gravity, this imposes a constraint
on the number of the SUSY generators

N ≤ 4 for renormalizable theories (YM),

N ≤ 8 for (super)gravity.

In what follows, we shall consider the simple supersymmetry, or the N = 1 supersymmetry,
contrary to the extended supersymmetries with N > 1. In this case, one has the following types of the
supermultiplets which are used for the construction of the SUSY generalization of the SM

(φ, ψ) (λ, Aµ)
Spin = 0, Spin = 1/2 Spin = 1/2, Spin = 1
scalar chiral Majorana vector

fermion fermion

each of them contains two physical states, one boson and one fermion. They are called chiral and vector
multiplets, respectively. To construct the generalization of the SM one has to put all the particles into
these multiplets. For instance, the quarks should go into the chiral multiplet and the photon into the
vector multiplet.

3.2 Superspace and supermultiplets
An elegant formulation of the supersymmetry transformations and invariants can be achieved in the
framework of the superspace formalism [4]. The superspace differs from the ordinary Euclidean (Minkowski)
space by adding two new coordinates, θα and θ̄α̇, which are Grassmannian, i. e. anticommuting, variables

{θα, θβ} = 0, {θ̄α̇, θ̄β̇} = 0, θ2
α = 0, θ̄2

α̇ = 0,

α, β, α̇, β̇ = 1, 2.

Thus, we go from the space to the superspace

Space =⇒ Superspace
xµ xµ, θα, θ̄α̇

A SUSY group element can be constructed in the superspace in the same way as the ordinary translation
in the usual space

G(x, θ, θ̄) = e i(−x
µPµ + θQ+ θ̄Q̄). (12)
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It leads to a supertranslation in the superspace

xµ → xµ + i θσµε̄− i εσµθ̄,
θ → θ + ε,

θ̄ → θ̄ + ε̄,

(13)

where ε and ε̄ are the Grassmannian transformation parameters. From Eqn. (13) one can easily obtain
the representation for the supercharges (11) acting on the superspace

Qα =
∂

∂θα
− i σµαα̇θ̄α̇∂µ, Q̄α̇ = − ∂

∂θ̄α̇
+ i θασ

µ
αα̇∂µ. (14)

To define the fields on the superspace, consider the representations of the Super-Poincaré group (11) [3].
The simplestN = 1 SUSY multiplets that we discussed earlier are: the chiral one Φ(y, θ) (y = x+iθσθ̄)
and the vector one V (x, θ, θ̄). Being expanded in the Taylor series over the Grassmannian variables θ
and θ̄ they give:

Φ(y, θ) = A(y) +
√

2 θψ(y) + θθF (y) =

= A(x) + i θσµθ̄∂µA(x) +
1

4
θθθ̄θ̄2A(x)

+
√

2 θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x).

(15)

The coefficients are the ordinary functions of x being the usual fields. They are called the components
of the superfield. In Eqn. (15) one has 2 bosonic (the complex scalar field A) and 2 fermionic (the Weyl
spinor field ψ) degrees of freedom. The component fields A and ψ are called the superpartners. The
field F is an auxiliary field, it has the "wrong" dimension and has no physical meaning. It is needed to
close the algebra (11). One can get rid of the auxiliary fields with the help of equations of motion.

Thus, the superfield contains an equal number of the bosonic and fermionic degrees of freedom.
Under the SUSY transformation they convert one into another

δεA =
√

2 εψ,

δεψ = i
√

2σµε̄∂µA+
√

2 εF,

δεF = i
√

2 ε̄σµ∂µψ.

(16)

Notice that the variation of the F -component is a total derivative, i. e. it vanishes when integrated over
the space-time.

The vector superfield is real V = V †. It has the following Grassmannian expansion:

V (x, θ, θ̄) = C(x) + i θχ(x)− i θ̄χ̄(x) +
i

2
θθ
[
M(x) + iN(x)

]

− i

2
θ̄θ̄
[
M(x)− iN(x)

]
− θσµθ̄ vµ(x) + i θθθ̄

[
λ(x) +

i

2
σ̄µ∂µχ(x)

]
(17)

− i θ̄θ̄θ
[
λ+

i

2
σµ∂µχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D(x) +

1

2
2C(x)].

The physical degrees of freedom corresponding to the real vector superfield V are the vector gauge field
vµ and the Majorana spinor field λ. All other components are unphysical and can be eliminated. Indeed,
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one can choose a gauge (the Wess-Zumino gauge) where C = χ = M = N = 0, leaving one with only
physical degrees of freedom except for the auxiliary field D. In this gauge

V = − θσµθ̄vµ(x) + i θθθ̄λ̄(x)− i θ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x),

V 2 = −1

2
θθθ̄θ̄ vµ(x)vµ(x), (18)

V 3 = 0, etc.

One can define also a field strength tensor (as the analog of Fµν in the gauge theories)

Wα = −1

4
D̄2eVDαe

−V , W̄α̇ = −1

4
D2eV D̄αe

−V , (19)

Here D and D̄ are the supercovariant derivatives. The field strength tensor in the chosen Wess-Zumino
gauge is a polynomial over the component fields:

Wα = T a
(
−i λaα + θαD

a − i

2
(σµσ̄νθ)αF

a
µν + θ2(σµDµλ̄

a)α

)
, (20)

where
F aµν = ∂µv

a
ν − ∂νvaµ + fabcvbµv

c
ν , Dµλ̄

a = ∂λ̄a + fabcvbµλ̄
c.

In the Abelian case Eqs. (19) are simplified and take the form

Wα = −1

4
D̄2DαV, W̄α̇ = −1

4
D2D̄αV.

3.2.1 Construction of SUSY Lagrangians
Let us start with the Lagrangian which has no local gauge invariance. In the superfield notation the SUSY
invariant Lagrangians are the polynomials of the superfields. In the same way, as the ordinary action is
the integral over the space-time of the Lagrangian density, in the supersymmetric case the action is the
integral over the superspace. The space-time Lagrangian density is [3, 4]

L =

∫
d2θ d2θ̄Φ+

i Φi +

∫
d2θ

[
λiΦi +

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk

]
+ h.c. (21)

where the first part is the kinetic term and the second one is the superpotential W . We use here the
integration over the superspace according to the rules of the Grassmannian integration [15]

∫
dθα = 0,

∫
θα dθβ = δαβ.

Performing the explicit integration over the Grassmannian parameters, we get from Eqn. (21)

L = i ∂µψ̄i σ̄
µψi +A∗i2Ai + F ∗i Fi

+
[
λiFi +mij

(
AiFj −

1

2
ψiψj

)
+ yijk

(
AiAjFk − ψiψjAk

)
+ h.c.

]
.

(22)

The last two terms are the interaction ones. To obtain the familiar form of the Lagrangian, we have to
solve the constraints

∂L
∂F ∗k

= Fk + λ∗k +m∗ikA
∗
i + y∗ijkA

∗
iA
∗
j = 0,

∂L
∂Fk

= F ∗k + λk +mikAi + yijkAiAj = 0.

(23)
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Expressing the auxiliary fields F and F ∗ from these equations, one finally gets

L = i ∂µψ̄iσ̄
µψi +A∗i2Ai −

1

2
mijψiψj −

1

2
m∗ijψ̄iψ̄j

− yijkψiψjAk − y∗ijkψ̄iψ̄jA∗k − V (Ai, Aj),
(24)

where the scalar potential V = F ∗kFk. We will return to the discussion of the form of the scalar potential
in the SUSY theories later.

Consider now the gauge invariant SUSY Lagrangians. They should contain the gauge invariant
interaction of the matter fields with the gauge ones and the kinetic term and the self-interaction of the
gauge fields.

Let us start with the gauge field kinetic terms. In the Wess-Zumino gauge one has

WαWα

∣∣
θθ

= − 2 iλσµDµλ̄−
1

2
FµνF

µν +
1

2
D2 +

i

4
FµνF ρσεµνρσ, (25)

where Dµλ̄ = ∂µ + ig[vµ, λ̄] is the usual covariant derivative and the last, the so-called topological
θ-term, is the total derivative. The gauge invariant Lagrangian now has the familiar form

L =
1

4

∫
d2θWαWα +

1

4

∫
d2θ̄ W̄ α̇W̄α̇

=
1

2
D2 − 1

4
FµνF

µν − i λσµDµλ̄.

(26)

To obtain the gauge-invariant interaction with the matter chiral superfields, one has to modify the kinetic
term by inserting the bridge operator

Φ+
i Φi =⇒ Φ+

i e
gV Φi. (27)

The complete SUSY and gauge invariant Lagrangian then looks like

LSUSY YM =
1

4

∫
d2θTr(WαWα) +

1

4

∫
d2θ̄Tr(W̄αW̄α)

+

∫
d2θ d2θ̄ Φ̄ia(e

gV )abΦ
b
i +

∫
d2θW(Φi) +

∫
d2θ̄ W̄(Φ̄i),

(28)

whereW is the superpotential, which should be invariant under the group of symmetry of the particular
model. In terms of thecomponent fields the above Lagrangian takes the form

LSUSY YM = −1

4
F aµνF

aµν − i λaσµDµλ̄
a +

1

2
DaDa

+
(
∂µAi − i gvaµT aAi

)†(
∂µAi − i gvaµT aAi

)
− i ψ̄iσ̄µ

(
∂µψi − i gvaµT aψi

)

−DaA†i T
aAi − i

√
2A†i T

aλaψi + i
√

2 ψ̄iT
aAiλ̄

a + F †i Fi

+
∂W
∂Ai

Fi +
∂W̄
∂A†i

F †i −
1

2

∂2W
∂Ai∂Aj

ψiψj −
1

2

∂2W̄
∂A†i∂A

†
j

ψ̄iψ̄j .

(29)

Integrating out the auxiliary fields Da and Fi, one reproduces the usual Lagrangian.
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3.2.2 The scalar potential
Contrary to the SM, where the scalar potential is arbitrary and is defined only by the requirement of
the gauge invariance, in the supersymmetric theories it is completely defined by the superpotential. It
consists of the contributions from the D-terms and F -terms. The kinetic energy of the gauge fields
(recall Eqn. (26) yields the 1

2D
aDa term, and the matter-gauge interaction (recall Eqn. (29) yields the

gDaT aijA
∗
iAj one. Together they give

LD =
1

2
DaDa + gDaT aijA

∗
iAj . (30)

The equation of motion reads
Da = −gT aijA∗iAj . (31)

Substituting it back into Eqn. (30) yields the D-term part of the potential

LD = −1

2
DaDa =⇒ VD =

1

2
DaDa, (32)

where D is given by Eqn. (31).

The F -term contribution can be derived from the matter field self-interaction (22). For a general
type superpotentialW one has

LF = F ∗i Fi +
( ∂W
∂Ai

Fi + h.c.
)
. (33)

Using the equations of motion for the auxiliary field Fi

F ∗i = −∂W
∂Ai

(34)

yields
LF = −F ∗i Fi =⇒ VF = F ∗i Fi, (35)

where F is given by Eqn. (34). The full scalar potential is the sum of the two contributions

V = VD + VF . (36)

Thus, the form of the Lagrangian is practically fixed by the symmetry requirements. The only
freedom is the field content, the value of the gauge coupling g, Yukawa couplings yijk and the masses.
Because of the renormalizability constraint V ≤ A4 the superpotential should be limited byW ≤ Φ3 as
in Eqn. (21). All members of the supermultiplet have the same masses, i. e. the bosons and the fermions
are degenerate in masses. This property of the SUSY theories contradicts to the phenomenology and
requires supersymmetry breaking.

4 SUSY generalization of the Standard Model. The MSSM
As has been already mentioned, in the SUSY theories the number of the bosonic degrees of freedom
equals that of fermionic. At the same time, in the SM one has 28 bosonic and 90 fermionic degrees of
freedom (with the massless neutrino, otherwise 96). So the SM is to a great extent non-supersymmetric.
Trying to add some new particles to supersymmetrize the SM, one should take into account the following
observations:
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– There are no fermions with quantum numbers of the gauge bosons;
– Higgs fields have nonzero vacuum expectation values; hence, they cannot be the superpartners of

the quarks and leptons, since this would induce a spontaneous violation of the baryon and lepton
numbers;

– One needs at least two complex chiral Higgs multiplets in order to give masses to the up and down
quarks.

The latter is due to the form of the superpotential and the chirality of the matter superfields. Indeed,
the superpotential should be invariant under the SU(3) × SU(2) × U(1) gauge group. If one looks at
the Yukawa interaction in the Standard Model, one finds that it is indeed U(1) invariant since the sum
of hypercharges in each vertex equals zero. For the up quarks this is achieved by taking the conjugated
Higgs doublet H̃ = iτ2H

† instead of H . However, in SUSY H is the chiral superfield and hence the
superpotential which is constructed out of the chiral fields, may contain only H but not H̃ which is the
antichiral superfield.

Another reason for the second Higgs doublet is related to chiral anomalies. It is known that the
chiral anomalies spoil the gauge invariance and, hence, the renormalizability of the theory. They are
canceled in the SM between the quarks and leptons in each generation [16]

TrY 3 = 3×
(

1

27
+

1

27
− 64

27
+

8

27

)
− 1 − 1 + 8 = 0

color uL dL uR dR νL eL eR

However, if one introduces the chiral Higgs superfield, it contains higgsinos, which are the chiral
fermions, and contain the anomalies. To cancel them one has to add the second Higgs doublet with the
opposite hypercharge. Therefore, the Higgs sector in the SUSY models is inevitably enlarged, it contains
an even number of the Higgs doublets.

Conclusion: In the SUSY models the supersymmetry associates the known bosons with the new
fermions and the known fermions with the new bosons.

4.1 The field content
Consider the particle content of the Minimal Supersymmetric Standard Model [17–19]. According to
the previous discussion, in the minimal version we double the number of particles (introducing the su-
perpartner to each particle) and add another Higgs doublet (with its superpartner).

Fig. 5: The shadow world of SUSY particles.
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Superfield Bosons Fermions SU(3)SU(2 UY (1)

Gauge
Ga gluon ga gluino g̃a 8 0 0
Vk Weak W k (W±, Z) wino, zino w̃k (w̃±, z̃) 1 3 0
V′ Hypercharge B (γ) bino b̃(γ̃) 1 1 0
Matter
Li

Ei
sleptons

{
L̃i = (ν̃, ẽ)L
Ẽi = ẽR

leptons
{
Li = (ν, e)L
Ei = ecR

1
1

2
1

−1
2

Qi

Ui

Di

squarks





Q̃i = (ũ, d̃)L
Ũi = ũR
D̃i = d̃R

quarks





Qi = (u, d)L
Ui = ucR
Di = dcR

3
3∗

3∗

2
1
1

1/3
−4/3

2/3

Higgs
H1

H2
Higgses

{
H1

H2
higgsinos

{
H̃1

H̃2

1
1

2
2

−1
1

Table 1: Particle content of the MSSM

Thus, the characteristic feature of any supersymmetric generalization of the SM is the presence
of the superpartners (see Fig. 5) [20]. If the supersymmetry is exact, the superpartners of the ordinary
particles should have the same masses and have to be observed. The absence of them at modern energies
is believed to be explained by the fact that they are very heavy, that means that the supersymmetry should
be broken. Hence, if the energy of accelerators is high enough, the superpartners will be created.

The particle content of the MSSM then appears as shown in the Table 4.1. Hereafter, a tilde
denotes the superpartner of the ordinary particle.

The presence of the extra Higgs doublet in the SUSY model is a novel feature of the theory. In the
MSSM one has two doublets with the quantum numbers (1,2,-1) and (1,2,1), respectively:

H1 =

(
H0

1

H−1

)
=

(
v1 + S1+iP1√

2

H−1

)
,

H2 =

(
H+

2

H0
2

)
=

(
H+

2

v2 + S2+iP2√
2

)
,

where vi are the vacuum expectation values of the neutral components of the Higgs doublets.

Hence, one has 8 = 4 + 4 = 5 + 3 degrees of freedom. As in the case of the SM, 3 degrees of
freedom can be gauged away, and one is left with 5 physical states compared to 1 in the SM. Thus, in
the MSSM, as actually in any two Higgs doublet model, one has five physical Higgs bosons: two CP -
even neutral Higgs, one CP -odd neutral Higgs and two charged ones. We consider the mass eigenstates
below.

4.2 Lagrangian of the MSSM
Now we can construct the Lagrangian of the MSSM. It consists of two parts; the first part is the SUSY
generalization of the Standard Model, while the second one represents the SUSY breaking as mentioned
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above.

LMSSM = LSUSY + LBreaking, (37)

where

LSUSY = LGauge + LY ukawa. (38)

We will not describe the gauge part here, since it is essentially the gauge invariant kinetic terms,
but rather concentrate on Yukawa terms. They are given by the superpotential which is nothing else but
the usual Yukawa terms of the SM with the fields replaced by the superfields as explained above.

LY ukawa = εij

(
yUabQ

j
aU

c
bH

i
2 + yDabQ

j
aD

c
bH

i
1 + yLabL

j
aE

c
bH

i
1 + µH i

1H
j
2

)
, (39)

where i, j = 1, 2 are the SU(2) and a, b = 1, 2, 3 are the generation indices; the SU(3) colour indices
are omitted. This part of the Lagrangian almost exactly repeats that of the SM. The only difference is
the last term which describes the Higgs mixing. It is absent in the SM since there is only one Higgs field
there.

However, one can write down also the different Yukawa terms

LY ukawa = εij

(
λLabdL

i
aL

j
bE

c
d + λL′abdL

i
aQ

j
bD

c
d + µ′aL

i
aH

j
2

)
+ λBabdU

c
aD

c
bD

c
d. (40)

These terms are absent in the SM. The reason is very simple: one can not replace the superfields in
Eqn. (40) by the ordinary fields like in Eqn. (39) because of the Lorentz invariance. These terms have
also another property, they violate either the lepton number L (the first 3 terms in Eqn. (40)) or the baryon
number B (the last term). Since both effects are not observed in Nature, these terms must be suppressed
or excluded. One can avoid such terms introducing a new special symmetry called R-symmetry [21].
The global U(1)R invariance

U(1)R : θ → eiαθ, Φ→ einαΦ, (41)

which is reduced to the discrete group Z2, is called R-parity. The R-parity quantum number is

R = (−1)3(B−L)+2S (42)

for the particles with the spin S. Thus, all the ordinary particles have the R-parity quantum number
equal to R = +1, while all the superpartners have the R-parity quantum number equal to R = −1.
The first part of the Yukawa Lagrangian is R-symmetric, while the second part is R-nonsymmetric. The
R-parity obviously forbids the terms (40). However, it may well be that these terms are present, though
experimental limits on the couplings are very severe

λLabc, λ
L′
abc < 10−4, λBabc < 10−9.

Conservation of the R-parity has two important consequences
– the superpartners are created in pairs;
– the lightest superparticle (LSP) is stable. Usually it is the photino γ̃, the superpartner of the photon

with some admixture of the neutral higgsino. This is the candidate for the DM particle which
should be neutral and survive since the Big Bang.

18



+

Fig. 6: The gauge-matter interaction, the gauge self-interaction and the Yukawa interaction.

4.3 Properties of interactions
If one assumes that the R-parity is preserved, then the interactions of the superpartners are essentially
the same as in the SM, but two of three particles involved into the interaction at any vertex are replaced
by the superpartners. The reason for it is the R-parity.

Typical vertices are shown in Fig. 6. The tilde above the letter denotes the corresponding super-
partner. Note that the coupling is the same in all the vertices involving the superpartners.

4.4 Creation and decay of superpartners
The above-mentioned rule together with the Feynman rules for the SM enables one to draw diagrams
describing creation of the superpartners. One of the most promising processes is the e+e− annihilation
(see Fig. 7). The usual kinematic restriction is given by the c.m. energy mmax

sparticle ≤
√
s/2. Similar

processes take place at hadron colliders with the electrons and the positrons being replaced by the quarks
and the gluons.

Experimental signatures at the hadron colliders are similar to those at the e+e− machines; how-

Fig. 7: Creation of the superpartners at electron-positron colliders.
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Fig. 8: Examples of diagrams for the SUSY particle production via the strong interactions (top rows for g̃g̃, q̃q̃ and
g̃q̃, respectively) and the electroweak interactions (the lowest row).

ever, here one has wider possibilities. Besides the usual annihilation channel, one has numerous pro-
cesses of gluon fusion, quark-antiquark and quark-gluon scattering (see Fig. 8).

Creation of the superpartners can be accompanied by creation of the ordinary particles as well. We
consider various experimental signatures below. They crucially depend on the SUSY breaking pattern
and on the mass spectrum of the superpartners.

The decay properties of the superpartners also depend on their masses. For the quark and lepton
superpartners the main processes are shown in Fig. 9.

5 Breaking of SUSY in the MSSM
Usually it is assumed that the supersymmetry is broken spontaneously via the v.e.v.s of some fields.
However, in the case of supersymmetry one can not use the scalar fields like the Higgs field, but rather the
auxiliary fields present in any SUSY multiplet. There are two basic mechanisms of spontaneous SUSY
breaking: the Fayet-Iliopoulos (or D-type) mechanism [22] based on the D auxiliary field from the
vector multiplet and the O’Raifeartaigh (or F -type) mechanism [23] based on the F auxiliary field from
the chiral multiplet. Unfortunately, one can not explicitly use these mechanisms within the MSSM since
none of the fields of the MSSM can develop the non-zero v.e.v. without spoiling the gauge invariance.
Therefore, the spontaneous SUSY breaking should take place via some other fields.

The most common scenario for producing low-energy supersymmetry breaking is called the hid-
den sector scenario [24]. According to this scenario, there exist two sectors: the usual matter belongs
to the "visible" one, while the second, "hidden" sector, contains the fields which lead to breaking of the
supersymmetry. These two sectors interact with each other by an exchange of some fields called mes-
sengers, which mediate SUSY breaking from the hidden to the visible sector. There might be various
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squarks q̃L,R → q + χ̃0
i

q̃L → q′ + χ̃±i
q̃L,R → q + g̃

sleptons l̃→ l + χ̃0
i

l̃L → νl + χ̃±i

chargino χ̃±i → e+ νe + χ̃0
i

χ±i → q + q̄′ + χ̃0
i

gluino g̃ → q = q̄ + γ̃
g̃ → g + γ̃

neutralino χ̃0
i → χ̃0

1 + l+ + l− final states l+l− + /ET
χ̃0
i → χ̃0

1 + q + q̄′ 2jets + /ET
χ̃0
i → χ̃±1 + l± + νl γ + /ET
χ̃0
i → χ̃0

1 + νl + ν̄l /ET

Fig. 9: Decay of superpartners

types of the messenger fields: gravity, gauge, etc. The hidden sector is the weakest part of the MSSM. It
contains a lot of ambiguities and leads to uncertainties of the MSSM predictions considered below.

So far there are four known main mechanisms to mediate SUSY breaking from the hidden to the
visible sector:

– Gravity mediation (SUGRA) [25];

– Gauge mediation [26];

– Anomaly mediation [27];

– Gaugino mediation [28].

All the four mechanisms of soft SUSY breaking are different in details but are common in results.
The predictions for the sparticle spectrum depend on the mechanism of SUSY breaking. In what follows,
to calculate the mass spectrum of the superpartners, we need the explicit form of the SUSY breaking
terms. For the MSSM without the R-parity violation one has in general

− LBreaking = (43)

=
∑

i

m2
0i |ϕi|2 +

(
1

2

∑

α

Mαλ̃αλ̃α +BH1H2 +AUabQ̃aŨ
c
bH2 +ADabQ̃aD̃

c
bH1 +ALabL̃aẼ

c
bH1

)
,

where we have suppressed the SU(2) indices. Here ϕi are all the scalar fields, λ̃α are the gaugino fields,
Q̃, Ũ , D̃ and L̃, Ẽ are the squark and slepton fields, respectively, and H1,2 are the SU(2) doublet Higgs
fields.

Eqn. (43) contains a vast number of free parameters which spoils the predictiive power of the
model. To reduce their number, we adopt the so-called universality hypothesis, i. e., we assume the
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universality or equality of various soft parameters at the high energy scale, namely, we put all the spin-0
particle masses to be equal to the universal value m0, all the spin-1/2 particle (gaugino) masses to be
equal to m1/2 and all the cubic and quadratic terms, proportional to A and B, to repeat the structure
of the Yukawa superpotential (39). This is the additional requirement motivated by the supergravity
mechanism of SUSY breaking. The universality is not the necessary requirement and one may consider
the non-universal soft terms as well. However, it will not change the qualitative picture presented below;
so, for simplicity, in what follows we consider the universal boundary conditions. In this case, Eqn. (43)
takes the form

− LBreaking = (44)

= m2
0

∑

i

|ϕi|2 +

(
m1/2

2

∑

α

λ̃αλ̃α +BµH1H2 +A
[
yUabQ̃aŨ

c
bH2 + yDabQ̃aD̃

c
bH1 + yLabL̃aẼ

c
bH1

]
)
.

Thus, we are left with five free parameters, namely, m0,m1/2, A,B and µ versus two parameters
of the Higgs potential in the SM, m2 and λ. In the SUSY model the Higgs potential is not arbitrary but
is calculated from the Yukawa and gauge terms as we will see below.

The soft terms explicitly break the supersymmetry. As will be shown later, they lead to the mass
spectrum of the superpartners different from that of the ordinary particles. Remind that the masses of the
quarks and leptons remain zero until the SU(2) symmetry is spontaneously broken.

5.1 The soft terms and the mass formulae
There are two main sources of the mass terms in the Lagrangian: the D-terms and the soft ones. With
given values ofm0,m1/2, µ, Yt, Yb, Yτ , A, andB one can construct the mass matrices for all the particles.
Knowing them at the GUT scale, one can solve the corresponding RG equations, thus linking the values
at the GUT and electroweak scales. Substituting these parameters into the mass matrices, one can predict
the mass spectrum of the superpartners [29, 30].

5.1.1 Gaugino-higgsino mass terms
The mass matrix for the gauginos, the superpartners of the gauge bosons, and for the higgsinos, the
superpartners of the Higgs bosons, is nondiagonal, thus leading to their mixing. The mass terms look
like

LGaugino−Higgsino = −1

2
M3λ̄aλa −

1

2
χ̄M (0)χ− (ψ̄M (c)ψ + h.c.), (45)

where λa, a = 1, 2, . . . , 8 are the Majorana gluino fields and

χ =




B̃0

W̃ 3

H̃0
1

H̃0
2


 , ψ =

(
W̃+

H̃+

)
(46)

are, respectively, the Majorana neutralino and the Dirac chargino fields.

The neutralino mass matrix is

M (0) =




M1 0 −MZ cosβ sin θW MZ sinβ sin θW
0 M2 MZ cosβ cos θW −MZ sinβ cos θW

−MZ cosβ sin θW MZ cosβ cos θW 0 −µ
MZ sinβ sin θW −MZ sinβ cos θW −µ 0


 ,
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where tanβ = v2/v1 is the ratio of two Higgs v.e.v.s and sin θW is the usual sine of the weak mixing
angle. The physical neutralino masses Mχ̃0

i
are obtained as eigenvalues of this matrix after diagonaliza-

tion.

For the chargino mass matrix one has

M (c) =

(
M2

√
2MW sinβ√

2MW cosβ µ

)
. (47)

This matrix has two chargino eigenstates χ̃±1,2 with mass eigenvalues

M2
1,2 =

1

2

[
M2

2 + µ2 + 2M2
W ∓

√
(M2

2 − µ2)2 + 4M4
W cos2 2β + 4M2

W (M2
2 + µ2 + 2M2µ sin 2β)

]
.

5.1.2 Squark and slepton masses
The non-negligible Yukawa couplings cause mixing between the electroweak eigenstates and the mass
eigenstates of the third generation particles. The mixing matrices for m̃2

t , m̃
2
b and m̃2

τ are
(

m̃2
tL mt(At − µ cotβ)

mt(At − µ cotβ) m̃2
tR

)
,

(
m̃2
bL mb(Ab − µ tanβ)

mb(Ab − µ tanβ) m̃2
bR

)
,

(
m̃2
τL mτ (Aτ − µ tanβ)

mτ (Aτ − µ tanβ) m̃2
τR

)

with

m̃2
tL = m̃2

Q +m2
t +

1

6

(
4M2

W −M2
Z

)
cos 2β,

m̃2
tR = m̃2

U +m2
t −

2

3
(M2

W −M2
Z) cos 2β,

m̃2
bL = m̃2

Q +m2
b −

1

6
(2M2

W +M2
Z) cos 2β,

m̃2
bR = m̃2

D +m2
b +

1

3
(M2

W −M2
Z) cos 2β,

m̃2
τL = m̃2

L +m2
τ −

1

2
(2M2

W −M2
Z) cos 2β,

m̃2
τR = m̃2

E +m2
τ + (M2

W −M2
Z) cos 2β

and the mass eigenstates are the eigenvalues of these mass matrices. For the light generations mixing is
negligible.

The first terms here (m̃2) are the soft ones, which are calculated using the RG equations starting
from their values at the GUT (Planck) scale. The second ones are the usual masses of the quarks and
leptons and the last ones are the D-terms of the potential.
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5.2 The Higgs potential
As has already been mentioned, the Higgs potential in the MSSM is totally defined by the superpotential
(and the soft terms). Due to the structure of LY ukawa the Higgs self-interaction is given by the D-terms
while the F -terms contribute only to the mass matrix. The tree level potential is

Vtree = m2
1|H1|2 +m2

2|H2|2 −m2
3(H1H2 + h.c.) +

g2 + g
′2

8
(|H1|2 − |H2|2)2 +

g2

2
|H∗1H2|2, (48)

where m2
1 = m2

H1
+ µ2,m2

2 = m2
H2

+ µ2. At the GUT scale m2
1 = m2

2 = m2
0 + µ2

0, m
2
3 = −Bµ0.

Notice that the Higgs self-interaction coupling in Eqn. (48) is fixed and defined by the gauge interactions
as opposed to the Standard Model.

The Higgs scalar potential in accordance with the supersymmetry, is positive definite and stable.
It has no nontrivial minimum different from zero. Indeed, let us write the minimization condition for the
potential (48)

1

2

δV

δH1
= m2

1v1 −m2
3v2 +

g2 + g′2

4
(v2

1 − v2
2)v1 = 0,

1

2

δV

δH2
= m2

2v2 −m2
3v1 +

g2 + g′2

4
(v2

1 − v2
2)v2 = 0,

(49)

where we have introduced the notation

〈H1〉 ≡ v1 = v cosβ, 〈H2〉 ≡ v2 = v sinβ,

v2 = v2
1 + v2

2, tanβ ≡ v2

v1
.

Solution to Eqs. (49) can be expressed in terms of v2 and sin 2β

v2 =
4(m2

1 −m2
2 tan2 β)

(g2 + g′2)(tan2 β − 1)
, sin 2β =

2m2
3

m2
1 +m2

2

. (50)

One can easily see from Eqn. (50) that if m2
1 = m2

2 = m2
0 + µ2

0, v2 happens to be negative, i. e. the
minimum does not exist. In fact, real positive solutions to Eqs. (49) exist only if the following conditions
are satisfied:

m2
1 +m2

2 > 2m2
3, m2

1m
2
2 < m4

3, (51)

which is not the case at the GUT scale. This means that spontaneous breaking of the SU(2) gauge
invariance, which is needed in the SM to give masses for all the particles, does not take place in the
MSSM.

This strong statement is valid, however, only at the GUT scale. Indeed, going down with the
energy, the parameters of the potential (48) are renormalized. They become the “running” parameters
with the energy scale dependence given by the RG equations.

5.3 Radiative electroweak symmetry breaking
The running of the Higgs masses leads to the remarkable phenomenon known as radiative electroweak
symmetry breaking. Indeed, one can see in Fig. 10 that m2

2 (or both m2
1 and m2

2) decreases when going
down from the GUT scale to the MZ scale and can even become negative. As a result, at some value of
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Q2 the conditions (51) are satisfied, so that the nontrivial minimum appears. This triggers spontaneous
breaking of the SU(2) gauge invariance. The vacuum expectations of the Higgs fields acquire nonzero
values and provide masses to the quarks, leptons and SU(2) gauge bosons, and additional contributions
to the masses of their superpartners.

In this way one also obtains the explanation of why the two scales are so much different. Due to
the logarithmic running of the parameters, one needs a long "running time" to get m2

2 (or both m2
1 and

m2
2) to be negative when starting from a positive value of the order of MSUSY ∼ 102 ÷ 103 GeV at the

GUT scale.
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Fig. 10: An example of evolution of superparticle masses and soft supersymmetry breaking parameters m2
1 =

m2
H1

+ µ2 and m2
2 = m2

H2
+ µ2 for low (left) and high (right) values of tanβ.

5.4 The superpartners mass spectrum
The mass spectrum is defined by the low energy parameters. To calculate the low energy values of the
soft terms, we use the corresponding RG equations [31]. Having all the RG equations, one can now
find the RG flow for the soft terms. Taking the initial values of the soft masses at the GUT scale in
the interval between 102 ÷ 103 GeV consistent with the SUSY scale suggested by the unification of the
gauge couplings (8) leads to the RG flow of the soft terms shown in Fig. 10. [29, 30]

One should mention the following general features common to any choice of initial conditions:

– The gaugino masses follow the running of the gauge couplings and split at low energies. The
gluino mass is running faster than the other ones and is usually the heaviest due to the strong
interaction.

– The squark and slepton masses also split at low energies, the stops (and sbottoms) being the lightest
due to the relatively big Yukawa couplings of the third generation.

– The Higgs masses (or at least one of them) are running down very quickly and may even become
negative.

The typical dependence of the mass spectra on the initial conditions at the GUT scale (m0) is also
shown in Fig. 11 [32, 33]. For a given value of m1/2 the masses of the lightest particles are practically
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Fig. 11: The masses of sparticles as functions of the initial value m0.

independent of m0, while the masses of the heavier ones increase with it monotonically. One can see
that the lightest neutralinos and charginos as well as the top-squark may be rather light.

5.5 The Higgs boson masses
Provided conditions (51) are satisfied, one can also calculate the masses of the Higgs bosons taking the
second derivatives of the potential (48) with respect to the real and imaginary parts of the Higgs fields
(Hi = Si + iPi) in the minimum. The mass matrices at the tree level are

CP -odd components P1 and P2:

Modd =
∂2V

∂Pi∂Pj

∣∣∣∣
Hi=vi

=

(
tanβ 1

1 cotβ

)
m2

3, (52)

CP -even neutral components S1 and S2:

Meven =
∂2V

∂Si∂Sj

∣∣∣∣
Hi=vi

=

(
tanβ −1
−1 cotβ

)
m2

3 +

(
cotβ −1
−1 tanβ

)
M2
Z

sin 2β

2
, (53)

Charged components H− and H+:

Mch =
∂2V

∂H+
i ∂H

−
j

∣∣∣∣∣
Hi=vi

=

(
tanβ 1

1 cotβ

)(
m2

3 +M2
W

sin 2β

2

)
. (54)
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Diagonalizing the mass matrices, one gets the mass eigenstates:
{
G0 = − cosβP1 + sinβP2, Goldstone boson→ Z0,
A = sinβP1 + cosβP2, Neutral CP − odd Higgs,

{
G+=−cosβ(H−1 )∗+sinβH+

2 , Goldstone boson→W+,
H+ = sinβ(H−1 )∗ + cosβH+

2 , Charged Higgs,

{
h = − sinαS1 + cosαS2, SM CP − even Higgs,
H = cosαS1 + sinαS2, Extra heavy Higgs,

where the mixing angle α is given by

tan 2α = tan 2β

(
m2
A +M2

Z

m2
A −M2

Z

)
.

The physical Higgs bosons acquire the following masses [18]:

CP -odd neutral Higgs A:
m2
A = m2

1 +m2
2, (55)

Charged Higgses H±:
m2
H± = m2

A +M2
W , (56)

CP -even neutral Higgses H,h:

m2
H,h =

1

2

[
m2
A +M2

Z ±
√

(m2
A +M2

Z)2 − 4m2
AM

2
Z cos2 2β

]
, (57)

where, as usual,

M2
W =

g2

2
v2, M2

Z =
g2 + g′2

2
v2.

This leads to the once celebrated SUSY mass relations

mH± ≥MW , mh ≤ mA ≤MH ,

mh ≤MZ | cos 2β| ≤MZ , (58)

m2
h +m2

H = m2
A +M2

Z .

Thus, the lightest neutral Higgs boson happens to be lighter than the Z-boson, which clearly
distinguishes it from the SM one. Though we do not know the mass of the Higgs boson in the SM, there
are several indirect constraints leading to the lower boundary of mSM

h ≥ 135 GeV. After including the
leading one-loop radiative corrections, the mass of the lightest Higgs boson in the MSSM, mh, reads

m2
h = M2

Z cos2 2β +
3g2m4

t

16π2M2
W

log
m̃2
t1m̃

2
t2

m4
t

+ . . . (59)

which leads to about 40 GeV increase [34]. The second loop correction is negative but small [35].

It is interesting, that the Higgs mass upper bound depends crucially on some parameters of the
model, and is almost independent on the choice of the other parameters. For example, the 1 GeV change
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Fig. 12: The maximal Higgs mass in the constrained MSSM scenarios mSUGRA, mAMSB and mGMSB, as a
function of the scale MS when the top quark mass is varied in the range mt = 170–176 GeV (left) and as a
function of tanβ (right).

in the mass of the top quark leads to the∼1 GeV change in the Higgs mass upper bound. The dependence
of the maximal Higgs mass on the supersymmetry breaking scale MS is shown in the left panel of
Fig. 12 [36] for different scenarios of SUSY breaking. The widths of bands corresponds to the variation
of the top mass in the range 170–176 GeV.

The right panel of Fig. 12 shows the dependence of the maximal Higgs mass on tanβ for the fixed
value of mt = 173 GeV while other parameters of the model vary within the ranges [37]:

mSUGRA: 50 GeV ≤ m0 ≤ 3 TeV, 50 GeV ≤ m1/2 ≤ 3 TeV, |A0| ≤ 9 TeV;
GMSB: 10 TeV ≤ Λ ≤ 1000 TeV, 1 ≤Mmess/Λ ≤ 1011, Nmess = 1;
AMSB: 1 TeV ≤ m3/2 ≤ 100 TeV, 50 GeV ≤ m0 ≤ 3 TeV.

5.6 The lightest superparticle
One of the crucial questions is the properties of the lightest superparticle. Different SUSY breaking
scenarios lead to different experimental signatures and different LSP.

– Gravity mediation
In this case, the LSP is the lightest neutralino χ̃0

1, which is almost 90% photino for the low tanβ
solution and contains more higgsino admixture for high tanβ. The usual signature for LSP is
the missing energy; χ̃0

1 is stable and is the best candidate for the cold dark matter particle in the

Universe. Typical processes, where the LSP is created, end up with jets +
/
ET , or leptons +

/
ET , or

both jets + leptons + /ET .
– Gauge mediation

In this case the LSP is the gravitino G̃, which also leads to the missing energy. The actual question
here is what is the NLSP, the next-to-lightest particle, is. There are two possibilities:
i) χ̃0

1 is the NLSP. Then the decay modes are: χ̃0
1 → γG̃, hG̃, ZG̃. As a result, one has two hard

photons + /ET , or jets + /ET .
ii) l̃R is the NLSP. Then the decay mode is l̃R → τG̃ and the signature is a charged lepton and the
missing energy.
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– Anomaly mediation
In this case, one also has two possibilities:
i) χ̃0

1 is the LSP and wino-like. It is almost degenerate with the NLSP.
ii) ν̃L is the LSP. Then it appears in the decay of the chargino χ̃+ → ν̃l and the signature is the
charged lepton and the missing energy.

– R-parity violation
In this case, the LSP is no longer stable and decays into the SM particles. It may be charged (or
even colored) and may lead to rare decays like the neutrinoless double β-decay, etc.

Experimental limits on the LSP mass follow from the non-observation of the corresponding events. The
modern lower limit is around 40 GeV .

6 Constrained MSSM
6.1 Parameter space of the MSSM
The Standard Model has the following set of free parameters:

i) three gauge couplings αi;
ii) three (or four if the Dirac neutrino mass term is included) matrices of the Yukawa couplings yiab,

where i = U,D,L(N);
iii) two parameters of the Higgs potential (λ and m2).

The parameters of the Yukawa sector are usually traded for the masses, mixing angles and phases of the
mixing matrices.

In the MSSM one has the same set of parameters except for the parameters of the Higgs potential
which is fixed by supersymmetry, but in addition one has

iv) the Higgs fields mixing parameter µ;
v) the soft supersymmetry breaking terms.

The main uncertainty comes from the unknown soft terms. With the universality hypothesis one is left
with the following set of 5 free parameters defining the mass scales

µ, m0, m1/2, A and B ↔ tanβ =
v2

v1
.

When choosing the set of parameters and making predictions, one has two possible ways to proceed:

i) take the low-energy parameters like the superparticle masses m̃q1, m̃q2,mA, tanβ, mixingsXstop, µ,
etc. as input and calculate the cross-sections as functions of these parameters. The disadvantage
of this approach is the large number of free parameters.

ii) take the high-energy parameters like the above mentioned 5 parameters as input, run the RG equa-
tions and find the low-energy values. Now the calculations can be carried out in terms of the
initial parameters. The advantage is that their number is relatively small. A typical range of these
parameters is

100 GeV ≤ m0,m1/2, µ ≤ 3 TeV,

−3m0 ≤ A0 ≤ 3m0, 1 ≤ tanβ ≤ 70.

The experimental constraints are sufficient to determine these parameters, albeit with large uncer-
tainties.
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6.2 The choice of constraints
When subjecting constraints on the MSSM, perhaps, the most remarkable fact is that all of them can be
fulfilled simultaneously. In our analysis we impose the following constraints on the parameter space of
the MSSM:

– LEP II experimental lower limits on the SUSY masses;
– Limits from the Higgs searches;
– Limits from precision measurement of rare decay rates (Bs → sγ,Bs → µ+µ−, Bs → τν);
– Relic abundance of the Dark Matter in the Universe;
– Direct Dark Matter searches;
– Anomalous magnetic moment of the muon;
– Radiative electroweak symmetry breaking;
– Gauge coupling constant unification;
– Neutrality of the LSP;
– Tevatron and LHC limits on the superpartner masses.

In what follows we use the set of experimental data shown in the Table 2.

Constraint Data Ref.

Ωh2 0.113± 0.004 [38]
b→ sγ (3.55± 0.24) · 10−4 [39]
b→ τν (1.68± 0.31) · 10−4 [39]
∆aµ (290 ± 63(exp) ± 61(theo)) · 10−11 [40]
Bs → µµ Bs → µµ < 4.5 · 10−9 [41]
mh mh > 114.4 GeV [42]
mA mA > 510 GeV for tanβ ≈ 50 [43]
ATLAS σSUSYhad < 0.001− 0.03 pb [44]
CMS σSUSYhad < 0.003− 0.03 pb [45]
XENON100 σχN < 1.8 · 10−45 − 6 · 10−45cm2 [46]

Table 2: List of all constraints used in the fit to determine the excluded region of the CMSSM parameter space.

Having in mind the above mentioned constraints one can find the most probable region of the
parameter space by minimizing the χ2 function [30]. Since the parameter space is 5 dimensional one can
not plot it explicitly and is bounded to use various projections. We will accept the following strategy: we
first choose the value of the Higgs mixing parameter µ from the requirement of radiative EW symmetry
breaking and then take the plane of parameters m0 − m1/2 adjusting the remained parameters A0 and
tanβ at each point minimizing the χ2. We present the restrictions coming from various constraints in
the m0 −m1/2 plane.

The most probable region of the parameter space is determined by the minimum χ2
min value. The

95% C.L. (90% C.L.) limit is reached for the values of χ2 of 5.99 (4.61), respectively. The χ2 function
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is defined as

χ2 =

(
Ωh2 − 0.1131

)2

σ2
Ωh2

+

(
b→ sγ − 3.55 · 10−4

)2

σ2
b→sγ

+

(
b→ τν − 1.68 · 10−4

)2

σ2
b → τν

+

(
∆aµ − 302 · 10−11

)2

σ2
∆aµ

+ χ2
Bs→µµ + χ2

mh
+ χ2

CMS + χ2
ATLAS + χ2

mA
+ χ2

DDMS

(60)

In what follows we show the influence of various constraints and determine the allowed region of
the parameter space with 95% C.L.

7 Electroweak Constraints
7.1 Region excluded by theBs → sγ decay rate
The next two constraints are related to the rare decays where SUSY may contribute. The first one is the
b→ sγ decay which in the SM given by the first two diagrams shown in Fig. 13 and leads to [47]

BRSM (b→ sγ) = (3.15± 0.23) · 10−4

while experiment gives [39]

BRexp(b→ sγ) = (3.55± 0.24) · 10−4.

These two values almost coincide but still leave some room for SUSY.

Fig. 13: The diagrams contributing to b→ sγ decay in the SM and in the MSSM.

SUSY contribution comes from the last three diagrams shown in Fig. 13 The tanβ-enhanced
corrections to the chargino and charged Higgs contributions can be summarized as follows: the tanβ-
enhanced chargino contributions to BR(b→ sγ) is [48]

BRSUSY (b→ sγ)
∣∣∣
χ±
∝ µAt tanβf(m̃2

t1 , m̃
2
t1 ,mχ±)

mb

v(1 + δmb)
, (61)

where all dominant higher-order contributions are included through δmb, and f is the integral appearing
in the one-loop diagram. The relevant charged-Higgs contributions to BR(b → sγ) in the large tanβ
regime is [48]

BRSUSY (b→ sγ)
∣∣∣
H±
∝ mb(ht cosβ − δht sinβ)

v cosβ(1 + δmb)
g(m±H ,mt), (62)

where g is the loop integral appearing in the diagram.

The influence of this constraint is shown below together with the Bs → µ+µ− one.
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7.2 Region excluded by theBs → µ+µ− decay rate
The second example is the Bs → µ+µ− decay. In the SM it is given by the first two diagrams shown in
Fig. 14. The branching ratio is [49]

BRSM (Bs → µ+µ−) = (3.23± 0.27) · 10−9,

while the recent experiment gives only the lower bound [50] 1

BRexp(Bs → µ+µ−) < 4.5 · 10−9.

In the MSSM one has several additional diagrams but the main contribution enhanced by tan6 β (!)
comes from the one shown on the right of Fig. 14.
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Fig. 14: The diagrams contributing to Bs → µ+µ− decay in the SM and in the MSSM.

The branching ratio for Bs → µ+µ− is given in [52, 53] which we write in the form

BR(Bs → µ+µ−) =
2τBM

5
B

64π
f2
Bs

√
1− 4m2

l

M2
B

(63)

×



(

1− 4m2
l

M2
B

) ∣∣∣∣∣
(CS − C ′S)

(mb +ms)

∣∣∣∣∣

2

+

∣∣∣∣∣
(CP − C ′P )

(mb +ms)
+ 2

mµ

M2
Bs

(CA − C ′A)

∣∣∣∣∣

2



where fBs is the Bs decay constant, MB is the B-meson mass, τB is the mean life time and ml is the
mass of the lepton. CS , C ′S , CP , C ′P include the SUSY loop contributions due to the diagrams involving
the particles such as stop, chargino, sneutrino, Higgs etc. For large tanβ, the dominant contribution to
CS is given approximately by

CS '
GFα√

2π
VtbV

∗
ts

(
tan3 β

4 sin2 θW

)(
mbmµmtµ

M2
WM

2
A

)
sin 2θt̃

2



m2
t̃1

log
(
m2
t̃1
/µ2
)

µ2 −m2
t̃1

−
m2
t̃2

log
(
m2
t̃2
/µ2
)

µ2 −m2
t̃2




(64)
where mt̃1,2

are the two stop masses, and θt̃ is the rotation angle to diagonalize the stop mass matrix. We
need to multiply the above expression by the factor 1/(1 + εb)

2 to include the SUSY QCD corrections.
εb is proportional to µ tanβ [54]. Thus, for large tanβ the amplitude grows like tan6 β and might
come in contradiction with experiment [55]. One observes, however, that the tanβ dependence can be

1While the Lectures have been prepared the first evidence for the decay Bs → µ+µ− based on 1.1 fb−1 of data recorded in
2012 at

√
s = 8 TeV has been reported [51]. The data show an excess of events with respect to the background-only prediction

with a statistical significance of 3.5σ. A fit to the data gives BR(Bs → µ+µ−) = (3.2+1.5
−1.2) · 10−9 which is in agreement

with the SM prediction, thus leaving less room for SUSY.
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compensated by the strong suppression in the last term if the stop masses become equal. This means that
in order to get not too large branching ratio the stop masses have to be degenerate.

The values of the branching ratio for various parameters are shown on the left part of Fig. 15 [53]
and the restrictions on the parameter space – on the right of Fig. 15.
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Fig. 15: The values of the branching ratio of the Bs → µ+µ− decay in the MSSM (left) and constraints on
parameters space of the MSSM from electroweak observables (right).

7.3 Region excluded by the anomalous magnetic moment of muon
The theoretical value of g − 2 has been reviewed in Ref. [56] which is in agreement with the latest
values from [57]. Recent measurement of the anomalous magnetic moment of the muon indicates small
deviation from the SM of the order of 3 σ [40]:

aexpµ = 11 659 2080(63) · 10−11

aSMµ = 11 659 1790(64) · 10−11

∆aµ = aexpµ − atheorµ = (290± 90) · 10−11,

where the SM contribution comes from

aQEDµ = 11 658 4718.1 (0.2) · 10−11

aweakµ = 153.2 (1.8) · 10−11

ahadronµ = 6918.7 (65) · 10−11,

so that the accuracy of the experiment finally reaches the order of the weak contribution. The corre-
sponding diagrams are shown in Fig. 16.

The deficiency may be easily filled with the SUSY contribution coming from the last two diagrams
of Fig. 16. They are similar to that of the weak interactions after replacing the vector bosons by the
charginos and neutralinos.
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The total contribution to aµ from these diagrams is [58]

aSUSYµ = − g2
2

8π2

{∑

χ0
i ,µ̃j

mµ

mχ0
i

[
(−1)j+1 sin 2θB1(ηij) tan θWNi1

[
tan θWNi1 +Ni2

]

+
mµ

2MW cosβ
B1(ηij)Ni3[3 tan θWNi1 +Ni2]

+

(
mµ

mχ0
i

)2

A1(ηij)

{
1

4
[tan θWNi1 +Ni2]2 + [tan θWNi1]2

}


−
∑

χ±j

[
mµmχ±j

m2
ν̃

mµ√
2MW cosβ

B2(κj)Vj1Uj2 +

(
mµ

mν̃

)2 A1(κj)

2
V 2
j1

]

.

(65)

where Nij are elements of the matrix diagonalizing the neutralino mass matrix, and Uij , Vij are the cor-
responding ones for the chargino mass matrix, the functions A and B are the one-loop triangle integrals.
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Fig. 17: The dependence of aSUSYµ versus tanβ for various values of the SUSY breaking parameters m0 and
m1/2 (left). The horizontal band shows the discrepancy between the experimental data and the SM estimate. The
allowed regions of the parameters space (right). The black contour shows the constraint from the LHC searches.
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For large tanβ it can be approximated as [59]

∣∣aSUSYµ

∣∣ ' α(MZ)

8π sin2 θW

m2
µ tanβ

m2
SUSY

(
1− 4α

π
log

mSUSY

mµ

)
' 14.0 · 10−10

(
100 GeV
mSUSY

)2

tanβ,

where mµ is the muon mass, mSUSY is an average mass of the supersymmetric particles in the loop
(essentially the chargino mass). It is proportional to µ and tanβ and requires the positive sign of µ that
kills a half of the parameter space of the MSSM [60].

If the SUSY particles are light enough they give the desired contribution to the anomalous mag-
netic moment. However, if they are too light the contribution exceeds the gap between the experiment
and the SM. For too heavy particles the contribution is too small. The values of aSUSYµ versus tanβ
for various values of the SUSY breaking parameters m0 and m1/2 are shown on the left of Fig. 17 and
the restrictions on the parameter space are presented on the right panel of Fig. 17. However, the allowed
region is almost excluded by the direct SUSY searches at the LHC as can be seen in Fig. 17 on the right
panel. So the observed deviation from the SM might be caused by the other reasons.

7.4 Region excluded by the pseudo-scalar Higgs massmA

The pseudo-scalar Higgs boson production is enhanced by tanβ. The main diagrams for for the gluon
fusion and associated Higgs production with a b-quark are shown in Fig. 18 together with the corre-
sponding cross-sections. Since the b-quark production is mostly in the forward direction, the scale on the
right-hand side indicates if at least one b-quark is required to be in the acceptance, defined by η < 2.5,
and have a transverse momentum above 20 GeV/c.

Heavy Higgs Production at the LHC

12

Mh =
↵s

4⇡

m2
h

2
p

2v

✓
cos↵

sin�
Fh

1/2[
4m2

t

m2
h

] � sin↵

cos�
Fh

1/2[
4m2

b

m2
h

]

◆
,

MH =
↵s

4⇡

m2
H

2
p

2v

✓
sin↵

sin�
FH

1/2[
4m2

t

m2
H

] +
cos↵

cos�
FH

1/2[
4m2

b

m2
H

]

◆
,

MA =
↵s

4⇡

m2
A

2
p

2v

✓
cos�

sin�
FA

1/2[
4m2

t

m2
A

] +
sin�

cos�
FA

1/2[
4m2

b

m2
A

]

◆

�Higgs =
1

32

Z 1

0

dx1dx2 g[x1] g[x2] |MHiggs|2
2⇡

m2
Higgs

�(E2x1x2 � m2
Higgs)

7 Te
V 5 fb 

-1

12

Fig. 18: Left: The pseudoscalar Higgs production cross section as function of tanβ, both for the gluon fusion
diagram and associated Higgs production with a b-quark for the different Higgs mass values indicated. Right:
expected discovery reach for the ATLAS detector at 14 TeV and a luminosity of 30 fb−1 [62]. The region already
excluded at the Tevatron [63] and the expected exclusion reach after the initial 7 TeV run at the LHC [64] have
been indicated as well (assuming a luminosity of 1 fb−1). These sensitivity projections for future LHC running of
the ATLAS and CMS detectors are preliminary.

The pseudo-scalar Higgs boson mass is determined by the relic density constraint, because the
dominant neutralino annihilation contribution comes from the A-boson exchange in the region outside
the small co-annihilation regions. One expects mA ∝ m1/2 from the relic density constraint, which can
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Fig. 19: Left: values of mA in the (m0 −m1/2) plane after optimizing tanβ and A0. The region below the solid
line is excluded at 95% C.L. Right: The influence of a Higgs mass of 125 GeV. If it is imposed in the fit, the best-fit
point moves to higher SUSY masses, but the location is strongly dependent on the assumed error for the calculated
Higgs mass. This error is indicated by the number inside the circle for the best-fit point: ∆χ2 = 5.99(2σ) contour.

be fulfilled with tanβ values around 50 in the whole (m0 −m1/2) plane [61]. Since the A production
cross section at the LHC is proportional to tan2 β the pseudo-scalar mass limit increases up to 496 GeV
for the large values of tanβ preferred by the relic density (see Fig. 18 right panel). The corresponding
mA-values are displayed in the left panel of Fig. 19 and the mA values excluded by the LHC searches
lead to the excluded region, shown by the contour line in Fig. 19.

The rather strong limits on the pseudo-scalar Higgs boson mass from LHC [43, 65], especially at
large values of tanβ, lead then to constraints on m1/2 of about 400 GeV for intermediate values of m0,
as shown in the left panel of Fig. 19 [66].

7.5 Effect of a SM Higgs massmh around 125 GeV
The 95% C.L. LEP limit of 114.4 GeV contributes for the small and intermediate SUSY masses to the
χ2 function. In recent publications CMS [67] and ATLAS [68] collaborations show evidence for the
Higgs with a mass around 125 GeV. If we assume this to be the evidence for the SM Higgs boson, which
has similar properties as the lightest SUSY Higgs boson in the decoupling regime, we can check the
consequences for the CMSSM. If the Higgs mass of 125 GeV is included to the fit, the best-fit point
moves to higher SUSY masses, but there is rather strong tension between the relic density constraint,
Bs → µ+µ− and the Higgs mass, so the best-fit point depends strongly on the error assigned to the
Higgs mass, as shown in Fig. 19 (right panel). The experimental error on the Higgs mass is about 2 GeV,
but the theoretical error can be easily 3 GeV. Therefore, we have plotted the best-fit point for Higgs
uncertainties between 2 and 5 GeV. One sees that the best-fit points wanders by several TeV. Clearly
this needs a more detailed investigation in the future. It should be noted that the fit does not provide the
maximum mixing scenario. If we exclude all other constraints, the maximum value of the Higgs mass
can reach 125 GeV, albeit also at similarly large values ofm1/2. A negative sign of the mixing parameter
µ shows similar results [66].
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8 The problem of the dark matter in the Universe
As has been already mentioned the shining matter does not compose all the matter in the Universe.
According to the latest precise data [69] the matter content of the Universe is the following:

Ωtotal = 1.02± 0.02,

Ωvacuum = 0.73± 0.04,

Ωmatter = 0.23± 0.04,

Ωbaryon = 0.044± 0.004,

so that the dark matter prevails the usual baryonic matter by factor of 6.

Besides the rotation curves of spiral galaxies the dark matter manifests itself in the observation
of gravitational lensing effects [11] and the large structure formation. It is believed that the dark matter
played the crucial role in the formation of large structures like clusters of galaxies and the usual matter
just fell down in a potential well attracted by the gravitational interaction afterwards. The dark matter
can not make compact objects like the usual matter since it does not take part in the strong interaction
and can not lose energy by the photon emission since it is neutral. For this reason the dark matter can be
trapped in much larger scale structures like galaxies.

In general one may assume two possibilities: either the dark matter interacts only gravitationally,
or it participates also in the weak interaction. The latter case is preferable since then one may hope
to detect it via the methods of the particle physics. What makes us to believe that the dark matter is
probably the Weakly Interacting Massive Particle (WIMP)? This is because the cross-section of the DM
annihilation which can be figured out of the amount of the DM in the Universe is close to a typical weak
interaction cross-section. Indeed, let us assume that all the DM is made of particles of a single type.
Then the amount of the DM can be calculated from the Boltzman equation [70, 71]

dnχ
dt

+ 3Hnχ = −〈σv〉(n2
χ − n2

χ,eq), (66)

where H = Ṙ/R is the Hubble constant and nχ,eq is the equilibrium concentration. The relic abundance
is expressed in terms of nχ as

Ωχh
2 =

mχnχ
ρc

≈ 2 · 10−27 cm3 sec−1

〈σv〉 . (67)

Having in mind that Ωχh
2 ≈ 0.113± 0.009 and v ∼ 300 km/sec one gets

σ ≈ 10−34 cm2 = 100 pb, (68)

which is a typical electroweak cross-section.

8.1 Supersymmetric interpretation of the Dark Matter
Supersymmetry offers several candidates for the role of the cold dark matter particle. If one looks at
the particle content of the MSSM from the point of view of a heavy neutral particle, one finds several
such particles, namely: the superpartner of the photon (the photino γ̃), the superpartner of the Z-boson
(the particle called zino z̃), the superpartner of the neutrino (the sneutrino ν̃) and the superpartners of the
Higgs bosons (the higgsinos H̃). The DM particle can be the lightest of them, the LSP. The others decay
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to the LSP and the SM particles, while the LSP is stable and can survive since the Big Bang. As a rule
the lightest supersymmetric particle is the neutralino, the spin 1/2 particle which is the combination of
the photino, zino and two neutral higgsinos and is the eigenstate of the mass matrix

|χ̃0
1〉 = N1|B0〉+N2|W 3

0 〉+N3|H1〉+N4|H2〉.

Thus, supersymmetry actually predicts the existence of the dark matter. Moreover, one can choose
the parameters of soft supersymmetry breaking in such a way that one gets the right amount of the DM.
This requirement serves as a constraint for these parameters and is consistent with the requirements
coming from the particle physics.

The search for the LSP was one of the tasks of LEP. They were supposed to be produced as a
result of the chargino decays and be detected via the missing transverse energy and momentum. Negative
results defined the limit on the LSP mass as shown in Fig. 20.
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Fig. 20: Exclusion limits on the LSP mass from Delphi and L3 Collaboration (LEP) [72].

The DM particles which form the halo of the galaxy annihilate to produce the ordinary particles
in the cosmic rays. Identifying them with the LSP from a supersymmetric model one can calculate the
annihilation rate and study the secondary particle spectrum. The dominant annihilation diagrams of the
neutralino LSP are shown in Fig. 21. The usual final states are either the quark-antiquark pairs or the W
and Z bosons. Since the cross sections are proportional to the final state fermion mass, the heavy fermion
final states, i. e. the third generation quarks and leptons, are expected to be dominant. TheW and Z final
states from the t-channel chargino and neutralino exchange have usually a smaller cross section.

The dominant contribution comes from the A-boson exchange: χ+χ→ A→ bb̄. The sum of the
diagrams should yield 〈σv〉 = 2 · 10−26 cm3/sec to get the correct relic density.

The spectral shape of the secondary particles the from DM annihilation is well known from the
fragmentation of the mono-energetic quarks studied at the electron-positron colliders, like LEP at CERN,
which has been operating up to the centre-of-mass energy of about 200 GeV, i. e. it corresponds to the
neutralino mass up to 100 GeV. The different quark flavours all yield similar gamma spectra at high
energies. Hence, the specrta of the positrons, photons and antiprotons is known. The relative amount of
γ, p− and e+ is also known. One expects around 37 photons per collision.
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Fig. 21: The dominant annihilation diagrams for the lightest neutralino in the MSSM.

The gamma rays from the DM annihilation can be distinguished from the background by their
completely different spectral shape: the background originates mainly from cosmic rays hitting the gas
of the disc and producing abundantly π0-mesons, which decay into two photons. The initial cosmic
ray spectrum is a steep power law spectrum, which yields a much softer gamma ray spectrum than the
fragmentation of the hard mono-energetic quarks from the DM annihilation. The spectral shape of the
gamma rays from the background is well known from fixed target experiments given the known cosmic
ray spectrum.

Unfortunately, modern data on diffuse galactic gamma rays, do not indicate statistically signif-
icant departure from the background. Local excess observed in some experiments like EGRET space
telescope [73] and FERMI [74] is well inside the uncertainties of the background.

8.2 Region excluded by the relic density
The observed relic density of the dark matter corresponds to Ωh2 = 0.113 ± 0.004 [38]. This number
is inversely proportional to the annihilation cross section. The dominant annihilation contribution comes
from A-boson exchange in most of the parameter space. The cross section for χ+ χ→ A→ bb̄ can be
written as:

〈σv〉 ∼
M4
χm

2
b tan2 β

sin4 2θW M2
Z

(N31 sinβ −N41 cosβ)2 (N21 cos θW −N11 sin θW )2

(
4M2

χ −M2
A

)2
+M2

AΓ2
A

. (69)

As have been mentioned, the correct relic density requires 〈σv〉 = 2 · 10−26 cm3/s, which implies that
the annihilation cross section σ is of the order of a 100 pb. Such a high cross section can be obtained
only close to the resonance. Actually on the resonance the cross section is too high, so one needs to be in
the tail of the resonance, i .e. mA ≈ 2.2mχ ormA ≈ 1.8mχ. So one expectsmA ∝ m1/2 from the relic
density constraint. This constraint can be fulfilled with tanβ values around 50 in the whole (m0−m1/2)
plane, except for the narrow co-annihilation regions [61]. The results can be extended to larger values of
m0, as shown in the left panel of Fig. 22 [75].

8.3 Region excluded by direct DM searches
There are two methods of the dark matter detection: direct and indirect. In the direct detection one
assumes that the particles of the dark matter to the Earth and interact with the nuclei of a target. In the
underground experiments one can hope to observe such events measuring the recoil energy. There are
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Fig. 22: Left: Fitted values of tanβ in the (m0 − m1/2) plane after optimizing A0 to fulfil the relic density
and EWSB constraints at every point. The relic density requires tanβ ≈ 50 in most of the parameter space,
where pseudo-scalar Higgs exchange dominates. In the (non-red) edges where tanβ is lower, the co-annihilation
contributes. Right: ∆χ2 = χ2 − χ2

min distribution in the (m0 − m1/2) plane after imposing the electroweak
constraints in comparison with the XENON100 limits [46] on the direct WIMP-nucleon cross-section for the two
values of the form factors (dotted line: πN scattering, dashed dotted line: lattice gauge theories).

several experiments of this type: DAMA, Zeplin, CDMS and Edelweiss. Among them only the DAMA
collaboration claims to observe a positive outcome in the annual modulation of the signal with the fitted
dark matter particle mass around 50 GeV [76].

Fig. 23: The exclusion plots from the direct dark matter detection experiments. The spin-independent case (left)
from Chicagoland Observatory for Underground Particle Physics (COUPP) and the spin-dependent case (right)
from Cryogenic Dark Matter Search (CDMS).

All the other experiments do not see it though CDMS collaboration recently announced about a
few events of a desired type [77]. The reason of this disagreement might be in the different methodology
and the targets used since the cross-section depends on the spin of the target nucleus. The collected
statistics is also essentially different. DAMA has accumulated by far more data and this is the only
experiment which studies the modulation of the signal that may be crucial for reducing the background.
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The cross section for direct scattering of WIMPS on nuclei has an experimental upper limit of
about 10−8 pb, i. e. many orders of magnitude below the annihilation cross section. This cross section
is related to the annihilation cross section by similar Feynman diagrams. The many orders of magnitude
are naturally explained in Supersymmetry by the fact that both cross sections are dominated by Higgs
exchange and the fact that the Yukawa couplings to the valence quarks in the proton or neutron are
negligible. Most of the scattering cross section comes from the heavier sea-quarks. However, the density
of these virtual quarks inside the nuclei is small, which is one of the reasons for the small elastic scattering
cross section. In addition, the momentum transfer in elastic scattering is small, so the propagator leads
to a cross section inversely proportional to the fourth power of the Higgs mass.

The typical exclusion plots for the spin-independent and spin-dependent cross-sections are shown
in Fig. 23 where one can see DAMA allowed region overlapping with the other exclusion curves. Still
today we have no convincing evidence for direct dark matter detection or exclusion. Scattering of the
LSP on nuclei can only happen via elastic scattering, provided R-parity is conserved [13, 70]. The
corresponding diagrams are shown in Fig. 24.

The big blob indicates that one enters a low energy regime, in which case the protons and neutrons
inside the nucleus cannot be resolved. In this case the spin-independent scattering becomes coherent on
all nuclei and the cross section becomes proportional to the number of nuclei:

σ =
4

π

m2
DMm

2
N

(mDM +mN )2
(Zfp + (A− Z)fn)2 (70)

where A and Z are the atomic mass and atomic number of the target nuclei and the form factors are [78]

fp,n =
∑

q=u,d,s

Gqf
(p,n)
Tq

mp,n

mq
+

2

27
f

(p,n)
TG

∑

q=c,b,t

Gq
mp,n

mq
, (71)

where Gq = λDMλq/M
2
M . Here M denotes the mediator, and λDM, λf denote the mediator’s couplings

to DM and quark. The parameters f (p)
Tq are defined by

mpf
(p)
Tq ≡ 〈p|mq q̄q|p〉 (72)

and similar for f (n)
Tq , whilst f (p,n)

TG = 1−∑q=u,d,s f
(p,n)
Tq .

Since the particle which mediates the scattering is typically much heavier than the momentum
transfer, the scattering can be written in terms of an effective coupling, which can be determined phe-
nomenologically from πN scattering or from lattice QCD calculations.

The default values of the effective couplings in micrOMEGAs [79] are: f (p)
Tu = 0.033, f

(p)
Td =

0.023, f
(p)
Ts = 0.26, f

(n)
Tu = 0.042, f

(n)
Td = 0.018, f

(n)
Ts = 0.26. The lower values from the lattice
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calculations [80] are: f (p)
Tu = 0.020, f

(p)
Td = 0.026, f

(p)
Ts = 0.02, f

(n)
Tu = 0.014, f

(n)
Td = 0.036, f

(n)
Ts =

0.02. Hence the most important coupling to the strange quarks vary from 0.26 to 0.02 [81], which implies
an order of magnitude uncertainty in the elastic neutralino-nucleon scattering cross section.

Another normalization uncertainty in direct dark matter experiments arises from the uncertainty
in the local DM density, which can take values between 0.3 and 1.3 GeV/cm3, as determined from the
rotation curve of the Milky Way, see Ref. [82–85].

The excluded region from the XENON100 cross section limit [46] for two choices of form factors
is shown in Fig. 22. At large values ofm0 EWSB forces the higgsino component of the WIMP to increase
and consequently the exchange via the Higgs, which has an amplitude proportional to the bino-higgsino
mixing, starts to increase. This leads to an increase in the excluded region at large m0 and has here a
similar sensitivity as the LHC. If we would take the less conservative effective couplings from the default
values of micrOMEGAs the XENON100 limit would be 50% higher than the LHC limit [66].

9 Search for SUSY at Colliders
9.1 Experimental signatures at e+e− colliders
Experiments are finally beginning to push into a significant region of supersymmetry parameter space.
We know the sparticles and their couplings, but we do not know their masses and mixings. Given the
mass spectrum one can calculate the cross-sections and consider the possibilities of observing the new
particles at modern accelerators. Otherwise, one can get restrictions on the unknown parameters.

We start with the e+e− colliders. In the leading order the processes of creation of the superpartners
are given by the diagrams shown in Fig. 7 above. For a given center of mass energy the cross-sections
depend on the masses of the created particles and vanish at the kinematic boundary. Experimental signa-
tures are defined by the decay modes which vary with the mass spectrum. The main ones are summarized
below, see, e. g. [19, 86]

Production Decay Modes Signatures

• l̃L,R l̃L,R l̃±R → l±χ̃0
i acompl pair of

l̃±L → l±χ̃0
i charged lept +

/
ET

• ν̃ν̃ ν̃ → l±χ̃0
1

/
ET

• χ̃±1 χ̃±1 χ̃±1 → χ̃0
1l
±ν isol lept + 2 jets +

/
ET

χ̃±1 → χ̃0
2ff̄

′ pair of acompl

χ̃±1 → lν̃l leptons +
/
ET

→ lνlχ̃
0
1

χ̃±1 → νl l̃ 4 jets +
/
ET

→ νllχ̃
0
1

• χ̃0
i χ̃

0
j χ̃0

i → χ̃0
1X X = νlν̄l invisible

= γ, 2l, 2 jets

2l +
/
ET , l + 2j +

/
ET
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• t̃it̃j t̃1 → cχ̃0
1 2 jets +

/
ET

t̃1 → bχ̃±1 2 b-jets + 2 lept +
/
ET

→ bf f̄ ′χ̃0
1

• b̃ib̃j b̃i → bχ̃0
1 2 b-jets +

/
ET

b̃i → bχ̃0
2 2 b-jets + 2 lept+

/
ET

→ bf f̄ ′χ̃0
1 2 b-jets + 2 jets +

/
ET

The characteristic feature of all the possible signatures is the missing energy and transverse mo-
mentum, which is a trade mark of the new physics.

Numerous attempts to find the superpartners at LEP II gave no positive result thus imposing the
lower bounds on their masses [87]. Typical LEP II limits on the superpartner masses are

mχ0
1
> 40 GeV, mẽ > 105 GeV, mt̃ > 90 GeV

mχ±1
> 100 GeV, mµ̃ > 100 GeV, mb̃ > 80 GeV, mτ̃ > 80 GeV

9.2 Experimental signatures at hadron colliders
Experimental SUSY signatures at the Tevatron and LHC are similar. The strategy of the SUSY searches
is based on the assumption that the masses of the superpartners indeed are in the region of 1 TeV so that
they might be created on the mass shell with the cross-section big enough to distinguish them from the
background of the ordinary particles. Calculation of the background in the framework of the Standard
Model thus becomes essential since the secondary particles in all the cases are the same.

There are many possibilities to create the superpartners at the hadron colliders. Besides the usual
annihilation channel there are numerous processes of the gluon fusion, quark-antiquark and quark-gluon
scattering. The maximal cross-sections of the order of a few picobarn can be achieved in the process of
gluon fusion.

As a rule all the superpartners are short lived and decay into the ordinary particles and the lightest
superparticle. The main decay modes of the superpartners which serve as the manifestation of SUSY are

Production Decay Modes Signatures

• g̃g̃, q̃q̃, g̃q̃
g̃ → qq̄χ̃0

1

qq̄′χ̃±1
gχ̃0

1

/
ET + multijets

(+leptons)

q̃ → qχ̃0
i

q̃ → q′χ̃±i
• χ̃±1 χ̃0

2 χ̃±1 → χ̃0
1l
±ν Trilepton +

/
ET

χ̃0
2 → χ̃0

1ll

χ̃±1 → χ̃0
1qq̄
′ Dilept + jet +

/
ET

χ̃0
2 → χ̃0

1ll

• χ̃+
1 χ̃
−
1 χ̃+

1 → lχ̃0
1l
±ν Dilepton +

/
ET

• χ̃0
i χ̃

0
i χ̃0

i → χ̃0
1X

/
ET + Dilept+jets
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• t̃1t̃1 t̃1 → cχ̃0
1 2 acollin jets +

/
ET

t̃1 → bχ̃±1 sing lept +
/
ET + b′s

χ̃±1 → χ̃0
1qq̄
′

t̃1 → bχ̃±1 Dilept +
/
ET + b′s

χ̃±1 → χ̃0
1l
±ν

• l̃l̃, l̃ν̃, ν̃ν̃ l̃± → l ± χ̃0
i Dilepton +

/
ET

l̃± → νlχ̃
±
i Single lept + /ET

ν̃ → νχ̃0
1 /ET

Note again the typical events with the missing energy and transverse momentum that is the main
difference from the background processes of the Standard Model. Contrary to the e+e− colliders, at
hadron machines the background is extremely rich and essential. The missing energy is carried away by
the heavy particle with the mass of the order of 100 GeV that is essentially different from the processes
with the neutrino in the final state. In hadron collisions the superpartners are always created in pairs and
then further quickly decay creating a cascade with the ordinary quarks (i. e. hadron jets) or leptons in
the final state plus the missing energy. For the case of the gluon fusion with the creation of gluino it is
presented in Table 3 (right panel).

The chargino and neutralino can also be produced in pairs through the Drell-Yang mechanism
pp → χ̃±1 χ̃

0
2 and can be detected via their lepton decays χ̃±1 χ̃

0
2 → ``` +

/
ET . Hence the main signal

of their creation is the isolated leptons and the missing energy, see Table 3 (left panel). The main
background in the trilepton channel comes from the creation of the standard particles WZ/ZZ, tt̄, Zbb̄
è bb̄. There might be also the supersymmetric background from the cascade decays of the squarks and
gluinos in multilepton modes.

9.3 Excluded region by direct searches for SUSY at the LHC
The background from the SM processes results in the same final states although with different kinematics.
The missing energy in this case is taken away by the light neutrinos. The corresponding processes are
shown in Table 4.

Numerous SUSY searches have been already performed at the Tevatron. The pair-produced
squarks and gluinos have at least two large-ET jets associated with the large missing energy. The fi-
nal state with the lepton(s) is possible due to the leptonic decays of the χ̃±1 and/or χ̃0

2.

In the trilepton channel the Tevatron is sensitive up to m1/2 ≤ 250 GeV if m0 ≤ 200 GeV and
up to m1/2 ≤ 200 GeV if m0 ≥ 500 GeV. The existing limits on the squark and gluino masses at the
Tevatron are [88]: mq̃ ≥ 300 GeV, mg̃ ≥ 195 GeV.

In the proton-proton collisions at the LHC the supersymmetric particles can be produced according
to the main diagrams shown in the first three rows of Fig. 8, while the main diagrams for the electroweak
production are shown in the last row. The corresponding cross-sections are shown in Fig. 25 for the
centre-of-mass energy of 7 TeV [75]. One observes that the cross-section for the “strong” production of
q̃q̃ and g̃q̃ are large for the low values of m0 and m1/2, the gluino production g̃g̃ is the strongest at the
small values of m1/2 and the electroweak production of gauginos starts to increase at the large values of
m0. The reason for the increase of the electroweak production at large m0 is the decrease of the Higgs
mixing parameter µ, as determined from the EWSB, which leads to stronger mixing of the Higgsino
component in the gauginos and so the coupling to the weak gauge bosons and Higgs bosons increases,
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1

t̄
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di

ūi

l
ν

ν

l

b̄
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χ0
1

χ0
1

2`
2ν
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ET

g

g
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g̃

g̃

q

q̃

q̄
χ±

i
W±

χ0
1

q̄i

qk
q

q̃

χ±
i

W±

χ0
1

q̄i

qkq̄

8j/
ET

Table 3: Creation of the lightest chargino and the second neutralino with further cascade decay (left). Creation of
the pair of gluinos with further cascade decay (right).
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Process final states

2`
2j/
ET

`
2j/
ET

Process final states

2`
6j/
ET

4`
4j/
ET

Table 4: The background at the hadron colliders: the weak interaction processes (left), and the strong interaction
processes (right).

Fig. 25: The cross-sections for the SUSY particles production for the diagrams shown in Fig. 8: clockwise via the
strong interactions (g̃g̃, g̃q̃ and q̃q̃, respectively) and the electroweak interactions.
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Fig. 26: Left: The total production cross-section of the strongly interacting particles in comparison with the LHC
excluded limits for 7+8 TeV. Here the data from ATLAS and CMS were combined and correspond to the integrated
luminosity of 1.3 and 1.1 fb−1, respectively. One observes that the cross-section of 0.1 to 0.2 pb is excluded at
95% CL. Right: the cross sections at 14 TeV and expected exclusion for the same limit on the cross-section as at
7 TeV.

Fig. 27: As in Fig. 26, but the excluded region is translated into the mq̃,mg̃ plane. The red area corresponds to the
excluded regions for the integrated luminosity slightly above 1 fb−1; the expectations for the higher luminosities
have been indicated as well.

thus increasing the amplitudes for the diagrams in the last row of Fig. 8.

The “strong” production cross sections are characterized by a large number of jets from the long
decay chains and the missing energy from the escaping neutralino. These characteristics can be used
to efficiently suppress the background. For the electroweak production, both the number of jets and the
missing transverse energy is low, since the LSP is not boosted so strongly as in the decay of the heavier
strongly interacting particles. Hence, the electroweak gaugino production needs the leptonic decays to
reduce the background, so these signatures need more luminosity and cannot compete at present with the
sensitivity of the “strong” production of the squarks and gluinos.

The total cross-section for the strongly interacting particles are shown in Fig. 26 together with the
excluded region from the direct searches for SUSY particles at the LHC. One observes that the excluded
region (below the solid line) follows rather closely the total cross-section, indicated by the colour shading.

47



From the colour coding one observes that the excluded region corresponds to the cross-section limit of
about 0.1− 0.2 pb.

The drop of the excluded region at large values of m0 is due to the fact that in this region the
squarks become heavy, which means that the contributions from the diagrams in the second and third
rows of Fig. 8 start to diminish. Here only the higher energies will help and doubling the LHC energy
from 7 to 14 TeV, as planned in the coming years, quickly increases the cross-section for the gluino
production by orders of magnitude, as shown in the right panel of Fig. 26. The expected sensitivity
at 14 TeV, plotted as the exclusion contour in case nothing is found, assumes the same efficiency and
luminosity (slightly above one fb−1 per experiment) as at 7 TeV.

These limits can be translated to the squark and gluino masses as follows. The squark masses
have a starting value at the GUT scale equal to m0, but have important contributions from the gluinos
in the colour field, so the squark masses are given by m2

q̃ ≈ m2
0 + 6.6m2

1/2, as was determined from
the renormalization group equations [30]. Similarly the gluino mass is given by 2.7m1/2. The term
proportional to m1/2 in the squark mass corresponds to the self-energy diagrams, which imply that if the
"gluino-cloud" is heavy, the squarks cannot be light. This leads to the regions indicated as not allowed
ones in Fig. 27. Note that these regions are forbidden in any model with the coupling between the
squarks and gluinos, so they are not specific to the CMSSM. The squark masses below 1.1 TeV and the
gluino masses below 0.62 TeV are excluded for the LHC data at 7 TeV, as shown in the left panel of
Fig. 27. Expected sensitivities for the higher integrated luminosities at 7 and 14 TeV have been indicated
as well. One observes that increasing the energy is much more effective than increasing the luminosity.
At 14 TeV the squarks with masses of 1.7 TeV and gluinos with masses of 1.02 TeV are within reach
with 1 fb−1 per experiment, as shown in the right panel of Fig. 27.

9.4 Excluded region for combination of constraints
If one combines the excluded regions from the direct searches at the LHC, the relic density from the
WMAP, the already stringent limits on the pseudo-scalar Higgs mass with the XENON100 limits one
obtains the excluded region shown in the left panel of Fig. 28. Here the g − 2 limit is included with the
conservative linear addition of theoretical and experimental errors. One observes that the combination
excludes m1/2 below 525 GeV in the CMSSM for m0 < 1500 GeV, which implies the lower limit on
the WIMP mass of 230 GeV and a gluino mass of 1370 GeV, respectively.

As discussed earlier, the LHC becomes rather insensitive to the large m0 region because of the
decreasing cross-section for the production of strongly interaction particles and the large background for
the production of gauginos. However, in this region one obtains the increased sensitivity above the LHC
limits from the relic density and the direct DM searches.

If a Higgs mass of the lightest Higgs boson of 125 GeV is imposed, the preferred region is well
above this excluded region, but the size of the preferred region is strongly dependent on the size of the
assumed theoretical uncertainty as was shown in Fig. 19. Accepting the 2 GeV uncertainty we get the
excluded region shown in Fig. 28 (right panel), which is far above the existing LHC limits and leads to
strongly interacting superpartners above 2 TeV. However, in models with an extended Higgs sector, like
NMSSM [89], a Higgs mass of 125 GeV can be obtained for lower values of m1/2, in which case the
regions excluded in the MSSM become viable.

48



Fig. 28: Left: Combined constraints from the LHC searches, the relic density from WMAP, the direct DM searches
from XENON100, limits on the pseudo-scalar Higgs mass and g − 2 of muon (without the 125 GeV Higgs boson
mass constraint). Right: The account of the 125 GeV Higgs boson mass constraint with 2 GeV mass uncertainty.
The region below the white line is excluded at 95% C.L.

10 The reach of the LHC
10.1 LHC luminosity
The Large Hadron Collider is the unique machine for the new physics searches at the TeV scale. Its c.m.
energy is planned to be 14 TeV with very high luminosity up to a few hundred fb−1. At the moment the
total integrated luminosity in 2012 is already more than 20 fb−1. Fig. 29 shows the luminosity delivered
in 2012 in pp collisions at the center-of mass energy of 8 TeV and recorded by ATLAS [90] and CMS [91]
experiments.
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Fig. 29: Cumulative luminosity versus day delivered by LHC, and recorded by ATLAS (left) and CMS (right)
experiments for pp collisions at

√
s = 8 TeV in 2012 from counting rates measured by the luminosity detectors.

10.2 Expected LHC reach for SUSY
The LHC is supposed to cover a wide range of parameters of the MSSM (see Figs. below) and dis-
cover the superpartners with the masses below 2 TeV. This will be a crucial test for the MSSM and the
low energy supersymmetry. The LHC potential to discover supersymmetry is widely discussed in the
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literature [92, 93].

To present the region of reach for the LHC in different channels of sparticle production it is use-
ful to take the same plane of soft SUSY breaking parameters m0 and m1/2. In this case one usually
assumes certain luminosity which will be presumably achieved during the accelerator operation. Thus,
for instance, in Fig. 30 the regions of reach in different channels are shown. The lines of the constant
squark mass form the arch curves, and those for the gluino are almost horizontal. The curved lines show
the reach bounds in different channel of creation of the secondary particles. The theoretical curves are
obtained within the MSSM for a certain choice of the other soft SUSY breaking parameters. As one can
see, for the fortunate circumstances the wide range of the parameter space up to the masses of the order
of 2 TeV will be examined. The LHC will be able to discover SUSY with the squark and gluino masses
up to 2 ÷ 2.5 TeV for the luminosity Ltot = 100 fb−1. The most powerful signature for the squark and
gluino detection are the multijet events; however, the discovery potential depends on the relation between
the LSP, squark, and gluino masses, and decreases with the increase of the LSP mass. The same is true
for the sleptons. The typical signal used for the slepton detection is the dilepton pair with the missing
energy without hadron jets. For the luminosity of Ltot = 100 fb−1 the LHC will be able to discover
sleptons with the masses up to 400 GeV [92, 93].
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1, assuming mq̃ >> mg̃ .

10.3 Recent results on SUSY searches
Direct searches of the superpartners at the LHC in different channels have pushed the lower limits on
their masses, mainly of the gluinos and the squarks of the light two generations, upwards to the TeV
range. On the other hand, for the third generation the limits are rather weak and the masses around a
few hundred GeV are still allowed. The light third generation squarks are also consistent with the recent
observation of the Higgs-like boson with the mass around 125 GeV.

We present here examples on the superparticle searches in various scenarios depicted as exclusion
plots. Everywhere in these plots the excluded region is the one below the corresponding curve (lower
masses, lower values of parameters).

The fisrt example is the gluino pair production pp → g̃g̃ and g̃ → tt̄χ̃0
1 decay in the so-called

Gtt simplified model. Four different final states (0 leptons with ≥ 3 b-jets [95]; 3 leptons with ≥ 4
jets [96]; 0 leptons with ≥ 6-9 jets [97]; and a pair of the same-sign leptons with more than 4 jets [98])
are considered. The first two analysis performed using 12.8 fb−1 and 13.0 fb−1 data and the last two
ones using 5.8 fb−1 data. The results slightly differ quantitatively, however, the conclusion is the non-
observation of the gluino lighter than 900 GeV (conservative limit) or even 1200 GeV for the lightest
neutralino mass less than around 300 GeV.

Another example is the result of searches of the top-squark pair production by ATLAS collabora-
tion based on 4.7 fb−1 of pp collision data taken at

√
S = 7 TeV. The exclusion limits at 95% CL are

shown in the t̃1 − χ̃0
1 mass plane. The dashed and solid lines show the expected and observed limits,

respectively, including all uncertainties except the theoretical signal cross-section uncertainty (PDF and
scale). The dotted lines represent the results obtained when reducing the nominal signal cross-section by
1σ of its theoretical uncertainty. Depending on the stop mass there can be two different decay channels.
For relatively light stops with masses below 200 GeV, the decay t̃1 → b + χ̃±1 , χ̃±1 → W ∗ + χ̃0

1 is
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assumed in all the cases, with two hypotheses on the χ̃±1 , χ̃0
1 mass hierarchy, m(χ̃±1 ) = 106 GeV and

m(χ̃±1 ) = 2m(χ̃0
1) [99, 100], see the left panel of Fig. 32. For the heavy stop masses above 200 GeV,

the decay t̃1 → t + χ̃0
1 is assumed to dominate, the excluded regions are shown in the right panel of

Fig. 32 [99–101].

Fig. 32: Summary of the five dedicated ATLAS searches for the top-squark pair production based on 4.7 fb−1 of
the pp collision data taken at

√
s = 7 TeV.
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All the exclusion plots discussed above can give direct limits on the masses of supersymmetric
particles under certain assumptions (mass relations, dominant decay channels, modified or/and simplified
models, etc.). The latest mass limits for the different models and final state channels obtained by ATLAS
are shown in Fig. 34 [106]. Fig. 35 [107, 108] shows the best exclusion limits of the CMS collaboration
for 4.98 fb−1 data and

√
s = 7 TeV as well as observed limits plotted in the CMSSM (m0−m1/2) plane.
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11 Conclusion
Supersymmetry remains the most popular extension of the Standard Model. Comparison of the MSSM
with precision experimental data is as good as for the SM. At the same time, supersymmetry stabilizes
the SM due to the cancellation of quadratic divergences to the Higgs boson mass. The prediction of the
Higgs boson mass in the MSSM in the region indicated by experimental data can be also considered as
an argument if favour of supersymmetry. Besides, the relic density of the DM is not described in the SM
but is naturally explained in the MSSM. What is remarkable, the cross section of neutralino annihilation
happens to be precisely equal to what is needed for a correct relic density.

Constrained MSSM with a few free parameters seems to satisfy all experimental and theoretical
requirements, though recently some tension with the light Higgs boson mass has appeared. The natural
way out would be either to release some constraints thus introducing more free parameters or to extend
the minimal model, for instance, enlarging the Higgs sector like in the NMSSM. Since it is not clear
which model might be correct, all possibilities are open. Unfortunately, there is no "model independent"
way of describing SUSY searches, as well as a "smoking gun" process for SUSY except for the discovery
of superpartners in the events with missing transverse energy.

Today after 40 years since the invention of supersymmetry we have no single convincing evidence
that supersymmetry is realized in particle physics. Still it remains very popular in quantum field theory
and in string theory due to its exceptional properties but needs experimental justification.

Let us remind the main pros and contras for supersymmetry in particle physics

Pro:

• Provides natural framework for unification with gravity

• Leads to gauge coupling unification (GUT)

• Solves the hierarchy problem

• Is a solid quantum field theory

• Provides natural candidate for the WIMP cold DM

• Predicts new particles and thus generates new job positions

Contra:

• Does not shed new light on the problem of

∗ Quark and lepton mass spectrum

∗ Quark and lepton mixing angles

∗ the origin of CP violation

∗ Number of flavours

∗ Baryon asymmetry of the Universe

• Doubles the number of particles

Low energy supersymmetry promises us that new physics is round the corner at the TeV scale to
be exploited at colliders and astroparticle experiments of this decade. If our expectations are correct,
very soon we will face new discoveries, the whole world of supersymmetric particles will show up and
the table of fundamental particles will be enlarged in increasing rate. This would be a great step in
understanding the microworld.

Coming back to the question in the title of these lectures, whether SUSY is alive or not, we can say
that so far the parameter space of SUSY models is large enough to incorporate all data. Slight tension
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that appears in particular models can be removed by extension of a model. However, there exist some
broad prediction of low energy SUSY that is falsifiable. This is the presence of superpartners at TeV
scale. At least some of them should be light enough to be discovered at the LHC at full energy run at 14
TeV. Otherwise, if the scale of SUSY exceeds several TeV, we loose the main arguments in favour of low
energy supersymetry, namely, the unification of the gauge couplings and the solution of the hierarchy
problem. Then the need for a low energy supersymmetry becomes questionable and the possibilities to
test it become hardly feasible. The future will show whether we are right in our expectations or not.
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