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SUPERSYMMETRY ON THE RUN: LHC AND DARK MATTER

D. I. Kazakova

aBLTP, JINR, Dubna and ITEP, Moscow

Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation.

Search for SUSY is one of the main aims of the recently launched Large Hadron Collider. The other possible

manifestation of SUSY is the Dark Matter in the Universe. The present lectures contain a brief introduction to

supersymmetry in particle physics. The main notions of supersymmetry are introduced. The supersymmetric

extension of the Standard Model - the Minimal Supersymmetric Standard Model - is considered in more detail.

Phenomenological features of the MSSM as well as possible experimental signatures of SUSY at the LHC are

described. The DM problem and its possible SUSY solution is presented.

1. Introduction: What is supersymmetry

Supersymmetry is a boson-fermion symmetry
that is aimed to unify all forces in Nature includ-
ing gravity within a singe framework [1]-[5]. Mod-
ern views on supersymmetry in particle physics
are based on string paradigm, though the low
energy manifestations of SUSY can be possibly
found at modern colliders and in non-accelerator
experiments.
Supersymmetry emerged from the attempts to

generalize the Poincaré algebra to mix represen-
tations with different spin [1]. It happened to
be a problematic task due to the no-go theorems
preventing such generalizations [6]. The way out
was found by introducing the so-called graded Lie
algebras, i.e. adding the anti-commutators to the
usual commutators of the Lorentz algebra. Such
a generalization, described below, appeared to be
the only possible one within relativistic field the-
ory.
IfQ is a generator of SUSY algebra, then acting

on a boson state it produces a fermion one and
vice versa

Q̄|boson>= |fermion>, Q|fermion>= |boson>.

Since bosons commute with each other and
fermions anticommute, one immediately finds
that SUSY generators should also anticommute,
they must be fermionic, i.e. they must change
the spin by a half-odd amount and change the

statistics. The key element of SUSY algebra is

{Qα, Q̄α̇} = 2σµ
α,α̇Pµ, (1.1)

where Q and Q̄ are SUSY generators and Pµ is
the generator of translation, the four-momentum.
In what follows we describe SUSY algebra

in more detail and construct its representations
which are needed to build a SUSY generalization
of the Standard Model of fundamental interac-
tions. Such a generalization is based on a softly
broken SUSY quantum filed theory and contains
the SM as a low energy theory.
Supersymmetry promises to solve some prob-

lems of the SM and of Grand Unified Theories.
In what follows we describe supersymmetry as a
nearest option for the new physics on a TeV scale.

2. Motivation of SUSY in particle physics

2.1. Unification with gravity
The general idea is a unification of all forces

of Nature including quantum gravity. However,
the graviton has spin 2, while the other gauge
bosons (photon, gluons, W and Z weak bosons)
have spin 1. Therefore, they correspond to differ-
ent representations of the Poincaré algebra. To
mix them one can use supersymmetry transfor-
mations. Starting with the graviton state of spin
2 and acting by SUSY generators we get the fol-
lowing chain of states:

spin 2 → spin
3

2
→ spin 1 → spin

1

2
→ spin 0.
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Thus, a partial unification of matter (fermions)
with forces (bosons) naturally arises from an at-
tempt to unify gravity with other interactions.

Taking infinitesimal transformations δǫ =
ǫαQα, δ̄ǭ = Q̄α̇ǭ

α̇, and using eq.(1.1) one gets

{δǫ, δ̄ǭ} = 2(ǫσµǭ)Pµ, (2.1)

where ǫ is a transformation parameter. Choosing
ǫ to be local, i.e. a function of a space-time point
ǫ = ǫ(x), one finds from eq.(2.1) that an anticom-
mutator of two SUSY transformations is a local
coordinate translation. And a theory which is
invariant under local coordinate transformation
is General Relativity. Thus, making SUSY lo-
cal, one naturally obtains General Relativity, or
a theory of gravity, or supergravity [2].

2.2. Unification of gauge couplings
According to the Grand Unification hypothe-

sis, gauge symmetry increases with energy [7].
All known interactions are different branches of a
unique interaction associated with a simple gauge
group. The unification (or splitting) occurs at
high energy. To reach this goal one has to con-
sider how the couplings change with energy. This
is described by the renormalization group equa-
tions. In the SM the strong and weak couplings
associated with non-Abelian gauge groups de-
crease with energy, while the electromagnetic one
associated with the Abelian group on the contrary
increases. Thus, it becomes possible that at some
energy scale they become equal.

After the precise measurement of the SU(3)×
SU(2) × U(1) coupling constants, it has become
possible to check the unification numerically. The
three coupling constants to be compared are

α1 = (5/3)g′2/(4π) = 5α/(3 cos2 θW ),

α2 = g2/(4π) = α/ sin2 θW , (2.2)

α3 = g2s/(4π)

where g′, g and gs are the usual U(1), SU(2) and
SU(3) coupling constants and α is the fine struc-
ture constant. The factor of 5/3 in the definition
of α1 has been included for proper normalization
of the generators.

In the modified minimal subtraction (MS)
scheme, the world averaged values of the coup-
lings at the Z0 energy are obtained from a fit to

the LEP and Tevatron data [8]:

α−1(MZ) = 128.978± 0.027

sin2 θMS = 0.23146± 0.00017 (2.3)

αs = 0.1184± 0.0031,

that gives

α1(MZ) = 0.017,

α2(MZ) = 0.034, (2.4)

α3(MZ) = 0.118± 0.003.

Assuming that the SM is valid up to the unifica-
tion scale, one can then use the known RG equa-
tions for the three couplings. In the leading order
they are:

dα̃i

dt
= biα̃

2
i , α̃i =

αi

4π
, t = log(

Q2

µ2
), (2.5)

where for the SM the coefficients are bi =
(41/10,−19/6,−7).
The solution to eq.(2.5) is very simple

1

α̃i(Q2)
=

1

α̃i(µ2)
− bilog(

Q2

µ2
). (2.6)

The result is demonstrated in Fig.1 showing the
evolution of the inverse of the couplings as a func-
tion of the logarithm of energy. In this presenta-
tion, the evolution becomes a straight line in first
order. The second order corrections are small and
do not cause any visible deviation from a straight
line. Fig.1 clearly demonstrates that within the
SM the coupling constant unification at a single
point is impossible. It is excluded by more than 8
standard deviations. This result means that the
unification can only be obtained if new physics
enters between the electroweak and the Planck
scales.
In the SUSY case, the slopes of the RG evo-

lution curves are modified. The coefficients bi in
eq.(2.5) now are bi = (33/5, 1,−3). The SUSY
particles are assumed to effectively contribute to
the running of the coupling constants only for
energies above the typical SUSY mass scale. It
turns out that within the SUSY model a perfect
unification can be obtained as is shown in Fig.1.
From the fit requiring unification one finds for
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Figure 1. Evolution of the inverse of the three
coupling constants in the Standard Model (left)
and in the supersymmetric extension of the SM
(MSSM) (right).

the break pointMSUSY and the unification point
MGUT [9]

MSUSY = 103.4±0.9±0.4 GeV,

MGUT = 1015.8±0.3±0.1 GeV, (2.7)

α−1
GUT = 26.3± 1.9± 1.0,

The first error originates from the uncertainty in
the coupling constant, while the second one is due
to the uncertainty in the mass splittings between
the SUSY particles.
This observation was considered as the first

”evidence” for supersymmetry, especially since
MSUSY was found in the range preferred by the
fine-tuning arguments.

2.3. Solution of the hierarchy problem
The appearance of two different scales V ≫ v

in a GUT theory, namely, MW and MGUT , leads
to a very serious problem which is called the hi-
erarchy problem. There are two aspects of this
problem.
The first one is the very existence of the hier-

archy. To get the desired spontaneous symmetry
breaking pattern, one needs

mH ∼ v ∼ 102 GeV
mΣ ∼ V ∼ 1016 GeV

mH

mΣ
∼ 10−14 ≪ 1, (2.8)

whereH and Σ are the Higgs fields responsible for
the spontaneous breaking of the SU(2) and the

GUT groups, respectively. The question arises of
how to get so small number in a natural way.
The second aspect of the hierarchy problem is

connected with the preservation of a given hi-
erarchy. Even if we choose the hierarchy like
eq.(2.8) the radiative corrections will destroy it!
To see this, consider the radiative correction to
the light Higgs mass given by the Feynman di-
agram shown in Fig.2. This correction, pro-�2" light (m) . heavy (M)=) Æm2 � �2 �M2o o o102 10�1 1016

1

Figure 2. Radiative correction to the light Higgs
boson mass

portional to the mass squared of the heavy par-
ticle, obviously, spoils the hierarchy if it is not
cancelled. This very accurate cancellation with
a precision ∼ 10−14 needs a fine tuning of the
coupling constants.
The only known way of achieving this kind of

cancellation of quadratic terms (also known as
the cancellation of the quadratic divergencies) is
supersymmetry. Moreover, SUSY automatically
cancels quadratic corrections in all orders of PT.
This is due to the contributions of superpartners
of ordinary particles. The contribution from bo-
son loops cancels those from the fermion ones be-
cause of an additional factor (-1) coming from
Fermi statistics, as shown in Fig.3. One can see
here two types of contribution. The first line is
the contribution of the heavy Higgs boson and its
superpartner. The strength of interaction is given
by the Yukawa coupling λ. The second line rep-
resents the gauge interaction proportional to the
gauge coupling constant g with the contribution
from the heavy gauge boson and heavy gaugino.
In both the cases the cancellation of quadratic

terms takes place. This cancellation is true up to
the SUSY breaking scale, MSUSY , which should
not be very large (≤ 1 TeV) to make the fine-
tuning natural. Indeed, let us take the Higgs bo-
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Figure 3. Cancellation of quadratic terms (diver-
gencies)

son mass. Requiring for consistency of perturba-
tion theory that the radiative corrections to the
Higgs boson mass do not exceed the mass itself
gives

δM2
h ∼ g2M2

SUSY ∼M2
h . (2.9)

So, if Mh ∼ 102 GeV and g ∼ 10−1, one needs
MSUSY ∼ 103 GeV in order that the relation
(2.9) is valid. Thus, we again get the same rough
estimate of MSUSY ∼ 1 TeV as from the gauge
coupling unification above.

That is why it is usually said that supersymme-
try solves the hierarchy problem. We show below
how SUSY can also explain the origin of the hi-
erarchy.

2.4. Astrophysics and Cosmology
The shining matter is not the only one in the

Universe. Considerable amount consists of the
so-called dark matter. The direct evidence for
the presence of the dark matter are the rotation
curves of galaxies [10] (see Fig.4). To explain
these curves one has to assume the existence of
galactic halo made of non-shining matter which
takes part in gravitational interaction. There are
two possible types of the dark matter: the hot
one, consisting of light relativistic particles and
the cold one, consisting of massive weakly inter-
acting particles (WIMPs) [11]. The hot dark mat-
ter might consist of neutrinos, however, this has

Figure 4. Roration curves for the solar system
and galaxy

problems with galaxy formation. As for the cold
dark matter, it has no candidates within the SM.
At the same time, SUSY provides an excellent
candidate for the cold dark matter, namely neu-
tralino, the lightest superparticle [12].

2.5. Beyond GUTs: superstring
Another motivation for supersymmetry follows

from even more radical changes of basic ideas
related to the ultimate goal of construction of
consistent unified theory of everything. At the
moment the only viable conception is the su-
perstring theory [13]. In the superstring the-
ory, strings are considered as fundamental ob-
jects, closed or open, and are nonlocal in nature.
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Ordinary particles are considered as string excita-
tion modes. String interactions, which are local,
generate proper interactions of usual particles, in-
cluding gravitational ones.
To be consistent, the string theory should be

conformal invariant in D-dimensional target space
and have a stable vacuum. The first requirement
is valid in classical theory but may be violated
by quantum anomalies. Cancellation of quantum
anomalies takes place when space-time dimension
of a target space equals to a critical one which is
Dc = 26 for bosonic string and Dc = 10 for a
fermionic one.
The second requirement is that the massless

string excitations (the particles of the SM) are
stable. This assumes the absence of tachyons, the
states with imaginary mass, which can be guar-
anteed only in supersymmetric string theories!

3. Basics of supersymmetry

3.1. Algebra of SUSY
Combined with the usual Poincaré and internal

symmetry algebra the Super-Poincaré Lie alge-
bra contains additional SUSY generators Qi

α and
Q̄i

α̇ [3]

[Pµ, Pν ] = 0,

[Pµ,Mρσ] = i(gµρPσ − gµσPρ),

[Mµν ,Mρσ]= i(gνρMµσ−gνσMµρ−gµρMνσ+gµσMνρ),

[Br, Bs] = iCt
rsBt,

[Br, Pµ] = [Br,Mµσ] = 0, (3.1)

[Qi
α, Pµ] = [Q̄i

α̇, Pµ] = 0,

[Qi
α,Mµν ]=

1

2
(σµν)

β
αQ

i
β , [Q̄

i
α̇,Mµν ]=

−1

2
Q̄i

β̇
(̄σµν)

β̇
α̇,

[Qi
α, Br] = (br)

i
jQ

j
α, [Q̄i

α̇, Br] = −Q̄j
α̇(br)

i
j ,

{Qi
α, Q̄

j

β̇
} = 2δij(σµ)αβ̇Pµ,

{Qi
α, Q

j
β} = 2ǫαβZ

ij , Zij = arijbr, Zij = Z+
ij ,

{Q̄i
α̇, Q̄

j

β̇
} = −2ǫα̇β̇Z

ij , [Zij , anything] = 0,

α, α̇ = 1, 2 i, j = 1, 2, . . . , N.

Here Pµ and Mµν are four-momentum and an-
gular momentum operators, respectively, Br are
the internal symmetry generators, Qi and Q̄i are
the spinorial SUSY generators and Zij are the so-

called central charges; α, α̇, β, β̇ are the spinorial

indices. In the simplest case one has one spinor
generator Qα (and the conjugated one Q̄α̇) that
corresponds to an ordinary or N=1 supersymme-
try. When N > 1 one has an extended supersym-
metry.
A natural question arises: how many SUSY

generators are possible, i.e. what is the value of
N? To answer this question, consider massless
states. Let us start with the ground state labeled
by energy and helicity, i.e. projection of a spin
on the direction of momenta, and let it be anni-
hilated by Qi

Vacuum = |E, λ >, Qi|E, λ >= 0.

Then one and more particle states can be con-
structed with the help of a creation operators as

State Expression # of States

vacuum |E, λ> 1
1−particle Q̄i|E, λ>= |E, λ+1/2>i N

2−particle Q̄iQ̄j |E, λ>= |E, λ+1>ij
N(N−1)

2
... ... ...
N−particle Q̄1...Q̄N |E, λ>= |E, λ+N

2> 1

Total # of states:

N
∑

k=0

(

N
k

)

= 2N = 2N−1

bosons + 2N−1 fermions. The energy E is not
changed, since according to (3.1) the operators
Q̄i commute with the Hamiltonian.
Thus, one has a sequence of bosonic and

fermionic states and the total number of bosons
equals that of fermions. This is a generic property
of any supersymmetric theory. However, in CPT
invariant theories the number of states is dou-
bled, since CPT transformation changes the sign
of helicity. Hence, in CPT invariant theories, one
has to add the states with opposite helicity to the
above mentioned ones.
Consider some examples. Let us take N = 1

and λ = 0. Then one has the following set of
states:

N = 1 λ = 0
helicity 0 1

2 helicity 0 − 1
2

CPT
=⇒

# of states 1 1 # of states 1 1
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Hence, a complete N = 1 multiplet is

N = 1 helicity −1/2 0 1/2
# of states 1 2 1

which contains one complex scalar and one spinor
with two helicity states.

This is an example of the so-called self-
conjugated multiplet. There are also self-
conjugated multiplets with N > 1 corresponding
to extended supersymmetry. Two particular ex-
amples are the N = 4 super Yang-Mills multiplet
and the N = 8 supergravity multiplet

N = 4 SUSY YM λ = −1

helicity −1 −1/2 0 1/2 1
# of states 1 4 6 4 1

N = 8 SUGRA λ = −2

−2 −3/2 −1 −1/2 0 1/2 1 3/2 2
1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended su-
persymmetry are very rich and contain a vast
number of particles.

The constraint on the number of SUSY gen-
erators comes from a requirement of consistency
of the corresponding QFT. The number of super-
symmetries and the maximal spin of the particle
in the multiplet are related by

N ≤ 4S,

where S is the maximal spin. Since the theories
with spin greater than 1 are non-renormalizable
and the theories with spin greater than 5/2 have
no consistent coupling to gravity, this imposes a
constraint on the number of SUSY generators

N ≤ 4 for renormalizable theories (YM),
N ≤ 8 for (super)gravity.

In what follows, we shall consider simple super-
symmetry, or N = 1 supersymmetry, contrary to
extended supersymmetries with N > 1. In this
case, one has the following types of supermulti-
plets which are used in the construction of SUSY
generalization of the SM

(φ, ψ) (λ, Aµ)
Spin = 0, Spin = 1/2 Spin = 1/2, Spin = 1
scalar chiral majorana vector

fermion fermion

each of them contains two physical states, one
boson and one fermion. They are called chiral
and vector multiplets, respectively. Construction
the generalization of the SM one has to put all
the particles into these multiplets. For instance,
quarks should go into chiral multiplet and photon
into vector multiplet.

3.2. Superspace and supermultiplets
An elegant formulation of supersymmetry

transformations and invariants can be achieved
in the framework of superspace [4]. Superspace
differs from the ordinary Euclidean (Minkowski)
space by adding of two new coordinates, θα and
θ̄α̇, which are Grassmannian, i.e. anticommuting,
variables

{θα, θβ} = 0, {θ̄α̇, θ̄β̇} = 0, θ2α = 0, θ̄2α̇ = 0,

α, β, α̇, β̇ = 1, 2.

Thus, we go from space to superspace

Space ⇒ Superspace
xµ xµ, θα, θ̄α̇

A SUSY group element can be constructed in su-
perspace in the same way as an ordinary transla-
tion in the usual space

G(x, θ, θ̄) = ei(−x
µPµ + θQ+ θ̄Q̄). (3.2)

It leads to a supertranslation in superspace

xµ → xµ + iθσµε̄− iεσµθ̄,
θ → θ + ε, θ̄ → θ̄ + ε̄,

(3.3)

where ε and ε̄ are Grassmannian transformation
parameters. From eq.(3.3) one can easily obtain
the representation for the supercharges (3.1) act-
ing on the superspace

Qα=
∂

∂θα
−iσµ

αα̇θ̄
α̇∂µ, Q̄α̇=

−∂
∂θ̄α̇

+iθασ
µ
αα̇∂µ.(3.4)

Working in superspace all the fields become
functions of not only the space-time point xµ but
also the Grassmanian coordinates θ, i.e. they be-
come superfields. The superfield contains inside
the whole supermultiplet. We will not describe
the superfields here and refer the reader to exist-
ing literature. What is important for us is that
this formalizm is straightforward and allows one
to construct a SUSY generalization of any theory.
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4. SUSY generalization of the Standard
Model. The MSSM

As has been already mentioned, in SUSY the-
ories the number of bosonic degrees of freedom
equals that of fermionic. At the same time, in
the SM one has 28 bosonic and 90 fermionic de-
grees of freedom (with massless neutrino, other-
wise 96). So the SM is to a great extent non-
supersymmetric. Trying to add some new parti-
cles to supersymmetrize the SM, one should take
into account the following observations:
• There are no fermions with quantum numbers

of the gauge bosons;
• Higgs fields have nonzero v.e.v.s; hence they

cannot be superpartners of quarks and leptons
since this would induce spontaneous violation of
baryon and lepton numbers;
• One needs at least two complex chiral Higgs

multiplets to give masses to Up and Down quarks.
The latter is due to the form of a superpoten-

tial and chirality of matter superfields. Indeed,
the superpotential should be invariant under the
SU(3)× SU(2)× U(1) gauge group. If one looks
at the Yukawa interaction in the Standard Model,
one finds that it is indeed U(1) invariant since the
sum of hypercharges in each vertex equals zero.
For the up quarks this is achieved by taking the
conjugated Higgs doublet H̃ = iτ2H

† instead of
H . However, in SUSY H is a chiral superfield
and hence a superpotential, which is constructed
out of chiral fields, can contain only H but not H̃
which is an antichiral superfield.
Another reason for the second Higgs doublet

is related to chiral anomalies. It is known that
chiral anomalies spoil the gauge invariance and,
hence, the renormalizability of the theory. They
are canceled in the SM between quarks and lep-
tons in each generation [14]

TrY 3 = 3 ( 1
27 + 1

27 − 64
27 + 8

27 )− 1− 1 + 8 = 0
color uL dL uR dR νL eL eR

However, if one introduces a chiral Higgs su-
perfield, it contains higgsinos, which are chiral
fermions, and contain anomalies. To cancel them
one has to add the second Higgs doublet with
the opposite hypercharge. Therefore, the Higgs
sector in SUSY models is inevitably enlarged, it

contains an even number of doublets.
Conclusion: In SUSY models supersymmetry

associates known bosons with new fermions and
known fermions with new bosons.

4.1. The field content
Consider the particle content of the Minimal

Supersymmetric Standard Model [15,16]. Ac-
cording to the previous discussion, in the minimal
version we double the number of particles (intro-
ducing a superpartner to each particle) and add
another Higgs doublet (with its superpartner).
Thus, the characteristic feature of any super-

symmetric generalization of the SM is the pres-
ence of superpartners (see Fig.5) [17]. If super-
symmetry is exact, superpartners of ordinary par-
ticles should have the same masses and have to
be observed. The absence of them at modern en-
ergies is believed to be explained by the fact that
their masses are very heavy, that means that su-
persymmetry should be broken. Hence, if the en-
ergy of accelerators is high enough, the superpart-
ners will be created.

Figure 5. The shadow world of SUSY particles

The particle content of the MSSM then appears
as shown in the table. Hereafter, tilde denotes a
superpartner of an ordinary particle.
The presence of an extra Higgs doublet in

SUSY model is a novel feature of the theory. In
the MSSM one has two doublets with the quan-
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Particle Content of the MSSM

Superfield Bosons Fermions SU(3)SU(2 UY (1)

Gauge
Ga gluon ga gluino g̃a 8 0 0
Vk Weak W k (W±, Z) wino, zino w̃k (w̃±, z̃) 1 3 0

V′ Hypercharge B (γ) bino b̃(γ̃) 1 1 0

Matter

Li

Ei

sleptons

{

L̃i = (ν̃, ẽ)L
Ẽi = ẽR

leptons

{

Li = (ν, e)L
Ei = ecR

1
1

2
1

−1
2

Qi

Ui

Di

squarks







Q̃i = (ũ, d̃)L
Ũi = ũR
D̃i = d̃R

quarks







Qi = (u, d)L
Ui = ucR
Di = dcR

3
3∗

3∗

2
1
1

1/3
−4/3
2/3

Higgs

H1

H2

Higgses

{

H1

H2
higgsinos

{

H̃1

H̃2

1
1

2
2

−1
1

tum numbers (1,2,-1) and (1,2,1), respectively:

H1 =

(

H0
1

H−
1

)

=

(

v1 +
S1+iP1√

2

H−
1

)

,

H2 =

(

H+
2

H0
2

)

=

(

H+
2

v2 +
S2+iP2√

2

)

,

where vi are the vacuum expectation values of the
neutral components.

Hence, one has 8=4+4=5+3 degrees of free-
dom. As in the case of the SM, 3 degrees of free-
dom can be gauged away, and one is left with 5
physical states compared to 1 in the SM. Thus, in
the MSSM, as actually in any of two Higgs dou-
blet models, one has five physical Higgs bosons:
two CP-even neutral, one CP-odd neutral and
two charged. We consider the mass eigenstates
below.

4.2. Lagrangian of the MSSM
To construct a SUSY Lagrangian one has to

follow the following three steps:

• 1st step: Take your favorite Lagrangian
written in terms of fields

• 2nd step: Replace the fields (φ, ψ,Aµ) by
superfields Φ, V

• 3rd step: Replace the Action by superAc-
tion

A =

∫

d4xL(x) ⇒ A =

∫

d4x d4θL(x, θ, θ̄)

At the last step one has to perform the integration
over the Grassmannian variables. The rules of
integration are very easy [18]:

∫

dθα = 0,

∫

θαdθβ = δα,β .

Now we can construct the Lagrangian of the
MSSM. It consists of two parts; the first part is
the SUSY generalization of the Standard Model,
while the second one represents the SUSY break-
ing as mentioned above.

L = LSUSY + LBreaking , (4.1)

where

LSUSY = LGauge + LY ukawa. (4.2)

We will not describe the gauge part since it
is essentially the gauge invariant kinetic terms
but rather concentrate on Yukawa terms. They
are given by the so-called superpotential which is
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nothing else but the usual Yukawa terms with the
fields replaced by superfields as explained above.

LY ukawa = ǫij(y
U
abQ

j
aU

c
bH

i
2 + yDabQ

j
aD

c
bH

i
1

+yLabL
j
aE

c
bH

i
1 + µHi

1H
j
2), (4.3)

where i, j = 1, 2 are the SU(2) and a, b = 1, 2, 3
are the generation indices; colour indices are sup-
pressed. This part of the Lagrangian almost ex-
actly repeats that of the SM. The only difference
is the last term which describes the Higgs mix-
ing. It is absent in the SM since there is only one
Higgs field there.
However, one can write down the other Yukawa

terms

LY ukawa = ǫij(λ
L
abdL

i
aL

j
bE

c
d + λL′

abdL
i
aQ

j
bD

c
d

+µ′
aL

i
aH

j
2) + λBabdU

c
aD

c
bD

c
d. (4.4)

These terms are absent in the SM. The reason is
very simple: one can not replace the superfields
in eq.(4.4) by the ordinary fields like in eq.(4.3)
because of the Lorentz invariance. These terms
have a different property, they violate either lep-
ton (the first 3 terms in eq.(4.4)) or baryon num-
ber (the last term). Since both effects are not ob-
served in Nature, these terms must be suppressed
or excluded. One can avoid such terms introduc-
ing a special symmetry called R-symmetry[19].
This is the global U(1)R invariance

U(1)R : θ → eiαθ, Φ → einαΦ, (4.5)

which is reduced to the discrete group Z2, called
the R-parity. The R-parity quantum number is
given by R = (−1)3(B−L)+2S for particles with
spin S. Thus, all the ordinary particles have
the R-parity quantum number equal to R = +1,
while all the superpartners have R-parity quan-
tum number equal to R = −1. The first part of
the Yukawa Lagrangian is R-symmetric, while the
second part is R-nonsymmetric. The R-parity ob-
viously forbids the terms. However, it may well
be that these terms are present, though experi-
mental limits on the couplings are very severe

λLabc, λL′
abc < 10−4, λBabc < 10−9.

4.3. Properties of interactions
If one assumes that the R-parity is preserved,

then the interactions of superpartners are essen-
tially the same as in the SM, but two of three

particles involved into an interaction at any ver-
tex are replaced by superpartners. The reason for
it is the R-parity. Conservation of the R-parity
has two consequences
• the superpartners are created in pairs;
• the lightest superparticle (LSP) is stable.

Usually it is photino γ̃, the superpartner of a pho-
ton with some admixture of neutral higgsino.
Typical vertices are shown in Figs.6. The tilde

above a letter denotes the corresponding super-
partner. Note that the coupling is the same in all
the vertices involving superpartners.

+

Figure 6. Gauge-matter interaction, Gauge self-
interaction and Yukawa-type interaction

4.4. Creation and decay of superpartners
The above-mentioned rule together with the

Feynman rules for the SM enables one to draw di-
agrams describing creation of superpartners. One
of the most promising processes is the e+e− an-
nihilation (see Fig.7).
The usual kinematic restriction is given by the
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Figure 7. Creation of superpartners at electron-
positron colliders

c.m. energy mmax
sparticle ≤

√
s
2 . Similar processes

take place at hadron colliders with electrons and
positrons being replaced by quarks and gluons.

Experimental signatures at hadron colliders are
similar to those at e+e− machines; however, here
one has much wider possibilities. Besides the
usual annihilation channel, one has numerous
processes of gluon fusion, quark-antiquark and
quark-gluon scattering (see Fig.8).

Creation of superpartners can be accompanied
by creation of ordinary particles as well. We
consider various experimental signatures below.
They crucially depend on SUSY breaking pattern
and on the mass spectrum of superpartners.

The decay properties of superpartners also de-
pend on their masses. For the quark and lepton
superpartners the main processes are shown in
Fig.9.

5. Breaking of SUSY in the MSSM

Usually it is assumed that supersymmetry is
broken spontaneously via the v.e.v.s of some
fields. However, in the case of supersymmetry
one can not use the scalar fields like the Higgs
field, but rather the auxiliary fields present in
any SUSY multiplet. There are two basic mecha-
nisms of spontaneous SUSY breaking: the Fayet-
Iliopoulos (or D-type) mechanism [20] based on
the D auxiliary field from a vector multiplet and
the O’Raifeartaigh (or F-type) mechanism [21]

Figure 8. Gluon fusion, qq̄ scattering, quark-
gluon scattering

Figure 9. Decay of superpartners

based on the F auxiliary field from a chiral mul-
tiplet. Unfortunately, one can not explicitly use
these mechanisms within the MSSM since none
of the fields of the MSSM can develop non-zero
v.e.v. without spoiling the gauge invariance.
Therefore, a spontaneous SUSY breaking should
take place via some other fields.
The most common scenario for producing low-

energy supersymmetry breaking is called the hid-
den sector one [22]. According to this scenario,
there exist two sectors: the usual matter belongs
to the ”visible” one, while the second, ”hidden”
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sector, contains fields which lead to breaking of
supersymmetry. These two sectors interact with
each other by exchange of some fields called mes-
sengers, which mediate SUSY breaking from the
hidden to the visible sector. There might be var-
ious types of messenger fields: gravity, gauge,
etc. The hidden sector is the weakest part of the
MSSM. It contains a lot of ambiguities and leads
to uncertainties of the MSSM predictions consid-
ered below.
So far there are known four main mechanisms

to mediate SUSY breaking from a hidden to a
visible sector:

• Gravity mediation (SUGRA) [23];

• Gauge mediation [24];

• Anomaly mediation [25];

• Gaugino mediation [26].

All four mechanisms of soft SUSY breaking are
different in details but are common in results.
Predictions for the sparticle spectrum depend on
the mechanism of SUSY breaking. In what fol-
lows, to calculate the mass spectrum of superpart-
ners, we need an explicit form of SUSY breaking
terms. For the MSSM and without the R-parity
violation one has in general

−LBreaking = (5.1)

=
∑

i

m2
0i|ϕi|2 +

(

1

2

∑

α

Mαλ̃αλ̃α +BH1H2

+ AU
abQ̃aŨ

c
bH2 +AD

abQ̃aD̃
c
bH1 +AL

abL̃aẼ
c
bH1

)

,

where we have suppressed the SU(2) indices.
Here ϕi are all scalar fields, λ̃α are the gaugino
fields, Q̃, Ũ , D̃ and L̃, Ẽ are the squark and slep-
ton fields, respectively, and H1,2 are the SU(2)
doublet Higgs fields.
Eq.(5.1) contains a vast number of free param-

eters which spoils the prediction power of the
model. To reduce their number, we adopt the
so-called universality hypothesis, i.e., we assume
the universality or equality of various soft param-
eters at a high energy scale, namely, we put all
the spin 0 particle masses to be equal to the uni-
versal value m0, all the spin 1/2 particle (gaug-
ino) masses to be equal to m1/2 and all the cu-
bic and quadratic terms, proportional to A and

B, to repeat the structure of the Yukawa super-
potential (4.3). This is an additional require-
ment motivated by the supergravity mechanism
of SUSY breaking. Universality is not a neces-
sary requirement and one may consider nonuni-
versal soft terms as well. However, it will not
change the qualitative picture presented below; so
for simplicity, in what follows we consider the uni-
versal boundary conditions. In this case, eq.(5.1)
takes the form

−LBreaking = (5.2)

= m2
0

∑

i

|ϕi|2 +
(

m1/2

2

∑

α

λ̃αλ̃α +B[µH1H2]

+ A[yUabQ̃aŨ
c
bH2 + yDabQ̃aD̃

c
bH1 + yLabL̃aẼ

c
bH1]

)

.

Thus, we are left with five free parameters,
namely, m0,m1/2, A,B and µ versus two param-
eters of the SM coming from the Higgs potential,
m2 and λ. In supersymmetry the Higgs poten-
tial is not arbitrary but is calculated from the
Yuakawa and gauge terms as we shall see below.
The soft terms explicitly break supersymme-

try. As will be shown later, they lead to the mass
spectrum of superpartners different from that of
ordinary particles. Remind that the masses of
quarks and leptons remain zero until SU(2) in-
variance is spontaneously broken.

5.1. The soft terms and the mass formulas
There are two main sources of the mass terms

in the Lagrangian: the D terms and soft ones.
With given values of m0,m1/2, µ, Yt, Yb, Yτ , A,
and B one can construct the mass matrices for
all the particles. Knowing them at the GUT
scale, one can solve the corresponding RG equa-
tions, thus linking the values at the GUT and
electroweak scales. Substituting these parame-
ters into the mass matrices, one can predict the
mass spectrum of superpartners [27,28].

5.1.1. Gaugino-higgsino mass terms
The mass matrix for gauginos, the superpart-

ners of the gauge bosons, and for higgsinos, the
superpartners of the Higgs bosons, is nondiago-
nal, thus leading to their mixing. The mass terms
look like

LGaugino−Higgsino = (5.3)
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= −1

2
M3λ̄aλa − 1

2
χ̄M (0)χ− (ψ̄M (c)ψ + h.c.),

where λa, a = 1, 2, . . . , 8, are the Majorana gluino
fields and

χ =









B̃0

W̃ 3

H̃0
1

H̃0
2









, ψ =

(

W̃+

H̃+

)

(5.4)

are, respectively, the Majorana neutralino and
Dirac chargino fields.

The neutralino mass matrix is

M (0)=









M1 0 -MZcβsW MZsβsW
0 M2 MZcβcW -MZsβcW

-MZcβsW MZcβcW 0 -µ
MZsβsW -MZsβcW -µ 0









,

where tanβ = v2/v1 is the ratio of two Higgs
v.e.v.s and sinW = sin θW is the usual sinus of
the weak mixing angle. The physical neutralino
masses Mχ̃0

i

are obtained as eigenvalues of this
matrix after diagonalization.

For charginos one has

M (c) =

(

M2

√
2MW sinβ√

2MW cosβ µ

)

. (5.5)

This matrix has two chargino eigenstates χ̃±
1,2

with mass eigenvalues

M2
1,2 =

1

2

[

M2
2 + µ2 + 2M2

W∓ (5.6)
√

(M2
2−µ2)2+4M4

W c
2
2β+4M

2
W (M2

2 +µ
2+2M2µs2β)

]

.

5.1.2. Squark and slepton masses
Non-negligible Yukawa couplings cause a mix-

ing between the electroweak eigenstates and the
mass eigenstates of the third generation particles.
The mixing matrices for m̃2

t , m̃
2
b and m̃2

τ are

(

m̃2
tL mt(At − µ cotβ)

mt(At − µ cotβ) m̃2
tR

)

, (5.7)

(

m̃2
bL mb(Ab − µ tanβ)

mb(Ab − µ tanβ) m̃2
bR

)

, (5.8)

(

m̃2
τL mτ (Aτ − µ tanβ)

mτ (Aτ − µ tanβ) m̃2
τR

)

(5.9)

with

m̃2
tL = m̃2

Q +m2
t +

1

6
(4M2

W −M2
Z) cos 2β,

m̃2
tR = m̃2

U +m2
t −

2

3
(M2

W −M2
Z) cos 2β,

m̃2
bL = m̃2

Q +m2
b −

1

6
(2M2

W +M2
Z) cos 2β,

m̃2
bR = m̃2

D +m2
b +

1

3
(M2

W −M2
Z) cos 2β,

m̃2
τL = m̃2

L +m2
τ − 1

2
(2M2

W −M2
Z) cos 2β,

m̃2
τR = m̃2

E +m2
τ + (M2

W −M2
Z) cos 2β

and the mass eigenstates are the eigenvalues of
these mass matrices. For the light generations
the mixing is negligible.
The first terms here (m̃2) are the soft ones,

which are calculated using the RG equations
starting from their values at the GUT (Planck)
scale. The second ones are the usual masses of
quarks and leptons and the last ones are the D
terms of the potential.

5.2. The Higgs potential
As has already been mentioned, the Higgs po-

tential in the MSSM is totally defined by superpo-
tential (and the soft terms). Due to the structure
of LY ukawa the Higgs self-interaction is given by
the D-terms while the F -terms contribute only to
the mass matrix. The tree level potential is

Vtree = m2
1|H1|2 +m2

2|H2|2−m2
3(H1H2+h.c.)

+
g2 + g

′2

8
(|H1|2 − |H2|2)2 +

g2

2
|H+

1 H2|2, (5.10)

where m2
1 = m2

H1
+ µ2,m2

2 = m2
H2

+ µ2. At the
GUT scale m2

1 = m2
2 = m2

0 + µ2
0, m

2
3 = −Bµ0.

Notice that the Higgs self-interaction coupling in
eq.(5.10) is fixed and defined by the gauge inter-
actions as opposed to the SM.
The potential (5.10), in accordance with super-

symmetry, is positive definite and stable. It has
no nontrivial minimum different from zero. In-
deed, let us write the minimization condition for
the potential (5.10)

1

2

δV

δH1
=m2

1v1−m2
3v2+

g2+g′2

4
(v21−v22)v1=0,(5.11)

1

2

δV

δH2
=m2

2v2−m2
3v1+

g2+g′2

4
(v21−v22)v2=0,(5.12)



13

where we have introduced the notation

< H1 >≡ v1 = v cosβ, < H2 >≡ v2 = v sinβ,

v2 = v21 + v22 , tanβ ≡ v2
v1
.

Solution of eqs.(5.11),(5.12) can be expressed in
terms of v2 and sin 2β

v2=
4(m2

1−m2
2 tan

2 β)

(g2+g′2)(tan2 β−1)
, sin 2β =

2m2
3

m2
1+m

2
2

.(5.13)

One can easily see from eq.(5.13) that if m2
1 =

m2
2 = m2

0 + µ2
0, v

2 happens to be negative, i.e.
the minimum does not exist. In fact, real posi-
tive solutions to eqs.(5.11),(5.12) exist only if the
following conditions are satisfied:

m2
1 +m2

2 > 2m2
3, m2

1m
2
2 < m4

3, (5.14)

which is not the case at the GUT scale. This
means that spontaneous breaking of the SU(2)
gauge invariance, which is needed in the SM to
give masses for all the particles, does not take
place in the MSSM.
This strong statement is valid, however, only at

the GUT scale. Indeed, going down with energy,
the parameters of the potential (5.10) are renor-
malized. They become the “running” parameters
with the energy scale dependence given by the
RG equations.

5.3. Radiative electroweak symmetry
breaking

The running of the Higgs masses leads to the
remarkable phenomenon known as radiative elec-
troweak symmetry breaking. Indeed, one can see
in Fig.10 that m2

2 (or both m2
1 and m2

2) decreases
when going down from the GUT scale to the MZ

scale and can even become negative. As a result,
at some value of Q2 the conditions (5.14) are sat-
isfied, so that the nontrivial minimum appears.
This triggers spontaneous breaking of the SU(2)
gauge invariance. The vacuum expectations of
the Higgs fields acquire nonzero values and pro-
vide masses to quarks, leptons and SU(2) gauge
bosons, and additional masses to their superpart-
ners.
In this way one also obtains the explanation of

why the two scales are so much different. Due to

the logarithmic running of the parameters, one
needs a long ”running time” to get m2

2 (or both
m2

1 and m2
2) to be negative when starting from a

positive value of the order of MSUSY ∼ 102÷ 103

GeV at the GUT scale.

5.4. The mass spectrum
The mass spectrum is defined by low energy

parameters. To calculate the low energy values
of the soft terms, we use the corresponding RG
equations [29]. Having all the RG equations, one
can now find the RG flow for the soft terms. Tak-
ing the initial values of the soft masses at the
GUT scale in the interval between 102÷ 103 GeV
consistent with the SUSY scale suggested by uni-
fication of the gauge couplings (2.7) leads to the
RG flow of the soft terms shown in Fig.10. [27,28]
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Figure 10. An example of evolution of sparticle
masses and soft supersymmetry breaking param-
eters m2
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(left) and high (right) values of tanβ
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One should mention the following general fea-
tures common to any choice of initial conditions:

i) The gaugino masses follow the running of the
gauge couplings and split at low energies. The
gluino mass is running faster than the others and
is usually the heaviest due to the strong interac-
tion.

ii) The squark and slepton masses also split at
low energies, the stops (and sbottoms) being the
lightest due to relatively big Yukawa couplings of
the third generation.

iii) The Higgs masses (or at least one of them)
are running down very quickly and may even be-
come negative.

Typical dependence of the mass spectra on the
initial conditions (m0) is also shown in Fig.11
[30,31]. For a given value of m1/2 the masses
of the lightest particles are practically indepen-
dent ofm0, while the heavier ones increase with it
monotonically. One can see that the lightest neu-
tralinos and charginos as well as the stop squark
may be rather light.

Provided conditions (5.14) are satisfied, one
can also calculate the masses of the Higgs bosons.
The mass matrices at the tree level are
CP-odd components P1 and P2 :

Modd =
∂2V

∂Pi∂Pj

∣

∣

∣

∣

Hi=vi

=

(

tanβ 1
1 cotβ

)

m2
3, (5.15)

CP-even neutral components S1 and S2:

Mev =
∂2V

∂Si∂Sj

∣

∣

∣

∣

Hi=vi

=

(

tanβ −1
−1 cotβ

)

m2
3

+

(

cotβ −1
−1 tanβ

)

MZ
sin 2β

2
, (5.16)

Charged components H− and H+:

Mch =
∂2V

∂H+
i ∂H

−
j

∣

∣

∣

∣

∣

Hi=vi

(5.17)

=

(

tanβ 1
1 cotβ

)

(m2
3 +MW

sin 2β

2
).

Diagonalizing the mass matrices, one gets the
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Figure 11. The masses of sparticles as functions
of the initial value m0

mass eigenstates:
{

G0 = − cosβP1 + sinβP2, Goldst boson→ Z0,
A = sinβP1 + cosβP2, Neutral CPodd Higgs,

{

G+=−cosβ(H−
1 )∗+sinβH+

2 , Goldst boson→W+,
H+ = sinβ(H−

1 )∗ + cosβH+
2 , Charged Higgs,

{

h = − sinαS1 + cosαS2, SM CP even Higgs,
H = cosαS1 + sinαS2, Extra heavy Higgs,

where the mixing angle α is given by

tan 2α = tan 2β

(

m2
A +M2

Z

m2
A −M2

Z

)

.

The physical Higgs bosons acquire the following
masses [16]:

CP-odd neutral Higgs A : m2
A = m2

1+m
2
2, (5.18)
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Charge Higgses H± : m2
H± = m2

A+M
2
W ,

CP-even neutral Higgses H, h:

m2
H,h=

1

2

[

m2
A+M

2
Z±
√

(m2
A+M

2
Z)

2−4m2
AM

2
Zc

2
2β

]

,

(5.19)

where, as usual,

M2
W =

g2

2
v2, M2

Z =
g2 + g′2

2
v2.

This leads to the once celebrated SUSY mass re-
lations

mH± ≥MW , mh ≤ mA ≤MH ,

mh ≤MZ | cos 2β| ≤MZ , (5.20)

m2
h +m2

H = m2
A +M2

Z

Thus, the lightest neutral Higgs boson happens
to be lighter than the Z boson, which clearly dis-
tinguishes it from the SM one. Though we do
not know the mass of the Higgs boson in the SM,
there are several indirect constraints leading to
the lower boundary of mSM

h ≥ 135 GeV. After
including the radiative corrections, the mass of
the lightest Higgs boson in the MSSM, mh, reads

m2
h=M

2
Z cos2(2β)+

3g2m4
t

16π2M2
W

log
m̃2

t1m̃
2
t2

m4
t

+...(5.21)

which leads to about 40 GeV increase [32]. The
second loops correction is negative but small [33].

6. Constrained MSSM

6.1. Parameter space of the MSSM
The Minimal Supersymmetric Standard Model

has the following free parameters: i) three gauge
couplings αi; ii) three matrices of the Yukawa
couplings yiab, where i = L,U,D; iii) the Higgs
field mixing parameter µ; iv) the soft supersym-
metry breaking parameters. Compared to the SM
there is an additional Higgs mixing parameter,
but the Higgs self-coupling, which is arbitrary in
the SM, is fixed by supersymmetry. The main
uncertainty comes from the unknown soft terms.
With the universality hypothesis one is left

with the following set of 5 free parameters defin-
ing the mass scales

µ, m0, m1/2, A and B ↔ tanβ =
v2
v1
.

While choosing parameters and making predic-
tions, one has two possible ways to proceed:
i) take the low-energy parameters like su-

perparticle masses m̃t1, m̃t2,mA, tanβ, mixings
Xstop, µ, etc. as input and calculate cross-sections
as functions of these parameters.
ii) take the high-energy parameters like the

above mentioned 5 soft parameters as input, run
the RG equations and find the low-energy values.
Now the calculations can be carried out in terms
of the initial parameters. A typical range of these
parameters is

100 GeV ≤ m0,m1/2, µ ≤ 1− 2 TeV,

−3m0 ≤ A0 ≤ 3m0, 1 ≤ tanβ ≤ 70.

The experimental constraints are sufficient to de-
termine these parameters, albeit with large un-
certainties.

6.2. The choice of constraints
When subjecting constraints on the MSSM,

perhaps, the most remarkable fact is that all of
them can be fulfilled simultaneously. In our anal-
ysis we impose the following constraints on the
parameter space of the MSSM:
• Gauge coupling constant unification;

This is one of the most restrictive constraints,
which we have discussed in Sect 2. It fixes the
scale of SUSY breaking of an order of 1 TeV.
• MZ from electroweak symmetry breaking;

Radiative EW symmetry breaking (see eq.(5.13))
defines the mass of the Z-boson

M2
Z

2
=
m2

1−m2
2 tan

2 β

tan2 β−1
=−µ2+

m2
H1

−m2
H2

tan2 β

tan2 β−1
.

This condition determines the value of µ for given
values of m0 and m1/2.
• Precision measurement of decay rates;

We take the branching ratio BR(b → sγ) which
has been measured by the CLEO [34] collabora-
tion and later by ALEPH [35] and the branch-
ing ration BR(Bs → µ+µ−) measured recently
by CDF collaboration [36]. Susy contributions
should not destroy the agreement with the SM
and in some cases can improve it. This require-
ment imposes severe restrictions on the parameter
space, especially for the case of large tanβ.
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• Anomalous magnetic moment of muon;
Recent measurement of the anomalous magnetic
moment indicates small deviation from the SM of
the order of 2 σ. The deficiency may be easily
filled with SUSY contribution.

• The lightest superparticle (LSP) should be
neutral, otherwhise we would have charged clouds
of stable particles in the Universe which is not
observed.

• Experimental lower limits on SUSY masses;
SUSY particles have not been found so far and
the searches at LEP impose the lower limit on the
charged lepton and chargino masses of about half
of the centre of mass energy [37]. The lower limit
on the neutralino masses is smaller. There exist
also limits on squark and gluino masses from the
Tevatron collider [38]. These limits restrict the
minimal values for the SUSY mass parameters.

• Dark Matter constraint;
Recent very precise astrophysical data restrict the
amount of the Dark matter in the Universe up
to 23%. Assuming h0 ∼ 0.7 one finds that the
contribution of each relic particle species χ has
to obey Ωχh

2
0 ∼ 0.13 ± 0.03.. This serves as a

very severe bound on SUSY parameters [39].
Having in mind the above mentioned con-

straints one can find the most probable region of
the parameter space by minimizing the χ2 func-
tion [28]. Since the parameter space is 5 di-
mensional one can not plot it explicitly and is
bounded to use various projections. We will ac-
cept the following strategy: We first choose the
value of the Higgs mixing parameter µ from the
requirement of radiative EW symmetry breaking
and then take the set of values of tanβ. Parame-
ter A happens to be less important and we will fix
it typically like A0 = 0. Then we are left with two
parameters m0 and m1/2 and we present the re-
strictions coming from various constraints in the
m0,m1/2 plane.

6.3. The excluded regions of parameter
space

• We start with the Higgs mass constraint. Ex-
perimental lower limit on the Higgs mass from
LEP2: mh ≥ 114.7 GeV cuts the part of the pa-
rameter space as shown in Fig.12.

• The next two constrains are related to rare

decays where SUSY may contribute. The first
one is b → sγ decay which in the SM given by
the diagrams shown on top of Fig.13 and leads to

BRSM (b→ sγ) = (3.28± 0.33) · 10−4

while experiment gives [34,35]

BREX(b→ sγ) = (3.43± 0.36) · 10−4.

These two values almost coincide but still leave
some room for SUSY. SUSY contribution comes
from the diagrams shown in the bottom of Fig.13
and is enhanced by tanβ[40]

BRSUSY(b→ sγ) ∝ µAtmb tanβf(m̃
2
t1 , m̃

2
t1 ,mχ±)

The obtained constraints are shown in Fig.12.

Figure 13. The diagrams contributing to b → sγ
decay in the SM and in the MSSM.

The second decay is Bs → µ+µ−. In the SM
it is given by the diagrams shown in Fig.14. The
branching ratio is BRSM (Bs → µ+µ−) = 3.5 ·
10−9, while the recent experiment gives only the
lower bound BREx(Bs → µ+µ−) < 4.5 ·10−8[36].
In the MSSM one has several diagrams but the
main contribution enhanced by (tanβ)6 (!) comes
from the one shown in the bottom of Fig.14. It is
proportional to [41]

BRSUSY (bs → µµ) ∝ tan6 β
m2

bm
2
tm

2
µµ

2

M4
Wm4

A

×
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×





m̃2
t1 log

m2

t1

µ

mu2 −m2
t1

−
m̃2

t2 log
m2

t2

µ

mu2 −m2
t2





2

As a result for large tanβ one comes in a con-
tradiction with experiment. The values of the
branching ratio for various parameters are shown
in Fig.15 [41] and the restrictions on the param-
eter space in Fig.12

−
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.. .
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Figure 14. The diagrams contributing to Bs →
µµ decay in the SM and in the MSSM.

• Anomalous magnetic moment of muon. Re-
cent measurement of the anomalous magnetic mo-
ment indicates small deviation from the SM of the
order of 2.5 σ[42]:

aexpµ = 11 659 202 (14)(6) · 10−10

aSM
µ = 11 659 159.6 (6.7) · 10−10

∆aµ = aexpµ − atheorµ = (27± 10) · 10−10,

where the SM contribution comes from

aQED
µ = 11 658 470.56 (0.29) · 10−10

aWeak
µ = 15.1 (0.4) · 10−10

ahadronµ = 673.9 (6.7) · 10−10,

1

10

10 2

250 500 750 1000
m1/2[GeV]

B
r[

 B
s→

µµ
] ×

10
8

A0=0, µ>0
m0=300 GeV

tanβ=50
tanβ=45

tanβ=40

tanβ=30

Figure 15. The values of the branching ratio
Bs → µµ decay in the MSSM.

so that the accuracy of the experiment finally
reaches the order of the weak contribution. The
corresponding diagrams are shown in Fig.16.

µ µ

ν

γ

W W

µ µ

Z

γ

µ
µ µ

H

γ

µ

µ µ

∼ν

γ

∼χ ∼χ
µ µ

∼χ0

γ

∼µ ∼µ

Figure 16. The diagrams contributing to aµ in
the SM and in the MSSM.

The deficiency may be easily filled with SUSY
contribution coming from the diagrams shown in
the bottom of Fig.16. They are similar to that of
the weak interactions after replacing the vector
bosons by charginos and neutralinos.
The total contribution to aµ can be approxi-

mated by [43]

|aSUSY
µ | ≃ α(MZ)

8π sin2 θW

m2
µ tanβ

m2
SUSY

(

1−4α

π
ln
mSUSY

mµ

)
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Figure 17. The dependence of aSUSY
µ versus tanβ

for various values of the SUSY breaking param-
eters m0 and m1/2. The horizontal band shows
the discrepancy between the experimental data
and the SM estimate.

≃ 140 · 10−11

(

100 GeV

mSUSY

)2

tanβ,

where mµ is the muon mass, mSUSY is an aver-
age mass of supersymmetric particles in the loop
(essentially the chargino mass). It is proportional
to µ and tanβ as shown in Fig.17. This requires
positive sign of µ that kills a half of the parameter
space of the MSSM [44].

If SUSY particles are light enough they give the
desired contribution to the anomalous magnetic
moment. However, if they are too light the con-
tribution exceeds the gap between the experiment
and the SM. For too heavy particles the contribu-
tion is too small. This defines the allowed regions
as shown in Fig.12.

• The requirement that the lightest supersym-
metric particle (LSP) is neutral also restricts the
parameter space. This constraint is a conse-
quence of R-parity conservation. The regions ex-
cluded by the LSP constraint are shown in Fig.12.

Summarizing all together we have the allowed
region in parameter space as shown at the last
plots in Fig.12 [44,45]. Some requirements
are complimentary being essential for smaller or
larger values of tanβ. One can see that a) all re-
quirements are consistent and b) they still leave a
lot of freedom for the choice of parameters. Anal-

ogous analysis has been performed in a number
of papers [46] with similar results.
• Astrophysical constraints. One can also im-

pose the constraint that comes from astrophysics.
The accuracy of measurement of the amount of
the Dark Matter in the Universe defines with
high precision the cross-section of DM annihila-
tion. This in its turn requires the adjustment of
parameters. We consider this problem in more
detail in the last section. As a result one finds
that this constraint is fulfilled in a narrow band
in m0,m1/2 plane for any fixed value of tanβ as
shown in Fig.18 [47]. This plot corresponds to
tanβ = 50. With decreasing values of tanβ the
curve moves to the left and the funnel disappears.

WMAPLSP
charged

Higgs EWSB
tan b=50

Figure 18. The light (lbue) band is the region
allowed by the WMAP data. The excluded re-
gions where the LSP is stau (red up left corner),
where the radiative electroweak symmetry break-
ing mechanism does not work (red low right cor-
ner), and where the Higgs boson is too light (yel-
low lower left corner) are shown with dots.

In the narrow allowed region one fulfills all
the constraints simultaneously and has the suit-
able amount of the dark matter. Phenomenology
essentially depends on the region of parameter
space and has direct influence on the strategy of
SUSY searches. Each point in this plane corre-
sponds to a fixed set of parameters and allows one
to calculate the spectrum, the cross-sections, etc.
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plots show the combination of all constraints leaving the allowed region of parameter space
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6.4. Experimental signatures at e+e− col-
liders

Experiments are finally beginning to push into
a significant region of supersymmetry parameter
space. We know the sparticles and their cou-
plings, but we do not know their masses and mix-
ings. Given the mass spectrum one can calculate
the cross-sections and consider the possibilities of
observing new particles at modern accelerators.
Otherwise, one can get restrictions on unknown
parameters.

We start with e+e− colliders. In the leading
order creation of superpartners is given by the
diagrams shown in Fig.7 above. For a given cen-
ter of mass energy the cross-sections depend on
the mass of created particles and vanish at the
kinematic boundary. Experimental signatures are
defined by the decay modes which vary with the
mass spectrum. The main ones are summarized
below.

Production Decay Modes Signatures

• l̃L,R l̃L,R l̃±R → l±χ̃0
i acompl pair of

l̃±L → l±χ̃0
i charged lept+

/

ET

• ν̃ν̃ ν̃ → l±χ̃0
1

/

ET

• χ̃±
1 χ̃

±
1 χ̃±

1 → χ̃0
1l

±ν isol lept+2jets+
/

ET

χ̃±
1 → χ̃0

2f f̄
′ pair of acompl

χ̃±
1 → lν̃l leptons +

/

ET

→ lνlχ̃
0
1

χ̃±
1 → νl l̃ 4 jets +

/

ET

→ νllχ̃
0
1

• χ̃0
i χ̃

0
j χ̃0

i → χ̃0
1X X = νlν̄l invisible

= γ, 2l, 2 jets

2l+
/

ET , l+2j+
/

ET

• t̃i t̃j t̃1 → cχ̃0
1 2 jets+

/

ET

t̃1 → bχ̃±
1 2b jets+2lept+

/

ET

→ bf f̄ ′χ̃0
1

2 b jets+lept+
/

ET

• b̃ib̃j b̃i → bχ̃0
1 2 b jets +

/

ET

b̃i → bχ̃0
2 2 b jets+2 lept+

/

ET

→ bf f̄ ′χ̃0
1 2 b jets+2 jets+

/

ET

A characteristic feature of all possible signatures
is the missing energy and transverse momenta,
which is a trade mark of a new physics.
Numerous attempts to find superpartners at

LEP II gave no positive result thus imposing the
lower bounds on their masses [37]. Typical LEP
II limits on the masses of superpartners are

mχ0

1

> 40 GeV, mẽ > 105 GeV, mt̃ > 90 GeV

mχ±

1

> 100 GeV, mµ̃ > 100 GeV, mb̃ > 80 GeV

mτ̃ > 80 GeV

6.5. Experimental signatures at hadron
colliders

Experimental SUSY signatures at the Tevatron
and LHC are similar. The strategy of SUSY
search is based on an assumption that the masses
of superpartners indeed are in the region of 1 TeV
so that they might be created on the mass shell
with the cross section big enough to distinguish
them from the background of the ordinary parti-
cles. Calculation of the background in the frame-
work of the Standard Model thus becomes essen-
tial since the secondary particles in all the cases
will be the same.
There are many possibilities to create su-

perpartners at hadron colliders. Besides the
usual annihilation channel there are numerous
processes of gluon fusion, quark-antiquark and
quark-gluon scattering. The maximal cross sec-
tions of the order of a few picobarn can be
achieved in the process of gluon fusion.
As a rule all superpartners are short lived and

decay into the ordinary particles and the light-
est superparticle. The main decay modes of su-
perpartners which serve as the manifestation of
SUSY are

Production Decay Modes Signatures

• g̃g̃, q̃q̃, g̃q̃
g̃ → qq̄χ̃0

1

qq̄′χ̃±
1

gχ̃0
1

/

ET +multijets

(+leptons)

q̃ → qχ̃0
i

q̃ → q′χ̃±
i

• χ̃±
1 χ̃

0
2 χ̃±

1 → χ̃0
1l

±ν Trilepton +
/

ET

χ̃0
2 → χ̃0

1ll
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χ̃±
1 → χ̃0

1qq̄
′ Dilept+ jet+

/

ET

χ̃0
2 → χ̃0

1ll

• χ̃+
1 χ̃

−
1 χ̃+

1 → lχ̃0
1l

±ν Dilepton +
/

ET

• χ̃0
i χ̃

0
i χ̃0

i → χ̃0
1X

/

ET+Dilept+jets

χ̃0
i → χ̃0

1X
′

• t̃1t̃1 t̃1 → cχ̃0
1 2 acollin jets+

/

ET

t̃1 → bχ̃±
1 sing lept+

/

ET+b
′s

χ̃±
1 → χ̃0

1qq̄
′

t̃1 → bχ̃±
1 Dilept+

/

ET+b
′s

χ̃±
1 → χ̃0

1l
±ν

• l̃l̃, l̃ν̃, ν̃ν̃ l̃± → l ± χ̃0
i Dilepton +

/

ET

l̃± → νlχ̃
±
i Single lept + /ET

ν̃ → νχ̃0
1 /ET

Noe again the typical events with missing en-
ergy and transverse momentum that is the main
difference from the background processes of the
Standard Model. Contrary to e+e− colliders,
at hadron machines the background is extremely
rich and essential. The missing energy is car-
ried away by the heavy particle with the mass
of the order of 100 GeV that is essentially differ-
ent from the processes with neutrino in the final
state. In hadron collisions the superpartners are
always created in pairs and then further quickly
decay creating a cascade with the ordinary quarks
(i.e. hadron jets) or leptons at the final state plus
the missing energy. For the case of gluon fusion
with creation of gluino it is presented in Table 1.
Chargino and neutralino can also be produced

in pairs through the Drell-Yang mechanism pp→
χ̃±
1 χ̃

0
2 and can be detected via their lepton de-

cays χ̃±
1 χ̃

0
2 → ℓℓℓ +

/

ET . Hence the main signal

of their creation is the isolated leptons and miss-
ing energy (Table 2). The main background in
trilepton channel comes from creation of the stan-
dard particles WZ/ZZ, tt̄, Zbb̄ bb̄. There might
be also the supersymmetric background from the
cascade decays of squarks and gluino into multi-
lepton modes.
Numerous SUSY searches have been already

performed at the Tevatron. Pair-produced
squarks and gluinos have at least two large-ET

jets associated with large missing energy. The fi-

nal state with lepton(s) is possible due to leptonic
decays of the χ̃±

1 and/or χ̃0
2.

In the trilepton channel the Tevatron is sensi-
tive up to m1/2 ≤ 250 GeV if m0 ≤ 200 GeV and
up to m1/2 ≤ 200 GeV if m0 ≥ 500 GeV. The
existing limits on the squark and gluino masses
at the Tevatron are [48] : mq̃ ≥ 300 GeV, mg̃ ≥
195 GeV.
The LHC has an advantage of higher energy

and bigger luminosity. The cross sections for
various superpartner production at the LHC in
m0,m1/2 plane are shown in Fig. 19. One can see
that the biggest cross-section reaching 100 pb in
the maximum is achieved for gluino production.
And though it strongly depends on the gluon
mass, with a planned luminosity of LHC one may
have a reliable detection. It should be mentioned,
however, that being produced in collisions the su-
perpartners follow the cascade decay chain and
the cross section at the final stage is essentially
smaller being multiplied by the branching ratios
of the corresponding processes. The resulting
cross-sections for particular final states are in the
fb region. They are higher for hadron final states
where one has jets with missing energy and lower
for lepton ones which are cleaner for detection.
The cross-sections for chargino production are al-
most one order of magnitude lower reaching 10
pb in the maximum and those for squark produc-
tion are below 1 pb. In some regions of parame-
ter space with light neutralino and chargino the
production cross-sections can reach those of the
strongly interacting particles [49].
In most of the cases the superpartners are very

short lived and decay practically at the collision
point without leaving a secondary vertex. One
then has hadron jets (mostly b-jets) and leptons
flying outside. The typical process of gluino pro-
duction is presented in Fig.20 where the cascade
decay of one of the gluinos is shown [50]. For a
given choice of soft SUSY breaking parameters
the cross-section at the first stage reaches 13 pb
but with the 4-lepton + 4-jet final state is reduced
to a few fb. To distinguish this reaction from the
background one has to perform the analysis of
the missing energy and consider the peculiarities
in the invariant mass distribution of the muon
pair, free pass of B-mesons, etc [50].
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Process final states
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/
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χ±
i

W±

χ0

1
q̄i

qk
q

q̃

χ±
i

W±

χ0

1

q̄i

qkq̄

8j
/

ET

Table 1
Creation of the pair of gluino with further cascade
decay

Process final states

p (�q)
p (q) Z ��1��1 W�

W� l�
�l�01�01 2ℓ

2ν
/

ET

p (�q)
p (q) Z ��1��1 W�

W� qi�qj
�l�01�01

ℓ
ν
2j
/

ET

p (qi)
p ( �qj) W� �02��1 W�

Z �ll
�l�01�01 3ℓ

ν
/

ET

p (qi)
p ( �qj) W� �02��1 W�

Z ���
�l�01�01 ℓ

3ν
/

ET

p (qi)
p ( �qj) W� �02��1 W�

Z �qq
�l�01�01

ℓ
ν
2j
/

ET

Table 2
Creation of the lightest chargino and the second
neutralino with further cascade decay.
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Process final states

2ℓ
2j
/

ET

ℓ
2j
/

ET

Table 3
The background processes at hadron colliders
(weak interactions).

Process final states

2ℓ
6j
/

ET

4ℓ
4j
/

ET

Table 4
The background processes at hadron colliders
(strong interactions).
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Figure 19. The cross sections of superpartners
creation as functions of m1/2 and m0 for tanβ =
51, A0 = 0 and positive sign of µ.
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Figure 20. Gluino production at the LHC accom-
panied with cascade decays

6.6. The long-lived superpartners
Within the framework of Constrained MSSM

with gravity mediated soft supersymmetry break-
ing mechanism there exists an interesting pos-
sibility to get long-lived next-to-lightest super-
symmetric particles (staus or stops or charginos).
Their production cross-sections crucially depend
on a single parameter, the mass of the superpar-
ticle, and for light staus can reach a few % of
pb. This might be within the LHC reach. The
stop production cross-section can achieve even
hundreds pb. Decays of long-lived superpartners
would have an unusual signature if heavy charged
particles decay with a considerable delay produc-
ing secondary vertices inside the detector, or even

escape the detector. This possibility can be real-
ized at the boundary regions of allowed parameter
space where one can have a mass degeneracy be-
tween the LSP and the NLSP. The life time of
the NLSP is inversely proportional to the mass
degeneracy.

Figure 21. The regions of the parameters space
of mSUGRA where the long-lived sparticles might
exist

We show in Fig.21 the regions where this might
happen. The first region is the so-called co-
annihilation region which is interesting from the
point of view of existence of long-lived charged
sleptons. Their life-time may be large enough to
be produced in proton-proton collisions and to
fly away from the detector area or to decay inside
the detector at a considerable distance from the
collision point. Clearly that such an event can
not be unnoticed. However, to realize this possi-
bility one need a fine-tuning of parameters of the
model [51]. The second region is the border of the
bulk region where light long-lived stops can exist.
It appears only for large negative trilinear soft
supersymmetry breaking parameter A0. On the
border of this region, in full analogy with the stau
co-annihilation region, the top squark becomes
the LSP and near this border one might get the
long-lived stops. Stops can form the so-called R-
hadrons (bound states of SUSY particles) if their
lifetime is bigger than the hadronisation time.
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The last interesting region of parameter space
is a narrow band along the line where the radia-
tive electroweak symmetry breaking fails. On the
border of this region the Higgs mixing parameter
µ, which is determined from the requirement of
electroweak symmetry breaking via radiative cor-
rections, tends to zero. This leads to existence of
light and degenerate states: the second chargino
and two neutralinos, all of them being essentially
higgsinos.
Experimental Higgs and chargino mass limits

as well as WMAP relic density limit can be easily
satisfied in these scenarios. However, the strong
fine-tuning is required. The discussed scenarios
differ from the GMSB scenario [52] with the grav-
itino as the LSP, and next-to-lightest supersym-
metric particles typically live longer.
Searches for long-lived particles were already

made by LEP collaborations [53]. It is also
of great interest at the moment since the first
physics results of the coming LHC are expected
in the nearest future. Light long-lived sparticles
could be produced already during first months
of its operation [54]. Since staus and stops are
relatively light in this scenario, their production
cross-sections are quite large and may achieve a
few per cent of pb for stau production, and tens
or even hundreds of pb for light stops, m̃t < 150
GeV. The cross-section then quickly falls down
when the mass of stop is increased. However, even
for very large values of |A| when stops become
heavier than several hundreds GeV, the produc-
tion cross-section is of order of few per cent of pb,
which is enough for detection with the high LHC
luminosity.

6.7. The reach of the LHC
The LHC hadron collider is the ultimate ma-

chine for new physics at the TeV scale. Its c.m.
energy is planned to be 14 TeV with very high
luminosity up to a few hundred fb−1. The LHC
is supposed to cover a wide range of parameters
of the MSSM (see Figs. below) and discover the
superpartners with the masses below 2 TeV [56].
This will be a crucial test for the MSSM and the
low energy supersymmetry. The LHC potential
to discover supersymmetry is widely discussed in
the literature [56]-[57].
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Figure 22. Expected range of reach for superpart-
ners in various channels at LHC [55].

To present the region of reach for the LHC in
different channels of sparticle production it is use-
ful to take the same plane of soft SUSY breaking
parametersm0 andm1/2. In this case one usually
assumes certain luminosity which will be presum-
ably achieved during the accelerator operation.
Thus, for instance, in Fig. 22 it is shown the

regions of reach in different channels. The lines
of a constant squark mass form the arch curves,
and those for gluino are almost horisontal. The
curved lines show the reach bounds in different
channel of creation of secondary particles. The
theoretical curves are obtained within the MSSM
for a certain choice of the other soft SUSY break-
ing parameters. As one can see, for the fortunate
circumstances the wide range of the parameter
space up to the masses of the order of 2 Tev will
be examined.
The other example is shown in Fig. 23 where

the regions of reach for squarks and gluino are
shown for various luminosities. One can see that
for the maximal luminosity the discovery range
for squarks and gluino reaches 3 TeV for the cen-
ter of mass energy of 14 TeV and even higher for
the double energy.
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Figure 23. Expected domain of searches for
squarks and gluions at LHC [55].

The LHC will be able to discover SUSY with
squark and gluino masses up to 2 ÷ 2.5 TeV for
the luminosity Ltot = 100 fb−1. The most power-
ful signature for squark and gluino detection are
multijet events; however, the discovery potential
depends on relation between the LSP, squark, and
gluino masses, and decreases with the increase of
the LSP mass.

The same is true for the sleptons as shown in
Fig. 24. The slepton pairs can be created via
the Drell-Yang mechanism pp → γ∗/Z∗ → ℓ̃+ℓ̃−

and can be detected through the lepton decays
ℓ̃ → ℓ + χ̃0

1. The typical signal used for slepton
detection is the dilepton pair with the missing
energy without hadron jets. For the luminosity of
Ltot = 100 fb−1 the LHC will be able to discover
sleptons with the masses up to 400 GeV [56]. The
discovery reach for sleptons in various channels is
shown in Fig.24.

6.8. The lightest superparticle
One of the crucial questions is the properties of

the lightest superparticle. Different SUSY break-
ing scenarios lead to different experimental signa-
tures and different LSP.

• Gravity mediation
In this case, the LSP is the lightest neutralino

χ̃0
1, which is almost 90% photino for a low tanβ
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Figure 24. Expected range of reach for sleptons
at LHC [55].

solution and contains more higgsino admixture
for high tanβ. The usual signature for LSP is
missing energy; χ̃0

1 is stable and is the best can-
didate for the cold dark matter in the Universe.
Typical processes, where the LSP is created, end

up with jets +
/

ET , or leptons +
/

ET , or both jets

+ leptons + /ET .
• Gauge mediation
In this case the LSP is the gravitino G̃ which

also leads to missing energy. The actual question
here is what the NLSP, the next lightest particle,
is. There are two possibilities:
i) χ̃0

1 is the NLSP. Then the decay modes are:
χ̃0
1 → γG̃, hG̃, ZG̃. As a result, one has two hard

photons + /ET , or jets + /ET .
ii) l̃R is the NLSP. Then the decay mode is

l̃R → τG̃ and the signature is a charged lepton
and the missing energy.
• Anomaly mediation
In this case, one also has two possibilities:
i) χ̃0

1 is the LSP and wino-like. It is almost
degenerate with the NLSP.
ii) ν̃L is the LSP. Then it appears in the decay

of chargino χ̃+ → ν̃l and the signature is the
charged lepton and the missing energy.
• R-parity violation
In this case, the LSP is no longer stable and
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decays into the SM particles. It may be charged
(or even colored) and may lead to rare decays like
neutrinoless double β-decay, etc.
Experimental limits on the LSP mass follow

from non-observation of the corresponding events.
Modern lower limit is around 40 GeV .

7. Supersymmetric Dark Matter

7.1. The problem of the dark matter in the
Universe

As was already mentioned the shining matter
does not compose all the matter in the Universe.
According to the latest precise data [58] the mat-
ter content of the Universe is the following:

Ωtotal = 1.02± 0.02,

Ωvacuum = 0.73± 0.04,

Ωmatter = 0.23± 0.04,

Ωbaryon = 0.044± 0.004,

so that the dark matter prevails the usual matter
by factor of 6.
Besides the rotation curves of stars the dark

matter manifests itself in the observation of grav-
itational lensing effects [59] and the large struc-
ture formation. It is believed that the dark mat-
ter played the crucial role in formation of large
structures like clusters of galaxies and the usual
matter just fell down in a potential well attracted
by gravitational interaction afterwards. The dark
matter can not make compact objects like the
usual matter since it does not take part in strong
interaction and can not lose energy by photon
emission since it is neutral. For this reason the
dark matter can be trapped in much larger scale
structures like galaxies.
In general one may assume two possibilities:

either the dark matter interacts only gravitation-
ally, or it participates also in the weak interac-
tion. The latter case is preferable since then one
may hope to detect it via the methods of particle
physics. What makes us to believe that the dark
matter is probably the Weakly Interacting Mas-
sive Particle (WIMP)? This is because the cross-
section of DM annihilation which can be figured
out of the amount of the DM in the Universe is
close to a typical weak interaction cross-section.

Indeed, let us assume that all the DM is made
of particles of a single type. Then the amount
of the DM can be calculated from the Boltzman
equatio [60,61]

dnχ

dt
+ 3Hnχ = − < σv > (n2

χ − n2
χ,eq), (7.1)

where H = Ṙ/R is the Hubble constant and nχ,eq

is the equilibrium concentration. The relic abun-
dance is expressed in terms of nχ as

Ωχh
2 =

mχnχ

ρc
≈ 2 · 1027 cm3 sec−1

< σv >
. (7.2)

Having in mind that Ωχh
2 ≈ 0.113 ± 0.009 and

v ∼ 300 km/sec one gets

σ ≈ 10−34 cm2 = 100 pb, (7.3)

which is a typical EW cross-section.

7.2. Detection of the Dark matter
There are two methods of the DM detection:

direct and indirect. In direct detection one as-
sumes that the particles of DM come to Earth
and interact with the nuclei of a target. In un-
derground experiments one can hope to observe
such events measuring the recoil energy. There
are several experiments of this type: DAMA,
Zeplin, CDMS and Edelweiss. Among them only
DAMA collaboration claims to observe a positive
outcome in annual modulation of the signal with
the fitted DM particle mass around 50 GeV [62].

All the other experiments do not see it though
CDMS collaboration recently announced about
a few events of a desired type [63]. The rea-
son of this disagreement might be in different
methodology and the targets used since the cross-
section depends on a spin of a target nucleus.
The collected statistics is also essentially differ-
ent, DAMA has accumulated by far more data
and this is the only collaboration which studies
the modulation of the signal that may be crucial
for reducing the background.
The typical exclusion plots for spin-

independent and spin-dependent cross-sections
are shown in Fig.25 where one can see DAMA al-
lowed region overlapping with the other exclusion
ones. Still today we have no convincing evidence
for direct DM detection or exclusion.
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Figure 25. The exclusion plots from direct DM
detection experiments. Spin-independent case
(top) from Chicagoland Observatory for Under-
ground Particle Physics (COUPP) and spind-
dependent case (bottom) from Cryogenic Dark
Matter Search (CDMS)

Indirect detection of the DM is aimed to the
registration of a signal from the DM annihilation
in the form of additional gamma rays and charged
particles (antiprotons and positrons) in cosmic
rays. These particles should have the energetic
spectrum reflecting their origin from annihilation
of heavy massive particles which is different from
the background coming from the known sources.
Hence one may expect the appearance of a ”shoul-
der“ in the cosmic ray spectrum. There are
several experiments of this kind: EGRET (dif-
fuse gamma rays) which is followed by FERMI;
HEAT and AMS1 (positrons) which is followed by

PAMELA; BESS (antiprotons) which will be fol-
lowed by PAMELA and AMS2. All these exper-
iments see some deviation from the background
though the uncertainties are large and the back-
ground is not known very accurately especially
for charged particles.
From this point of view the most detailed in-

formation was obtained by EGRET cosmic tele-
scope [64] which orbited the Earth for 9 years and
measured the spectrum and intensity of diffuse
gamma rays over the whole celestial sphere with
the 4 degree bins. The form of the spectrum was
measured in the region of 0.1-10 GeV. It allows
one to perform the independent analysis in dif-
ferent directions of the celestial sphere. Gamma
rays have the advantage that they point back to
the source and do not suffer energy losses, so they
are the ideal candidates to trace the dark matter
density. The charged components interact with
Galactic matter and are deflected by the Galac-
tic magnetic field, so they do not point back to
the source.
The diffuse component shows a clear excess

for the energy above 1 GeV about a factor two
over the expected background from known nu-
clear interactions, inverse Compton scattering
and bremsstrahlung as shown in Fig.26 [65]. Dif-
ferent plots correspond to different regions in the
sky: A - inner galaxy, B - outer disk, C - outer
galaxy, D- low attitude, E- intermediate latitude,
F -galactic poles.
As one can see the excess of a signal above the

background is isotropic in celestial sphere that
suggests the common source which might be the
DM. It was shown that the observed excess in
the spectrum of diffuse gamma reays, if taken se-
riously, has all the features of the decay of π0

mesons produced by monoenergetic quarks com-
ing from the DM annihilation. Fitting the back-
ground together with the signal from the DM an-
nihilation one can get remarkable agreement for
all directions if the mass of the DM particle is
around 60 GeV. A detailed picture for the region
of the sky in the direction of the galactic center
is shown in Fig.28. Here one can see the allowed
background variations and the variations of the
DM particle mass used for fitting the data. Pos-
sible background variations are not enough to ex-
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Figure 26. Excess in diffuse gamma rays as measured by EGRET in various regions in the sky. The
solid(blue) line is the background as calculated by the GALPROP code. Discrete slashes represent
EGRET data. Also shown are the contributions of the known background sources

Figure 27. Excess in diffuse gamma rays as measured by FERMI - dark (blue) slashes in comparison
with EGRET - light (red) slashes in the same regions in the sky
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plain EGRET data while the variation of the
WIMP mass within 50-70 GeV does not contra-
dict these data.
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Figure 28. The spectrum of diffuse gamma rays
measured by EGRET in the direction of the
galaxy center and the fit to the data. The light
shaded (yellow) areas indicate the background
using the shape of the conventional GALPROP
model [66], while the dark shaded (red) areas are
the signal contribution from DMA for a 60 GeV
WIMP mass.

It is instructive to compare EGRET data with
recently released FERMI data which are much
more precise. This comparison is shown in
Fi.27 [67]. One can see that the new data are
not in contradiction with the old ones. The ex-
cess is still visible though is smaller compared to
EGRET. On has to admit, however, that the in-

terpretation of the data in favour of background
modification is also possible. So, taking the opti-
mistic point of view, one can interpret these data
as a signal from the DM annihilation, otherwise
everything is sinked in the error bars.
The experimental data with the charge parti-

cles looks more contradictory. We present the
antiproton and positron data in Figs. 29 [68] and
30 [69], respectively. While there is no excess
observed in antiproton data, the positron spec-
trum measured by PAMELA is quite unusual.
It strongly contradicts the expectations from the
GALPROP. Possible interpretations of PAMELA
data include: background from hadronic show-
ers with large electromagnetic component; astro-
physical sources like pulsars, positron accelera-
tion in SNR, locality of sources; leptophilic DM
annihilation, very heavy (∼ 1 TeV) WIMPs, etc.
The situation is still to be clarified.
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Figure 29. Antiproton/proton ratio as measured
by PAMELA. No excess is found

One should mention here, that interpreting the
excess in diffuse gamma rays data as the WIMP
annihilation one has to enhance the intensity of a
signal by factor of 10-100 that is usually achieved
by assumption of clumpiness of the DM. This al-
most obvious property of the DM has no exper-
imental confirmation so far. The same enhance-
ment, however, is not needed for antiprotons
where one seems to have an agreement with the



31

Energy (GeV)

0.1 1 10 100

 )
)

-
(e

 
)+

 
+

(e
 

) 
/ 

(
+

(e
 

P
o

s
it

ro
n

 f
ra

c
ti

o
n

  
  

0.01

0.02

0.1

0.2

0.3

0.4

Muller & Tang 1987  

MASS 1989  

TS93  

HEAT94+95  

CAPRICE94  

AMS98  

HEAT00  

Clem & Evenson 2007  

PAMELA  
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PAMELA in comparison with the background

data. This contradiction might be attributed to
different behaviour of charged particles in galactic
magnetic fields.

7.3. Supersymmetric Interpretation of the
Dark Matter

Supersymmetry offers several candidates for
the role of the cold dark matter. If one looks
at the particle content of the MSSM from the
point of view of a heavy neutral particle, one finds
several such particles, namely: a superpartner of
the photon (photino γ̃), a superpartner of the Z-
boson (zino z̃), a superpartner of neutrino (sneu-
trino ν̃) and superpartners of the Higgs bosons
(higgsino H̃). The DM particle can be the light-
est of them, the LSP. The others decay on the
LSP and the SM particles, while the LSP is sta-
ble and can survive since the Big Bang. As a
rule the lightest supersymmetric particle is the
so-called neutralino, the spin 1/2 particle which
is the combination of photino, zino and two neu-
tral higgsinos and is the eigenstate of the mass
matrix

|χ̃0
1〉 = N1|B0〉+N2|W 3

0 〉+N3|H1〉+N4|H2〉.

Thus, supersymmetry actually predicts the ex-
istence of the dark matter. Moreover, we have
shown above that one can choose the parameters
of a soft supersymmetry breaking in such a way
that one gets the right amount of the DM. This

requirement serves as a constraint for these pa-
rameters and is consistent with the requirements
coming from particle physics.
The search for the LSP was one of the tasks

of LEP. They were supposed to be produced as
a result of chargino decays and be detected via
missing transverse energy and momentum. Neg-
ative results defined the limit on the LSP mass as
shown in Fig.31.
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Figure 31. Exclusion limit on the LSP mass from
Delphi coll. and L3 coll. (LEP) [70]

The DM particles which form the halo of the
galaxy annihilate to produce the ordinary parti-
cles in the cosmic rays. Identifying them with
the LSP from a supersymmetric model one can
calculate the annihilation rate and to study the
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secondary particle spectrum. The dominant an-
nihilation diagrams of the lightest supersym-
metric particle (LSP) neutralino are shown in
Fig.32. The usual final states are either the
quark-antiquark pairs or the W and Z bosons.
Since the cross sections are proportional to the
final state fermion mass, the heavy fermion final
states, i.e. third generation quarks and leptons,
are expected to be dominant. The W- and Z-final
states from t-channel chargino and neutralino ex-
change have usually a smaller cross section.

Figure 32. The dominant annihilation diagrams
for the lightest neutralino in the MSSM

The dominant contribution comes from A-
boson exchange: χ+χ→ A→ bb̄. The sum of the
diagrams should yield < σv >= 2 ·10−26 cm3/sec
to get the correct relic density.

The spectral shape of the secondary particles
from DMA is well known from the fragmenta-
tion of mono-energetic quarks studied at electron-
positron colliders, like LEP at CERN, which has
been operating up to centre-of-mass energies of
about 200 GeV, i.e. it corresponds to the neu-
tralino masses up to 100 GeV (see Fig.33). The
different quark flavours all yield similar gamma
spectra at high energies. Hence, the specrta

of positrons, gammas and antiprotons is known.
The relative ammount of γ, p− and e+ is also
known. One expects around 37 gammas per col-
lision.

37 gammas

Figure 33. The final states in the process of e+e−-
annihilation at colliders in the SM

The gamma rays from the DM annihilation can
be distinguished from the background by their
completely different spectral shape: the back-
ground originates mainly from cosmic rays hit-
ting the gas of the disc and producing abun-
dantly π0 mesons, which decay into two photons.
The initial cosmic ray spectrum is a steep power
law spectrum, which yields a much softer gamma
ray spectrum than the fragmentation of the hard
mono-energetic quarks from the DM annihilation.
The spectral shape of the gamma rays from the
background is well known from fixed target ex-
periments given the known cosmic ray spectrum.

7.4. SUSY interpretation of EGRET ex-
cess

If one takes the EGRET excess in diffuse
gamma rays seriously then one can try to identify
the DM particle responsible for this excess with
the LSP. The mass of this hypothetical WIMP
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as it follows from EGRET data is in the range
of 50 to 100 GeV and is fully compatible with
the neutralino. Since in the MSSM all the cou-
plings are known one can calculate the annihila-
tion rate given by the diagrams in Fig.32. The
only unknown parameters are the SUSY masses
(and mixings) which one can choose to fit the
data.
Combining various requirements on soft SUSY

parameters together with the assumed EGRET
energy range for the mass of neutralino one gets
an essentially constrained allowed region shown
in Fig.34 [71] One can see that the ”EGRET” re-
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Figure 34. The allowed region of parameter
space with account of the EGRET data on dif-
fuse gamma rays. The star indicates the best fir
value.

gion of parameter space corresponds to high val-
ues of tanβ, low m1/2 and high m0. This is the
range of the so-called focus point region where
chrarginos and neutralinos, whose mass is gov-
erned by the value of m1/2, are light and squarks
and sleptons, whose mass is governed by m0, are
heavy. The lightest neutralino in the this region is
95% photino being the superpartner of a photon
of the cosmic microwave background. Choosing

the point in this allowed region one can calcu-
late the whole mass spectrum of superpartners.
We present in the Table5 the sample mass spec-
trum corresponding to the best fit point in the
”EGRET” region. [71].

Particle Mass [GeV]
χ̃0
1,2,3,4 64, 113, 194, 229

χ̃±
1,2, g̃ 110, 230, 516

ũ1,2 = c̃1,2 1519, 1523

d̃1,2 = s̃1,2 1522, 1524
t̃1,2 906, 1046

b̃1,2 1039, 1152
ẽ1,2 = µ̃1,2 1497, 1499

τ̃1,2 1035, 1288
ν̃e, ν̃µ, ν̃τ 1495, 1495, 1286
h,H,A,H± 115, 372, 372, 383
Observable Value
Br(b → sγ) 3.02 · 10−4

∆aµ 1.07 · 10−9

Ωh2 0.117

Table 5
The mass spectrum of superpartners in the
EGRET point: m0 = 1500 ,m1/2 = 170 , A0 = 0,
tanβ = 52.2, µ > 0

As one can see from the table, in the ”EGRET”
point one has considerable splitting between the
relatively light superpartners of the gauge fields
and heavy squarks and sleptons. The masses of
neutralinos and charginos are almost at the lower
boundary of experimentally allowed range. The
same is true for the lightest Higgs boson. Exper-
imental lower limit on the SM Higgs boson mass
today is 114.7 GeV as follows from the negative
results of the search at LEP. This bound is also
true for the MSSM for large tanβ.
Thus, taking the optimistic point of view that

the excess in diffuse gamma rays actually exists
and accepting the supersymmetric interpretation
of this excess one can simultaneously give answer
to the following questions:
• In Cosmology: What is CDM made of?
• In Astrophysicists: What is the origin of excess
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of diffuse Galactic Gamma Rays?
• In Particle physicists : Where are the Super-
symmetric Particles?
And the answer is:
• DM is made of WIMPs which are SUSY par-
ticles distributed in Halo of our Galaxy with a
mass around 70 GeV.

What is important, supersymmetric interpre-
tation of the DM is testable since it predicts the
mass spectrum which can be directly checked at
the LHC in the nearest future.

8. Conclusion

Supersymmetry is now the most popular ex-
tension of the Standard Model. Comparison of
the MSSM with precision experimental data for
the MSSM is as good as for the SM and some-
times even better. For example the branching
ratio BR(b → sγ) and the anomalous magnetic
moment of muon are fitted better in the MSSM
than in the SM. The relic density of the DM is not
described in the SM but is naturally predicted by
the MSSM. One can see this comparison for main
observables in Fig.35 [45].

Still today after 30 years since the invention of
supersymmetry we have no single convincing ev-
idence that supersymmetry is realized in particle
physics. It remains very popular in quantum field
theory and in string theory due to its exceptional
properties but needs experimental justification.

Let us remind the main pros and contras for
supersymmetry in particle physics

Pro:
• Provides natural framework for unification with
gravity
• Leads to gauge coupling unification (GUT)
• Solves the hierarchy problem
• Is a solid quantum field theory
• Provides natural candidate for the WIMP cold
DM
• Predicts new particles and thus generates new
job positions

Contra:
• Does not shed new light on the problem of

∗ Quark and lepton mass spectrum
∗ Quark and lepton mixing angles
∗ the origin of CP violation

LEP:
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b → Xsγ

aµ
SUSY

pulls=(data-theo)/error

SM: χ2/d.o.f = 27.1/16

MSSM: χ2/d.o.f = 16.4/12

Figure 35. The SM versus the MSSM in compar-
ison with precision experimental data

∗ Number of flavours
∗ Baryon assymetry of the Universe

• Doubles the number of particles
Low energy supersymmetry promises us that

new physics is round the corner at a TeV scale
to be exploited at colliders and astroparticle ex-
periments of this decade. If our expectations are
correct, very soon we will face new discoveries,
the whole world of supersymmetric particles will
show up and the table of fundamental particles
will be enlarged in increasing rate. This would
be a great step in understanding the microworld.
The future will show whether we are right in our
expectations or not.
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