Dark Matter Particle Physics View

<u>Outline</u>

- DM in the Universe
- Direct DM Search
- Indirect DM Search
- Possible Manifestations
- DM Profile of the Milky Way
- SUSY DM

Matter and Energy Content of the Universe

HEAVY ELEMENTS	0.03 %
MASSIVE NEUTRINOS	0.3 %
STARS	0.5 %
H AND He	4 %
DARK MATTER	23 %
DARK ENERGY	72

Evidence for the Dark Matter

SPIRAL GALAXIES CONSIST OF A CENTRAL BULGE AND A VERY THIN DISC, AND SURROUNDED BY AN APPROXIMATELY SPHERICAL HALO OF DARK MATTER THE FLAT ROTATION CURVES OF SPIRAL GALAXIES PROVIDE THE MOST DIRECT EVIDENCE FOR THE EXISTENCE OF LARGE AMOUNT OF THE DARK MATTER.

Rotation Curves in the Solar

NOWDAYS, THOUSANDS OF GALACTIC ROTATION CURVES ARE KNOWN,

AND ALL SUGGEST THE EXISTENCE OF ABOUT TEN TIMES MORE MASS IN THE HALOS THAN IN THE STARS OF THE DISC

• THE ROTATION CURVE OF THE MILKY WAY HAS BEEN MEASURED AND CONFIRMS THE USUAL PICTURE 4

What is Dark Matter?

DARK

What is it made of ?

INVISIBLE

DM Candidates

The Dark Matter is made of:
Macro objects – Not seen
New particles – right-ha

Non from the SM

- right-handed neutrino
 - neutralino
 - sneutrino
 - axion (axino)
 - gravitino
 - heavy photon
 - heavy pseudo-goldstone
 - light sterile higgs

DM Detection

No convincing evidence so far Hope for new results soon

DAMA, Zeplin,

CDMS, Edelweiss

Indirect detection

EGRET -> GLAST(FERMI)
Diffuse Gamma Rays
HEAT, AMS01 -> PAMELA
Positrons in Cosmic Rays
BESS -> AMS02
Antiprotons in Cosmic Rays

First Evidence of DM annihilation ?!

Recent Results on Direct Detection

Spin Independent

Spin Dependent

The Chicagoland Observatory for Underground Particle Physics (COUPP)

Cryogenic Dark Matter Search (CDMS)

Dark Matter Annihilation

<u>Annihilation products from</u> <u>dark matter annihilation:</u>

Gamma rays (EGRET, FERMI)

Positrons (PAMELA)

Antiprotons (PAMELA)

e+ + e-(ATIC, FERMI, HESS, PAMELA)

Neutrinos (Icecube, no results yet)

e-, p drown in cosmic rays?

Boltzman Equation

Hubble constant

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma \mathbf{v} \rangle (n_{\chi}^2 - n_{\chi,eq}^2), \qquad H = \dot{R} / R$$

Relic Abundance

$$\Omega_{\chi}h^{2} = \frac{m_{\chi}n_{\chi}}{\rho_{c}} \approx \frac{2 \cdot 10^{-27} \, cm^{3} \, \mathrm{sec}^{-1}}{<\sigma \mathrm{v}>}$$

 $\Omega_{\chi} h^2 \sim 0.113 \pm 0.009,$ v ~ 300 km / sec

$$\sigma \sim 10^{-34} \, cm^2 = 100 \, pb$$

Typical EW cross-section

DM Annihilation

correct relic density

ZIY

B-fragmentation well studied at LEP! Yield and spectra of positrons, gammas and antiprotons well known!

DM Annihilation X-Sections

P-wave dominant

S-wave dominant

Diffuse Gamma Rays from the Sky

* EGRET All-Sky Gamma-Ray Survey Above 100 MeV

Instrumental parameters:

Energy range: 0.02-30 GeV Energy resolution: ~20% Effective area: 1500 cm² Angular resol.: <0.5⁰

Data taking: 1991-2000

Main EGRET results: Catalogue of point sources Excess in diffuse gamma rays

DIFFUSE GAMMA RAYS IN EGRET ENERGY

A: inner Galactic plane (±30°)
B: Galactic plane avoiding inner Galaxy (30-330°)
C: Outer Galaxy (90-270°)
D: low Latitude (10°-20°)
E: intermediate Latitude
F: galactic poles(60°-90°)

Excess same shape in all regions implying same source everywhere in galaxy

Excess of Diffuse Gamma Rays Above 1 GEV

- A: inner Galaxy (l=±30⁰, |b|<5⁰) B: Galactic plane avoiding A C: Outer Galaxy
- D: low latitude (10-20⁰⁾ E: intermediate lat. (20-60⁰) F: Galactic poles (60-90⁰)

Comparison of EGRET-FERMI Data

Analysis of EGRET Data in 6 Sky Directions

Background + Signal Describe EGRET Data

Diffuse Gamma Rays in EGRET Energy Range

Fitted Halo Parameters

Gamma Ray Flux: (< ov> from WMAP)

$$\phi_{\chi}(E,\psi) = \frac{\langle \sigma v \rangle}{4\pi} \sum_{f} \frac{dN_{f}}{dE} b_{f} \int_{line \ of \ sight} B_{l} \frac{1}{2} \frac{\langle \rho_{\chi}^{2} \rangle}{M_{\chi}^{2}} dl_{\psi}$$

$$\rho_{\chi}(\tilde{r}) = \rho_0 \left(\frac{R_0}{\tilde{r}}\right)^{\gamma} \left[\frac{1 + \left(\frac{\tilde{r}}{a}\right)^{\alpha}}{1 + \left(\frac{R_0}{a}\right)^{\alpha}}\right]^{\frac{\gamma - \beta}{\alpha}} + \sum_{n=1}^{N} \rho_n \exp\left(-\frac{\left(\tilde{r}_{ge} - Rn\right)^2}{2\sigma_{R_n}^2} - \frac{\left(z_n\right)^2}{2\sigma_{z_n}^2}\right)$$

Parameter	Value	Parameter	Value
α	2	R_a	4.3 kpc
β	2	$\sigma_{R,a}$	3.4 kpc
γ	0	$\sigma_{z,a}$	0.3 kpc
R_0	$8.5 \ \mathrm{kpc}$	ρ_b	$2.3~{ m GeV~cm^{-3}}$
a	$4 \ \mathrm{kpc}$	R_b	$14 \rm \ kpc$
ρ_0	$0.47~{\rm GeV~cm^{-3}}$	$\sigma_{R,b}$	2.1 kpc
ρ_a	$3.3~{\rm GeV}~{\rm cm}^{-3}$	$\sigma_{z,b}$	1.3 kpc
b/a	0.9	c/a	0.8

A Ring around the Milky Way

Enhancement of rings over 1/r² profile 2 and 7, respectively. Mass in rings 1.6 and 0.3% of total DM

 H_2

R [kpc]

14 kpc coincides with ring of stars at 14–18 kpc due to infall of dwarf galaxy

4 kpc coincides with ring of neutral hydrogen molecules!

Halo Profile and Rotation Curve

Halo profile with rings of DM

Rotation curve of the Milky Way

Halo Density on scale of 30 kpc

Support for the Ring Structure

N-body simulation of the tidal disruption of the Canis Major dwarf Galaxy fitted to the observed stars (red points). The simulation predicts a ringlike structure of dark matter with a radius of 13 kpc The gas layer of the Galactic Disk as function of the distance from the Galactic center.

PAMELA: positron and antiproton measurements

SUSY Dark Matter

Neutralino = SUSY candidate for the cold Dark Matter Neutralino = the Lightest Superparticle (LSP) = WIMP

$$\widetilde{\chi}^{0} = N_{1}\widetilde{\gamma} + N_{2}\widetilde{z} + N_{3}\widetilde{H}_{1}^{0} + N_{4}\widetilde{H}_{2}^{0}$$

ALLOWED SUSY PARAMETER SPACE

EGRET POINT AND MASS SPECTRUM

SUSY Mass Spectrum

Fitted SUSY Parameters

SUSY Masses in GeV

Parameter	Value
tan β	52.2
m 0	1500
m 1/2	170
Sign µ	+
A(0)	0
$\alpha_{s}(M_{Z})$	0.122
$\alpha_{_{em}}(M_{_Z})$	0.0078153697
$Sin^2 \theta_{_W} \mid_{\overline{_{MS}}}$	0.2314
m _t	175 GeV
m _b	4.214 GeV

Particle	Mass
$\tilde{\chi}^{0}_{1,2,3,4}$	64, 113, 194, 229
$\widetilde{\chi}_{1,2}^{\pm}, \ \widetilde{g} \longrightarrow$	110, 130, 516
$\tilde{u}_{1,2} = \tilde{c}_{1,2}$	1519, 1523
$\tilde{d}_{1,2} = \tilde{s}_{1,2}$	1522, 1524
$\tilde{t}_{1,2}$	906, 1046
$ ilde{b}_{1,2}$	1309, 1152
$\tilde{e}_{1,2} = \tilde{\mu}_{1,2}$	1497, 1499
$ ilde{ au}_{1.2}$	1305, 1288
$ ilde{V}_{e}, ilde{V}_{\mu}, ilde{V}_{ au}$	1495, 1495, 1286
h, H, A, H $^{\pm}$	115, 372, 372, 383

GAUGINO CONTENT OF THE LIGHTEST NEUTRALINO

	\tilde{b}^0	$ ilde{w}^0$	$ ilde{h}_1^0$	$ ilde{h}^0_2$
$\tilde{\chi}_1^0$	0.833	0.026	0.122	0.018
$ ilde{\chi}^0_2$	0.119	0.621	0.187	0.072
$ ilde{\chi}^0_3$	0.014	0.030	0.442	0.515
$\tilde{\chi}_4^0$	0.033	0.323	0.249	0.395

The lightest neutralino is almost bino – the superpartner of a photon DM = superpartner of the CMB

DM is the Window to the

What the future may bring?