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Abstract The present lectures contain an introduction to supersymmetry, a new
symmetry that relates bosons and fermions, in particle physics. The
motivation to introduce supersymmetry is discussed. The main notions
of supersymmetry are introduced. The supersymmetric extension of
the Standard Model - the Minimal Supersymmetric Standard Model -
is considered in more detail. Phenomenological features of the MSSM
as well as possible experimental signatures of SUSY are described.

1. Introduction: What is supersymmetry

Supersymmetry is a boson-fermion symmetry that is aimed to unify
all forces in Nature including gravity within a singe framework [1]-[4].
Modern views on supersymmetry in particle physics are based on string
paradigm, though the low energy manifestations of SUSY can be possibly
found at modern colliders and in non-accelerator experiments.

Supersymmetry emerged from the attempts to generalize the Poincaré
algebra to mix representations with different spin [1]. It happened to be
a problematic task due to the no-go theorems preventing such general-
izations [5]. The way out was found by introducing the so-called graded
Lie algebras, i.e. adding the anti-commutators to the usual commutators
of the Lorentz algebra. Such a generalization, described below, appeared
to be the only possible one within relativistic field theory.

If Q is a generator of SUSY algebra, then acting on a boson state it
produces a fermion one and vice versa

Q̄|boson >= |fermion > and Q|fermion >= |boson > .

Since bosons commute with each other and fermions anticommute,
one immediately finds that SUSY generators should also anticommute,
they must be fermionic, i.e. they must change the spin by a half-odd
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amount and change the statistics. Indeed, the key element of SUSY
algebra is

{Qα, Q̄α̇} = 2σµα,α̇Pµ, (1.1)

where Q and Q̄ are SUSY generators and Pµ is the generator of trans-
lation, the four-momentum.

In what follows we describe SUSY algebra in more detail and construct
its representations which are needed to build a SUSY generalization of
the Standard Model of fundamental interactions. Such a generalization
is based on a softly broken SUSY quantum filed theory and contains the
SM as a low energy theory.

Supersymmetry promises to solve some problems of the SM and of
Grand Unified Theories. In what follows we describe supersymmetry as
a nearest option for the new physics on a TeV scale.

2. Motivation of SUSY in particle physics

2.1 Unification with gravity

The general idea is a unification of all forces of Nature including quan-
tum gravity. However, the graviton has spin 2, while the other gauge
bosons (photon, gluons, W and Z weak bosons) have spin 1. Therefore,
they correspond to different representations of the Poincaré algebra. To
mix them one can use supersymmetry transformations. Starting with
the graviton state of spin 2 and acting by SUSY generators we get the
following chain of states:

spin 2 → spin 3/2 → spin 1 → spin 1/2 → spin 0.

Thus, a partial unification of matter (fermions) with forces (bosons)
naturally arises from an attempt to unify gravity with other interactions.

Taking infinitesimal transformations δǫ = ǫαQα, δ̄ǭ = Q̄α̇ǭ
α̇, and using

eq.(1.1) one gets

{δǫ, δ̄ǭ} = 2(ǫσµǭ)Pµ, (2.1)

where ǫ is a transformation parameter. Choosing ǫ to be local, i.e. a
function of a space-time point ǫ = ǫ(x), one finds from eq.(2.1) that
an anticommutator of two SUSY transformations is a local coordinate
translation. And a theory which is invariant under local coordinate
transformation is General Relativity. Thus, making SUSY local, one
naturally obtains General Relativity, or a theory of gravity, or super-
gravity [2].



SUPERSYMMETRIC EXTENSION OFTHE STANDARD MODEL 3

2.2 Unification of gauge couplings

According to the Grand Unification hypothesis, gauge symmetry in-
creases with energy [6]. All known interactions are different branches of
a unique interaction associated with a simple gauge group. The unifica-
tion (or splitting) occurs at high energy. To reach this goal one has to
consider how the couplings change with energy. This is described by the
renormalization group equations. In the SM the strong and weak cou-
plings associated with non-Abelian gauge groups decrease with energy,
while the electromagnetic one associated with the Abelian group on the
contrary increases. Thus, it becomes possible that at some energy scale
they become equal.

After the precise measurement of the SU(3)×SU(2)×U(1) coupling
constants, it has become possible to check the unification numerically.
The three coupling constants to be compared are

α1 = (5/3)g′2/(4π) = 5α/(3 cos2 θW ),

α2 = g2/(4π) = α/ sin2 θW , (2.2)

α3 = g2s/(4π)

where g′, g and gs are the usual U(1), SU(2) and SU(3) coupling con-
stants and α is the fine structure constant. The factor of 5/3 in the
definition of α1 has been included for proper normalization of the gen-
erators.

In the modified minimal subtraction (MS) scheme, the world averaged
values of the couplings at the Z0 energy are obtained from a fit to the
LEP and Tevatron data [7]:

α−1(MZ) = 128.978 ± 0.027

sin2 θMS = 0.23146 ± 0.00017 (2.3)

αs = 0.1184 ± 0.0031,

that gives

α1(MZ) = 0.017, α2(MZ) = 0.034, α3(MZ) = 0.118 ± 0.003. (2.4)

Assuming that the SM is valid up to the unification scale, one can then
use the known RG equations for the three couplings. In the leading
order they are:

dα̃i

dt
= biα̃

2
i , α̃i =

αi

4π
, t = log(

Q2

µ2
), (2.5)

where for the SM the coefficients are bi = (41/10,−19/6,−7).
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The solution to eq.(2.5) is very simple

1

α̃i(Q2)
=

1

α̃i(µ2)
− bilog(

Q2

µ2
). (2.6)

The result is demonstrated in Fig.1 showing the evolution of the inverse
of the couplings as a function of the logarithm of energy. In this presen-
tation, the evolution becomes a straight line in first order. The second
order corrections are small and do not cause any visible deviation from
a straight line. Fig.1 clearly demonstrates that within the SM the cou-
pling constant unification at a single point is impossible. It is excluded
by more than 8 standard deviations. This result means that the unifica-
tion can only be obtained if new physics enters between the electroweak
and the Planck scales.
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Figure 1. Evolution of the inverse of the three coupling constants in the Standard
Model (left) and in the supersymmetric extension of the SM (MSSM) (right).

In the SUSY case, the slopes of the RG evolution curves are modified.
The coefficients bi in eq.(2.5) now are bi = (33/5, 1,−3). The SUSY
particles are assumed to effectively contribute to the running of the
coupling constants only for energies above the typical SUSY mass scale.
It turns out that within the SUSY model a perfect unification can be
obtained as is shown in Fig.1. From the fit requiring unification one
finds for the break point MSUSY and the unification point MGUT [8]

MSUSY = 103.4±0.9±0.4 GeV,

MGUT = 1015.8±0.3±0.1 GeV, (2.7)

α−1
GUT = 26.3 ± 1.9± 1.0,
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The first error originates from the uncertainty in the coupling constant,
while the second one is due to the uncertainty in the mass splittings
between the SUSY particles.

This observation was considered as the first ”evidence” for supersym-
metry, especially since MSUSY was found in the range preferred by the
fine-tuning arguments.

2.3 Solution of the hierarchy problem

The appearance of two different scales V ≫ v in a GUT theory,
namely, MW and MGUT , leads to a very serious problem which is called
the hierarchy problem. There are two aspects of this problem.

The first one is the very existence of the hierarchy. To get the desired
spontaneous symmetry breaking pattern, one needs

mH ∼ v ∼ 102 GeV
mΣ ∼ V ∼ 1016 GeV

mH

mΣ
∼ 10−14 ≪ 1, (2.8)

where H and Σ are the Higgs fields responsible for the spontaneous
breaking of the SU(2) and the GUT groups, respectively. The question
arises of how to get so small number in a natural way.

The second aspect of the hierarchy problem is connected with the
preservation of a given hierarchy. Even if we choose the hierarchy like
eq.(2.8) the radiative corrections will destroy it! To see this, consider the
radiative correction to the light Higgs mass given by the Feynman dia-
gram shown in Fig.2. This correction proportional to the mass squared�2" light (m) . heavy (M)=) Æm2 � �2 �M2o o o102 10�1 1016

1

Figure 2. Radiative correction to the light Higgs boson mass

of the heavy particle, obviously, spoils the hierarchy if it is not can-
celled. This very accurate cancellation with a precision ∼ 10−14 needs a
fine tuning of the coupling constants.

The only known way of achieving this kind of cancellation of quadratic
terms (also known as the cancellation of the quadratic divergencies) is
supersymmetry. Moreover, SUSY automatically cancels quadratic cor-
rections in all orders of PT. This is due to the contributions of superpart-
ners of ordinary particles. The contribution from boson loops cancels
those from the fermion ones because of an additional factor (-1) coming
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from Fermi statistics, as shown in Fig.3. One can see here two types

g2 gauge. boson+ . gaugino= 0g g�2 . boson+ . fermion= 0� �
Figure 3. Cancellation of quadratic terms (divergencies)

of contribution. The first line is the contribution of the heavy Higgs
boson and its superpartner. The strength of interaction is given by the
Yukawa coupling λ. The second line represents the gauge interaction
proportional to the gauge coupling constant g with the contribution
from the heavy gauge boson and heavy gaugino.

In both the cases the cancellation of quadratic terms takes place. This
cancellation is true up to the SUSY breaking scale,MSUSY , which should
not be very large (≤ 1 TeV) to make the fine-tuning natural. Indeed, let
us take the Higgs boson mass. Requiring for consistency of perturbation
theory that the radiative corrections to the Higgs boson mass do not
exceed the mass itself gives

δM2
h ∼ g2M2

SUSY ∼M2
h . (2.9)

So, if Mh ∼ 102 GeV and g ∼ 10−1, one needs MSUSY ∼ 103 GeV in
order that the relation (2.9) is valid. Thus, we again get the same rough
estimate of MSUSY ∼ 1 TeV as from the gauge coupling unification
above.

That is why it is usually said that supersymmetry solves the hierarchy
problem. We show below how SUSY can also explain the origin of the
hierarchy.

2.4 Astrophysics and Cosmology

The shining matter is not the only one in the Universe. Considerable
amount consists of the so-called dark matter. The direct evidence for the
presence of the dark matter are the rotation curves of galaxies (see Fig.4).
To explain these curves one has to assume the existence of galactic halo
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made of non-shining matter which takes part in gravitational interaction.
According to the latest data [9] the matter content of the Universe is

Figure 4. Roration curves for the solar system and galaxy

the following:
Ωh2 = 1 ⇔ ρ = ρcrit

Ωvacuum ≈ 73%, ΩDarkMatter ≈ 23%, ΩBaryon ≈ 4%

There are two possible types of the dark matter: the hot one, consist-
ing of light relativistic particles and the cold one, consisting of massive
weakly interacting particles (WIMPs). The hot dark matter might con-
sist of neutrinos, however, this has problems with galaxy formation. As
for the cold dark matter, it has no candidates within the SM. At the same
time, SUSY provides an excellent candidate for the cold dark matter,
namely neutralino, the lightest superparticle.

2.5 Beyond GUTs: superstring

Another motivation for supersymmetry follows from even more radical
changes of basic ideas related to the ultimate goal of construction of
consistent unified theory of everything. At the moment the only viable
conception is the superstring theory [10]. In the superstring theory,
strings are considered as fundamental objects, closed or open, and are
nonlocal in nature. Ordinary particles are considered as string excitation
modes. String interactions, which are local, generate proper interactions
of usual particles, including gravitational ones.

To be consistent, the string theory should be conformal invariant in
D-dimensional target space and have a stable vacuum. The first re-
quirement is valid in classical theory but may be violated by quantum
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anomalies. Cancellation of quantum anomalies takes place when space-
time dimension of a target space equals to a critical one which is Dc = 26
for bosonic string and Dc = 10 for a fermionic one.

The second requirement is that the massless string excitations (the
particles of the SM) are stable. This assumes the absence of tachyons,
the states with imaginary mass, which can be guaranteed only in super-
symmetric string theories!

3. Basics of supersymmetry

3.1 Algebra of SUSY

Combined with the usual Poincaré and internal symmetry algebra the
Super-Poincaré Lie algebra contains additional SUSY generators Qi

α and
Q̄i

α̇ [3]

[Pµ, Pν ] = 0,
[Pµ,Mρσ ] = i(gµρPσ − gµσPρ),
[Mµν ,Mρσ ] = i(gνρMµσ − gνσMµρ − gµρMνσ + gµσMνρ),
[Br, Bs] = iCt

rsBt,
[Br, Pµ] = [Br,Mµσ ] = 0,
[Qi

α, Pµ] = [Q̄i
α̇, Pµ] = 0,

[Qi
α,Mµν ] =

1
2(σµν)

β
αQ

i
β, [Q̄i

α̇,Mµν ] = −1
2Q̄

i
β̇
(σ̄µν)

β̇
α̇,

[Qi
α, Br] = (br)

i
jQ

j
α, [Q̄i

α̇, Br] = −Q̄j
α̇(br)

i
j ,

{Qi
α, Q̄

j

β̇
} = 2δij(σµ)αβ̇Pµ,

{Qi
α, Q

j
β} = 2ǫαβZ

ij, Zij = arijbr, Zij = Z+
ij ,

{Q̄i
α̇, Q̄

j

β̇
} = −2ǫα̇β̇Z

ij, [Zij , anything] = 0,

α, α̇ = 1, 2 i, j = 1, 2, . . . , N.

(3.1)

Here Pµ and Mµν are four-momentum and angular momentum op-
erators, respectively, Br are the internal symmetry generators, Qi and
Q̄i are the spinorial SUSY generators and Zij are the so-called central

charges; α, α̇, β, β̇ are the spinorial indices. In the simplest case one
has one spinor generator Qα (and the conjugated one Q̄α̇) that corre-
sponds to an ordinary or N=1 supersymmetry. When N > 1 one has an
extended supersymmetry.

A natural question arises: how many SUSY generators are possible,
i.e. what is the value of N? To answer this question, consider massless
states. Let us start with the ground state labeled by energy and helicity,
i.e. projection of a spin on the direction of momenta, and let it be
annihilated by Qi

Vacuum = |E,λ >, Qi|E,λ >= 0.
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Then one and more particle states can be constructed with the help of
a creation operators as

State Expression # of States

vacuum |E,λ > 1

1− particle state Q̄i|E,λ >= |E,λ+ 1/2 >i

(

N
1

)

= N

2− particle state Q̄iQ̄j|E,λ >= |E,λ+ 1 >ij

(

N
2

)

= N(N−1)
2

... ... ...

N − particle state Q̄1Q̄2...Q̄N |E,λ >= |E,λ+ N
2 >

(

N
N

)

= 1

Total # of states:
N
∑

k=0

(

N
k

)

= 2N = 2N−1 bosons + 2N−1 fermions.

The energy E is not changed, since according to (3.1) the operators Q̄i

commute with the Hamiltonian.
Thus, one has a sequence of bosonic and fermionic states and the total

number of bosons equals that of fermions. This is a generic property of
any supersymmetric theory. However, in CPT invariant theories the
number of states is doubled, since CPT transformation changes the sign
of helicity. Hence, in CPT invariant theories, one has to add the states
with opposite helicity to the above mentioned ones.

Consider some examples. Let us take N = 1 and λ = 0. Then one
has the following set of states:

helicity 0 1/2 helicity 0 −1/2

N = 1 λ = 0
CPT
=⇒

# of states 1 1 # of states 1 1

Hence, a complete N = 1 multiplet is

N = 1 helicity −1/2 0 1/2
# of states 1 2 1

which contains one complex scalar and one spinor with two helicity
states.

This is an example of the so-called self-conjugated multiplet. There
are also self-conjugated multiplets with N > 1 corresponding to ex-
tended supersymmetry. Two particular examples are the N = 4 super
Yang-Mills multiplet and the N = 8 supergravity multiplet

N = 4 SUSY YM helicity −1 −1/2 0 1/2 1
λ = −1 # of states 1 4 6 4 1
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N = 8 SUGRA −2 −3/2 −1 −1/2 0 1/2 1 3/2 2
λ = −2 1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended supersymmetry are very
rich and contain a vast number of particles.

The constraint on the number of SUSY generators comes from a re-
quirement of consistency of the corresponding QFT. The number of su-
persymmetries and the maximal spin of the particle in the multiplet are
related by

N ≤ 4S,

where S is the maximal spin. Since the theories with spin greater than
1 are non-renormalizable and the theories with spin greater than 5/2
have no consistent coupling to gravity, this imposes a constraint on the
number of SUSY generators

N ≤ 4 for renormalizable theories (YM),
N ≤ 8 for (super)gravity.

In what follows, we shall consider simple supersymmetry, or N = 1
supersymmetry, contrary to extended supersymmetries with N > 1.
In this case, one has two types of supermultiplets: the so-called chiral
multiplet with λ = 0, which contains two physical states (φ,ψ) with
spin 0 and 1/2, respectively, and the vector multiplet with λ = 1/2,
which also contains two physical states (λ,Aµ) with spin 1/2 and 1,
respectively.

3.2 Superspace and superfields

An elegant formulation of supersymmetry transformations and invari-
ants can be achieved in the framework of superspace [4]. Superspace
differs from the ordinary Euclidean (Minkowski) space by adding of two
new coordinates, θα and θ̄α̇, which are Grassmannian, i.e. anticom-
muting, variables

{θα, θβ} = 0, {θ̄α̇, θ̄β̇} = 0, θ2α = 0, θ̄2α̇ = 0, α, β, α̇, β̇ = 1, 2.

Thus, we go from space to superspace

Space ⇒ Superspace
xµ xµ, θα, θ̄α̇

A SUSY group element can be constructed in superspace in the same
way as an ordinary translation in the usual space

G(x, θ, θ̄) = ei(−x
µPµ + θQ+ θ̄Q̄). (3.2)



SUPERSYMMETRIC EXTENSION OFTHE STANDARD MODEL 11

It leads to a supertranslation in superspace

xµ → xµ + iθσµε̄− iεσµθ̄,
θ → θ + ε, θ̄ → θ̄ + ε̄,

(3.3)

where ε and ε̄ are Grassmannian transformation parameters. From
eq.(3.3) one can easily obtain the representation for the supercharges
(3.1) acting on the superspace

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ, Q̄α̇ = − ∂

∂θ̄α̇
+ iθασ

µ
αα̇∂µ. (3.4)

To define the fields on a superspace, consider representations of the
Super-Poincaré group (3.1) [3]. The simplest one is a scalar superfield
F (x, θ, θ̄) which is SUSY invariant. Its Taylor expansion in θ and θ̄
has only several terms due to the nilpotent character of Grassmannian
parameters. However, this superfield is a reducible representation of
SUSY. To get an irreducible one, we define a chiral superfield which
obeys the equation

D̄α̇F = 0, where D̄α̇ = − ∂

∂θ α̇
− i(θσµ)α̇∂µ (3.5)

is a superspace covariant derivative.
For the chiral superfield Grassmannian Taylor expansion looks like

(y = x+ iθσθ̄)

Φ(y, θ) = A(y) +
√
2θψ(y) + θθF (y) (3.6)

= A(x) + iθσµθ̄∂µA(x) +
1

4
θθθ̄θ̄2A(x)

+
√
2θψ(x)− i√

2
θθ∂µψ(x)σ

µθ̄ + θθF (x).

The coefficients are ordinary functions of x being the usual fields. They
are called the components of a superfield. In eq.(3.6) one has 2 bosonic
(complex scalar field A) and 2 fermionic (Weyl spinor field ψ) degrees
of freedom. The component fields A and ψ are called the superpartners.
The field F is an auxiliary field, it has the “wrong” dimension and has
no physical meaning. It is needed to close the algebra (3.1). One can
get rid of the auxiliary fields with the help of equations of motion.

Thus, a superfield contains an equal number of bosonic and fermionic
degrees of freedom. Under SUSY transformation they convert into one
another

δεA =
√
2εψ,

δεψ = i
√
2σµε̄∂µA+

√
2εF, (3.7)

δεF = i
√
2ε̄σµ∂µψ.
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Notice that the variation of the F -component is a total derivative, i.e.
it vanishes when integrated over the space-time.

One can also construct an antichiral superfield Φ+ obeying the equa-
tion

DαΦ
+ = 0, with Dα =

∂

∂θα
+ i(σµθ̄)α∂µ.

The product of chiral (antichiral) superfields Φ2,Φ3, etc is also a chiral
(antichiral) superfield, while the product of chiral and antichiral ones
Φ+Φ is a general superfield.

For any arbitrary function of chiral superfields one has

W(Φi) = W(Ai +
√
2θψi + θθF ) (3.8)

= W(Ai) +
∂W
∂Ai

√
2θψi + θθ

(

∂W
∂Ai

Fi −
1

2

∂2W
∂Ai∂Aj

ψiψj

)

.

TheW is usually referred to as a superpotential which replaces the usual
potential for the scalar fields.

To construct the gauge invariant interactions, one needs a real vector
superfield V = V +. It is not chiral but rather a general superfield with
the following Grassmannian expansion:

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ[M(x) + iN(x)]

− i

2
θ̄θ̄[M(x)− iN(x)] − θσµθ̄vµ(x) + iθθθ̄[λ(x) +

i

2
σ̄µ∂µχ(x)]

− iθ̄θ̄θ[λ+
i

2
σµ∂µχ̄(x)] +

1

2
θθθ̄θ̄[D(x) +

1

2
2C(x)]. (3.9)

The physical degrees of freedom corresponding to a real vector superfield
V are the vector gauge field vµ and the Majorana spinor field λ. All other
components are unphysical and can be eliminated. Indeed, under the
Abelian (super)gauge transformation the superfield V is transformed as

V → V +Φ+Φ+,

where Φ and Φ+ are some chiral superfields. In components it looks like

C → C +A+A∗,

χ → χ− i
√
2ψ,

M + iN → M + iN − 2iF,

vµ → vµ − i∂µ(A−A∗), (3.10)

λ → λ,

D → D,
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and corresponds to ordinary gauge transformations for physical compo-
nents. According to eq.(3.10), one can choose a gauge (the Wess-Zumino
gauge) where C = χ = M = N = 0, leaving one with only physical de-
grees of freedom except for the auxiliary field D. In this gauge

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x),

V 2 = −1

2
θθθ̄θ̄vµ(x)v

µ(x),

V 3 = 0, etc. (3.11)

One can define also a field strength tensor (as analog of Fµν in gauge
theories)

Wα = −1

4
D̄2eVDαe

−V , W̄α̇ = −1

4
D2eV D̄αe

−V , (3.12)

which is a polynomial in the Wess-Zumino gauge. (Here Ds are the
supercovariant derivatives.)

The strength tensor is a chiral superfield

D̄β̇Wα = 0, DβW̄α̇ = 0.

In the Wess-Zumino gauge it is a polynomial over component fields:

Wα = T a
(

−iλaα + θαD
a − i

2
(σµσ̄νθ)αF

a
µν + θ2(σµDµλ̄

a)α

)

, (3.13)

where

F a
µν = ∂µv

a
ν − ∂νv

a
µ + fabcvbµv

c
ν , Dµλ̄

a = ∂λ̄a + fabcvbµλ̄
c.

In Abelian case eqs.(3.12) are simplified and take form

Wα = −1

4
D̄2DαV, W̄α̇ = −1

4
D2D̄αV.

3.3 Construction of SUSY Lagrangians

Let us start with the Lagrangian which has no local gauge invari-
ance. In the superfield notation SUSY invariant Lagrangians are the
polynomials of superfields. Having in mind that for component fields
one should have ordinary terms and the above mentioned property of
SUSY invariance of the highest dimension components of a superfield,
the general SUSY invariant Lagrangian has the form

L = Φ+
i Φi|θθθ̄θ̄ + [(λiΦi +

1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk)|θθ + h.c.]. (3.14)
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Hereafter the vertical line means the corresponding term of a Taylor
expansion.

The first term is a kinetic term. It contains both the chiral and an-
tichiral superfields Φi and Φ+

i , respectively, and is a function of Grass-
mannian parameters θ and θ̄. Being expanded over θ and θ̄ it leads to
the usual kinetic terms for the corresponding component fields.

The terms in the bracket form the superpotential. It is composed of
the chiral fields only (plus the hermitian conjugated counterpart com-
posed of antichiral superfields) and is a chiral superfield. Since the prod-
ucts of a chiral superfield and antichiral one produce a general superfield,
they are not allowed in a superpotential. The last coefficient of its ex-
pansion over the parameter θ is supersymmetrically invariant and gives
the usual potential after getting rid of the auxiliary fields.

The Lagrangian (3.14) can be written in a much more elegant way
in superspace. The same way as an ordinary action is an integral over
space-time of Lagrangian density, in supersymmetric case the action is
an integral over the superspace. The space-time Lagrangian density then
is [3, 4]

L =

∫

d2θd2θ̄ Φ+
i Φi +

∫

d2θ [λiΦi +
1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk] + h.c.

(3.15)
where the first part is a kinetic term and the second one is a super-
potential W. Here instead of taking the proper components we use
integration over the superspace according to the rules of Grassmannian
integration [11]

∫

dθα = 0,

∫

θα dθβ = δαβ .

Performing explicit integration over the Grassmannian parameters, we
get from eq.(3.15)

L = i∂µψ̄iσ̄
µψi +A∗

i2Ai + F ∗
i Fi (3.16)

+ [λiFi +mij(AiFj −
1

2
ψiψj) + yijk(AiAjFk − ψiψjAk) + h.c.].

The last two terms are the interaction ones. To obtain a familiar form
of the Lagrangian, we have to solve the constraints

∂L
∂F ∗

k

= Fk + λ∗k +m∗
ikA

∗
i + y∗ijkA

∗
iA

∗
j = 0, (3.17)

∂L
∂Fk

= F ∗
k + λk +mikAi + yijkAiAj = 0. (3.18)
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Expressing the auxiliary fields F and F ∗ from these equations, one finally
gets

L = i∂µψ̄iσ̄
µψi +A∗

i2Ai −
1

2
mijψiψj −

1

2
m∗

ijψ̄iψ̄j

−yijkψiψjAk − y∗ijkψ̄iψ̄jA
∗
k − V (Ai, Aj), (3.19)

where the scalar potential V = F ∗
kFk. We will return to the discussion

of the form of the scalar potential in SUSY theories later.
Consider now the gauge invariant SUSY Lagrangians. They should

contain gauge invariant interaction of the matter fields with the gauge
ones and the kinetic term and the self-interaction of the gauge fields.

Let us start with the gauge field kinetic terms. In the Wess-Zumino
gauge one has

WαWα|θθ = −2iλσµDµλ̄− 1

2
FµνF

µν +
1

2
D2 + i

1

4
FµνF ρσǫµνρσ , (3.20)

where Dµ = ∂µ + ig[vµ, ] is the usual covariant derivative and the last,
the so-called topological θ term, is the total derivative.

The gauge invariant Lagrangian now has a familiar form

L =
1

4

∫

d2θ WαWα +
1

4

∫

d2θ̄ W̄ α̇W̄α̇

=
1

2
D2 − 1

4
FµνF

µν − iλσµDµλ̄. (3.21)

To obtain a gauge-invariant interaction with matter chiral superfields,
consider their gauge transformation (Abelian)

Φ → e−igΛΦ, Φ+ → Φ+eigΛ
+
, V → V + i(Λ− Λ+),

where Λ is a gauge parameter (chiral superfield).
It is clear now how to construct both the SUSY and gauge invariant

kinetic term (compare with the covariant derivative in a usual gauge
theory)

Φ+
i Φi|θθθ̄θ̄ ⇒ Φ+

i e
gV Φi|θθθ̄θ̄ (3.22)

A complete SUSY and gauge invariant Lagrangian then looks like

Linv =
1

4

∫

d2θ WαWα +
1

4

∫

d2θ̄ W̄ α̇W̄α̇ +

∫

d2θd2θ̄ Φ+
i e

gV Φi

+

∫

d2θ (
1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk) + h.c. (3.23)

The non-Abelian generalization is straightforward

LSUSY YM =
1

4

∫

d2θ Tr(WαWα) +
1

4

∫

d2θ̄ T r(W̄αW̄α) (3.24)

+

∫

d2θd2θ̄ Φ̄ia(e
gV )abΦ

b
i +

∫

d2θ W(Φi) +

∫

d2θ̄ W̄(Φ̄i),
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where W is a superpotential, which should be invariant under the group
of symmetry of a particular model.

In terms of component fields the above Lagrangian takes the form

LSUSY YM = −1

4
F a
µνF

aµν − iλaσµDµλ̄
a +

1

2
DaDa (3.25)

+ (∂µAi − igvaµT
aAi)

†(∂µAi − igvaµT
aAi)− iψ̄iσ̄

µ(∂µψi − igvaµT
aψi)

− DaA†
iT

aAi − i
√
2A†

iT
aλaψi + i

√
2ψ̄iT

aAiλ̄
a + F †

i Fi

+
∂W
∂Ai

Fi +
∂W̄
∂A†

i

F †
i − 1

2

∂2W
∂Ai∂Aj

ψiψj −
1

2

∂2W̄
∂A†

i∂A
†
j

ψ̄iψ̄j .

Integrating out the auxiliary fields Da and Fi, one reproduces the usual
Lagrangian.

3.4 The scalar potential

Contrary to the SM, where the scalar potential is arbitrary and is
defined only by the requirement of the gauge invariance, in supersym-
metric theories it is completely defined by the superpotential. It consists
of the contributions from the D-terms and F -terms. The kinetic energy
of the gauge fields (recall eq.(3.21) yields the 1/2DaDa term, and the
matter-gauge interaction (recall eq.(3.23) yields the gDaT a

ijA
∗
iAj one.

Together they give

LD =
1

2
DaDa + gDaT a

ijA
∗
iAj . (3.26)

The equation of motion reads

Da = −gT a
ijA

∗
iAj . (3.27)

Substituting it back into eq.(3.26) yields theD-term part of the potential

LD = −1

2
DaDa =⇒ VD =

1

2
DaDa, (3.28)

where D is given by eq.(3.27).
The F -term contribution can be derived from the matter field self-in-

teraction eq.(3.16). For a general type superpotential W one has

LF = F ∗
i Fi + (

∂W

∂Ai
Fi + h.c.). (3.29)

Using the equations of motion for the auxiliary field Fi

F ∗
i = −∂W

∂Ai
(3.30)
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yields
LF = −F ∗

i Fi =⇒ VF = F ∗
i Fi, (3.31)

where F is given by eq.(3.30). The full potential is the sum of the two
contributions

V = VD + VF . (3.32)

Thus, the form of the Lagrangian is practically fixed by symmetry
requirements. The only freedom is the field content, the value of the
gauge coupling g, Yukawa couplings yijk and the masses. Because of the
renormalizability constraint V ≤ A4 the superpotential should be limited
by W ≤ Φ3 as in eq.(3.15). All members of a supermultiplet have the
same masses, i.e. bosons and fermions are degenerate in masses. This
property of SUSY theories contradicts the phenomenology and requires
supersymmetry breaking.

3.5 Spontaneous breaking of SUSY

Since supersymmetric algebra leads to mass degeneracy in a super-
multiplet, it should be broken to explain the absence of superpartners
at modern energies. There are several ways of supersymmetry breaking.
It can be broken either explicitly or spontaneously. Performing SUSY
breaking one has to be careful not to spoil the cancellation of quadratic
divergencies which allows one to solve the hierarchy problem. This is
achieved by spontaneous breaking of SUSY.

Apart from non-supersymmetric theories in SUSY models the energy
is always nonnegative definite. Indeed, according to quantum mechanics

E =< 0| H |0 >

and due to SUSY algebra eq.(3.1) {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, taking into

account that tr(σµPµ) = 2P0, one gets

E =
1

4

∑

α=1,2

< 0|{Qα, Q̄α}|0 >=
1

4

∑

α

|Qα|0 > |2 ≥ 0.

Hence

E =< 0| H |0 > 6= 0 if and only if Qα|0 > 6= 0.

Therefore, supersymmetry is spontaneously broken, i.e. vacuum is
not invariant (Qα|0 > 6= 0), if and only if the minimum of the potential
is positive (i.e. E > 0) .

Spontaneous breaking of supersymmetry is achieved in the same way
as the electroweak symmetry breaking. One introduces the field whose
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vacuum expectation value is nonzero and breaks the symmetry. How-
ever, due to a special character of SUSY, this should be a superfield
whose auxiliary F and D components acquire nonzero v.e.v.’s. Thus,
among possible spontaneous SUSY breaking mechanisms one distin-
guishes the F and D ones.

i) Fayet-Iliopoulos (D-term) mechanism [12].
In this case the, the linear D-term is added to the Lagrangian

∆L = ξV |θθθ̄θ̄ = ξ

∫

d4θ V. (3.33)

It is gauge and SUSY invariant by itself; however, it may lead to spon-
taneous breaking of both of them depending on the value of ξ. We show
in Fig.5a the sample spectrum for two chiral matter multiplets. The

0m �g = 0 2g� < m20 < �g < m2 2g� > m2�g = m2
Mass Mass

a) b)�g > m2A�; � A�; � A�; �; A2 �A1; A2 1;  2 A2 1;  2A1  1;  2A1 A�; A2 1;  2A1
A3;  3A2;  2A1;  1

A3;  3 ~B2 2~A2~B1 1~A1Ai = ~Ai + i ~Bi
Figure 5. Spectrum of spontaneously broken SUSY theories

drawback of this mechanism is the necessity of U(1) gauge invariance.
It can be used in SUSY generalizations of the SM but not in GUTs.

The mass spectrum also causes some troubles since the following sum
rule is always valid

∑

bosonic states

m2
i =

∑

fermionic states

m2
i , (3.34)

which is bad for phenomenology.
ii) O’Raifeartaigh (F -term) mechanism [13].

In this case, several chiral fields are needed and the superpotential should
be chosen in a way that trivial zero v.e.v.s for the auxiliary F -fields be
absent. For instance, choosing the superpotential to be

W(Φ) = λΦ3 +mΦ1Φ2 + gΦ3Φ
2
1,
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one gets the equations for the auxiliary fields

F ∗
1 = mA2 + 2gA1A3,

F ∗
2 = mA1,

F ∗
3 = λ+ gA2

1,

which have no solutions with < Fi >= 0 and SUSY is spontaneously
broken. The sample spectrum is shown in Fig.5b.

The drawbacks of this mechanism is a lot of arbitrariness in the choice
of potential. The sum rule (3.34) is also valid here.

Unfortunately, none of these mechanisms explicitly works in SUSY
generalizations of the SM. None of the fields of the SM can develop
nonzero v.e.v.s for their F or D components without breaking SU(3)
or U(1) gauge invariance since they are not singlets with respect to
these groups. This requires the presence of extra sources of spontaneous
SUSY breaking, which we consider below. They are based, however, on
the same F and D mechanisms.

4. SUSY generalization of the Standard Model.
The MSSM

As has been already mentioned, in SUSY theories the number of
bosonic degrees of freedom equals that of fermionic. At the same time,
in the SM one has 28 bosonic and 90 fermionic degrees of freedom (with
massless neutrino, otherwise 96). So the SM is to a great extent non-
supersymmetric. Trying to add some new particles to supersymmetrize
the SM, one should take into account the following observations:

• There are no fermions with quantum numbers of the gauge bosons;
• Higgs fields have nonzero v.e.v.s; hence they cannot be superpartners

of quarks and leptons since this would induce spontaneous violation of
baryon and lepton numbers;

• One needs at least two complex chiral Higgs multiplets to give
masses to Up and Down quarks.

The latter is due to the form of a superpotential and chirality of mat-
ter superfields. Indeed, the superpotential should be invariant under the
SU(3) × SU(2) × U(1) gauge group. If one looks at the Yukawa inter-
action in the Standard Model, one finds that it is indeed U(1) invariant
since the sum of hypercharges in each vertex equals zero. In the last
term this is achieved by taking the conjugated Higgs doublet H̃ = iτ2H

†

instead of H. However, in SUSY H is a chiral superfield and hence a
superpotential, which is constructed out of chiral fields, can contain only
H but not H̃ which is an antichiral superfield.
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Another reason for the second Higgs doublet is related to chiral anoma-
lies. It is known that chiral anomalies spoil the gauge invariance and,
hence, the renormalizability of the theory. They are canceled in the SM
between quarks and leptons in each generation. However, if one intro-
duces a chiral Higgs superfield, it contains higgsinos, which are chiral
fermions, and contain anomalies. To cancel them one has to add the
second Higgs doublet with the opposite hypercharge. Therefore, the
Higgs sector in SUSY models is inevitably enlarged, it contains an even
number of doublets.

Conclusion: In SUSY models supersymmetry associates known bosons
with new fermions and known fermions with new bosons.

4.1 The field content

Consider the particle content of the Minimal Supersymmetric Stan-
dard Model [14]. According to the previous discussion, in the minimal
version we double the number of particles (introducing a superpartner
to each particle) and add another Higgs doublet (with its superpartner).

Thus, the characteristic feature of any supersymmetric generalization
of the SM is the presence of superpartners (see Fig.6) [15]. If super-
symmetry is exact, superpartners of ordinary particles should have the
same masses and have to be observed. The absence of them at modern
energies is believed to be explained by the fact that their masses are very
heavy, that means that supersymmetry should be broken. Hence, if the
energy of accelerators is high enough, the superpartners will be created.

Figure 6. The shadow world of SUSY particles
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The particle content of the MSSM then appears as

Particle Content of the MSSM

Superfield Bosons Fermions SU(3) SU(2 UY (1)

Gauge
Ga gluon ga gluino g̃a 8 0 0

Vk Weak W k (W±, Z) wino, zino w̃k (w̃±, z̃) 1 3 0

V′ Hypercharge B (γ) bino b̃(γ̃) 1 1 0

Matter

Li

Ei

sleptons

{

L̃i = (ν̃, ẽ)L
Ẽi = ẽR

leptons

{

Li = (ν, e)L
Ei = eR

1
1

2
1

−1
2

Qi

Ui

Di

squarks







Q̃i = (ũ, d̃)L
Ũi = ũR

D̃i = d̃R

quarks

{

Qi = (u, d)L
Ui = uc

R

Di = dcR

3
3∗

3∗

2
1
1

1/3
−4/3
2/3

Higgs

H1

H2

Higgses

{

H1

H2
higgsinos

{

H̃1

H̃2

1
1

2
2

−1
1

Hereafter, tilde denotes a superpartner of an ordinary particle.
The presence of an extra Higgs doublet in SUSY model is a novel

feature of the theory. In the MSSM one has two doublets with the
quantum numbers (1,2,-1) and (1,2,1), respectively:

H1 =

(

H0
1

H−
1

)

=

(

v1 +
S1+iP1√

2

H−
1

)

, H2 =

(

H+
2

H0
2

)

=

(

H+
2

v2 +
S2+iP2√

2

)

,

where vi are the vacuum expectation values of the neutral components.
Hence, one has 8=4+4=5+3 degrees of freedom. As in the case of

the SM, 3 degrees of freedom can be gauged away, and one is left with 5
physical states compared to 1 in the SM. Thus, in the MSSM, as actually
in any of two Higgs doublet models, one has five physical Higgs bosons:
two CP-even neutral, one CP-odd neutral and two charged. We consider
the mass eigenstates below.

4.2 Lagrangian of the MSSM

The Lagrangian of the MSSM consists of two parts; the first part
is SUSY generalization of the Standard Model, while the second one
represents the SUSY breaking as mentioned above.

L = LSUSY + LBreaking, (4.1)

where
LSUSY = LGauge + LY ukawa (4.2)
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and

LGauge =
∑

SU(3),SU(2),U(1)

1

4

(∫

d2θ TrWαWα +

∫

d2θ̄ T rW̄ α̇W̄α̇

)

+
∑

Matter

∫

d2θd2θ̄ Φ†
ie
g3V̂3 + g2V̂2 + g1V̂1Φi, (4.3)

LY ukawa =

∫

d2θ (WR +WNR) + h.c. (4.4)

The index R in a superpotential refers to the so-called R-parity [16]
which adjusts a ”+” charge to all the ordinary particles and a ”−”
charge to their superpartners. The first part of W is R-symmetric

WR = ǫij(y
U
abQ

j
aU

c
bH

i
2 + yDabQ

j
aD

c
bH

i
1 + yLabL

j
aE

c
bH

i
1 + µH i

1H
j
2), (4.5)

where i, j = 1, 2, 3 are the SU(2) and a, b = 1, 2, 3 are the generation
indices; colour indices are suppressed. This part of the Lagrangian al-
most exactly repeats that of the SM except that the fields are now the
superfields rather than the ordinary fields of the SM. The only difference
is the last term which describes the Higgs mixing. It is absent in the SM
since there is only one Higgs field there.

The second part is R-nonsymmetric

WNR = ǫij(λ
L
abdL

i
aL

j
bE

c
d+λ

L′
abdL

i
aQ

j
bD

c
d+µ

′
aL

i
aH

j
2)+λ

B
abdU

c
aD

c
bD

c
d. (4.6)

These terms are absent in the SM. The reason is very simple: one can not
replace the superfields in eq.(4.6) by the ordinary fields like in eq.(4.5)
because of the Lorentz invariance. These terms have a different property,
they violate either lepton (the first 3 terms in eq.(4.6)) or baryon number
(the last term). Since both effects are not observed in Nature, these
terms must be suppressed or be excluded. One can avoid such terms
if one introduces special symmetry called the R-symmetry. This is the
global U(1)R invariance

U(1)R : θ → eiαθ, Φ → einαΦ, (4.7)

which is reduced to the discrete group Z2, called the R-parity. The
R-parity quantum number is given by R = (−1)3(B−L)+2S for particles
with spin S. Thus, all the ordinary particles have the R-parity quantum
number equal to R = +1, while all the superpartners have R-parity
quantum number equal to R = −1. The R-parity obviously forbids
the WNR terms. However, it may well be that these terms are present,
though experimental limits on the couplings are very severe

λLabc, λL′abc < 10−4, λBabc < 10−9.
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4.3 Properties of interactions

If one assumes that the R-parity is preserved, then the interactions
of superpartners are essentially the same as in the SM, but two of three
particles involved into an interaction at any vertex are replaced by super-
partners. The reason for it is the R-parity. Conservation of the R-parity
has two consequences

• the superpartners are created in pairs;
• the lightest superparticle (LSP) is stable. Usually it is photino γ̃,

the superpartner of a photon with some admixture of neutral higgsino.
Typical vertices are shown in Figs.7. The tilde above a letter denotes

the corresponding superpartner. Note that the coupling is the same in
all the vertices involving superpartners.q �q ~qL;R �~qL;R q �~qL;R~=) ,�ieq� �ieq(p+ p0)� �ieq 1� 5p2; ;igsfab igsfab g g=)g gg ~g ~gg W+~W+ ~W3 Z; ~W+ ~W�
QL �URH2 ~QL �~URH2 QL �~UR~H2yU AU yU=) ,Rigid Soft Rigid
Figure 7. Gauge-matter interaction, Gauge self-interaction and Yukawa-type inter-
action
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4.4 Creation and decay of superpartners

The above-mentioned rule together with the Feynman rules for the
SM enables one to draw diagrams describing creation of superpartners.
One of the most promising processes is the e+e− annihilation (see Fig.8).e+e� =Z ~�+1 ; ~l+L;R; ~ti;~bi; ~�0i~��1 ; ~l�L;R;�~ti;�~bi; ~�0j~�+1 ; ~�0i~��1 ; ~�0j~�e (~eL;R) ~e+L;R (�~�e)~e�L;R (~�e)~�0i (~��1 )e+e� e+e�

Figure 8. Creation of superpartners

~�+1 ~�+1~�01 ~f� ~�01W � l+; q�; �q �ff 0
~q ~l~��; ~�0 ~g ~��; ~�0~q ~lq lq l

Figure 9. Decay of superpartners

The usual kinematic restriction is given by the c.m. energymmax
sparticle ≤√

s
2 . Similar processes take place at hadron colliders with electrons and
positrons being replaced by quarks and gluons.

Creation of superpartners can be accompanied by creation of ordinary
particles as well. We consider various experimental signatures for e+e−
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and hadron colliders below. They crucially depend on SUSY breaking
pattern and on the mass spectrum of superpartners.

The decay properties of superpartners also depend on their masses.
For the quark and lepton superpartners the main processes are shown
in Fig.9.

When the R-parity is conserved, new particles will eventually end
up giving neutralinos (the lightest superparticle) whose interactions are
comparable to those of neutrinos and they leave undetected. There-
fore, their signature would be missing energy and transverse momentum.
Thus, if supersymmetry exists in Nature and if it is broken somewhere
below 1 TeV, then it will be possible to detect it in the nearest future.

5. Breaking of SUSY in the MSSM

Since none of the fields of the MSSM can develop non-zero v.e.v. to
break SUSY without spoiling the gauge invariance, it is supposed that
spontaneous supersymmetry breaking takes place via some other fields.
The most common scenario for producing low-energy supersymmetry
breaking is called the hidden sector one [17]. According to this scenario,
there exist two sectors: the usual matter belongs to the ”visible” one,
while the second, ”hidden” sector, contains fields which lead to breaking
of supersymmetry. These two sectors interact with each other by ex-
change of some fields called messengers, which mediate SUSY breaking
from the hidden to the visible sector. There might be various types of
messenger fields: gravity, gauge, etc. The hidden sector is the weakest
part of the MSSM. It contains a lot of ambiguities and leads to uncer-
tainties of the MSSM predictions considered below.

So far there are known four main mechanisms to mediate SUSY break-
ing from a hidden to a visible sector:

Gravity mediation (SUGRA) [18];

Gauge mediation [19];

Anomaly mediation [20];

Gaugino mediation [21].

All four mechanisms of soft SUSY breaking are different in details but
are common in results. Predictions for the sparticle spectrum depend
on the mechanism of SUSY breaking. For comparison of four above-
mentioned mechanisms we show in Fig.10 the sample spectra as the
ratio to the gaugino mass M2 [22].

In what follows, to calculate the mass spectrum of superpartners, we
need an explicit form of SUSY breaking terms. For the MSSM and
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02 { {4 { {6 { {8 { {10 { {
Gravity Gauge Anomaly Gaugino

M=M2
SPARTICLE SPECTRA

~b0~�+~g ~L; ~E~Q~b0~�+~g ~E~L
~Q ~b0~�+ ~L; ~E

~g ~Q
~b0~�+ ~E~L~g ~Q

Figure 10. Superparticle spectra for various mediation mechanisms

without the R-parity violation one has

−LBreaking =
∑

i

m2
0i|ϕi|2 +

(

1

2

∑

α

Mαλ̃αλ̃α +BH1H2 (5.1)

+ AU
abQ̃aŨ

c
bH2 +AD

abQ̃aD̃
c
bH1 +AL

abL̃aẼ
c
bH1 + h.c.

)

,

where we have suppressed the SU(2) indices. Here ϕi are all scalar fields,
λ̃α are the gaugino fields, Q̃, Ũ , D̃ and L̃, Ẽ are the squark and slepton
fields, respectively, and H1,2 are the SU(2) doublet Higgs fields.

Eq.(5.1) contains a vast number of free parameters which spoils the
prediction power of the model. To reduce their number, we adopt the so-
called universality hypothesis, i.e., we assume the universality or equality
of various soft parameters at a high energy scale, namely, we put all the
spin 0 particle masses to be equal to the universal value m0, all the spin
1/2 particle (gaugino) masses to be equal to m1/2 and all the cubic and
quadratic terms, proportional to A and B, to repeat the structure of
the Yukawa superpotential (4.5). This is an additional requirement mo-
tivated by the supergravity mechanism of SUSY breaking. Universality
is not a necessary requirement and one may consider nonuniversal soft
terms as well. However, it will not change the qualitative picture pre-
sented below; so for simplicity, in what follows we consider the universal
boundary conditions. In this case, eq.(5.1) takes the form

−LBreaking = m2
0

∑

i

|ϕi|2 +
(

1

2
m1/2

∑

α

λ̃αλ̃α (5.2)
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+ A[yUabQ̃aŨ
c
bH2 + yDabQ̃aD̃

c
bH1 + yLabL̃aẼ

c
bH1] +B[µH1H2] + h.c.

)

,

The soft terms explicitly break supersymmetry. As will be shown
later, they lead to the mass spectrum of superpartners different from
that of ordinary particles. Remind that the masses of quarks and leptons
remain zero until SU(2) invariance is spontaneously broken.

5.1 The soft terms and the mass formulas

There are two main sources of the mass terms in the Lagrangian: the
D terms and soft ones. With given values of m0,m1/2, µ, Yt, Yb, Yτ , A,
and B one can construct the mass matrices for all the particles. Knowing
them at the GUT scale, one can solve the corresponding RG equations,
thus linking the values at the GUT and electroweak scales. Substitut-
ing these parameters into the mass matrices, one can predict the mass
spectrum of superpartners [23, 24].

Gaugino-higgsino mass terms. The mass matrix for gauginos, the
superpartners of the gauge bosons, and for higgsinos, the superpartners
of the Higgs bosons, is nondiagonal, thus leading to their mixing. The
mass terms look like

LGaugino−Higgsino = −1

2
M3λ̄aλa −

1

2
χ̄M (0)χ− (ψ̄M (c)ψ + h.c.), (5.3)

where λa, a = 1, 2, . . . , 8, are the Majorana gluino fields and

χ =











B̃0

W̃ 3

H̃0
1

H̃0
2











, ψ =

(

W̃+

H̃+

)

(5.4)

are, respectively, the Majorana neutralino and Dirac chargino fields.
The neutralino mass matrix is

M (0) =







M1 0 -MZ cos β sinW MZ sin β sinW

0 M2 MZ cos β cosW -MZ sin β cosW
-MZ cos β sinW MZ cos β cosW 0 -µ
MZ sin β sinW -MZ sin β cosW -µ 0






,

(5.5)
where tan β = v2/v1 is the ratio of two Higgs v.e.v.s and sinW = sin θW is
the usual sinus of the weak mixing angle. The physical neutralino masses
Mχ̃0

i
are obtained as eigenvalues of this matrix after diagonalization.

For charginos one has

M (c) =

(

M2

√
2MW sin β√

2MW cos β µ

)

. (5.6)
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This matrix has two chargino eigenstates χ̃±
1,2 with mass eigenvalues

M2
1,2 =

1

2

[

M2
2 + µ2 + 2M2

W (5.7)

∓
√

(M2
2 − µ2)2 + 4M4

W cos2 2β + 4M2
W (M2

2 + µ2 + 2M2µ sin 2β)

]

.

Squark and slepton masses. Non-negligible Yukawa couplings
cause a mixing between the electroweak eigenstates and the mass eigen-
states of the third generation particles. The mixing matrices for m̃2

t , m̃
2
b

and m̃2
τ are

(

m̃2
tL mt(At − µ cot β)

mt(At − µ cot β) m̃2
tR

)

, (5.8)

(

m̃2
bL mb(Ab − µ tan β)

mb(Ab − µ tan β) m̃2
bR

)

, (5.9)

(

m̃2
τL mτ (Aτ − µ tan β)

mτ (Aτ − µ tan β) m̃2
τR

)

(5.10)

with

m̃2
tL = m̃2

Q +m2
t +

1

6
(4M2

W −M2
Z) cos 2β,

m̃2
tR = m̃2

U +m2
t −

2

3
(M2

W −M2
Z) cos 2β,

m̃2
bL = m̃2

Q +m2
b −

1

6
(2M2

W +M2
Z) cos 2β,

m̃2
bR = m̃2

D +m2
b +

1

3
(M2

W −M2
Z) cos 2β,

m̃2
τL = m̃2

L +m2
τ −

1

2
(2M2

W −M2
Z) cos 2β,

m̃2
τR = m̃2

E +m2
τ + (M2

W −M2
Z) cos 2β

and the mass eigenstates are the eigenvalues of these mass matrices. For
the light generations the mixing is negligible.

The first terms here (m̃2) are the soft ones, which are calculated using
the RG equations starting from their values at the GUT (Planck) scale.
The second ones are the usual masses of quarks and leptons and the last
ones are the D terms of the potential.

5.2 The Higgs potential

As has already been mentioned, the Higgs potential in the MSSM
is totally defined by superpotential (and the soft terms). Due to the



SUPERSYMMETRIC EXTENSION OFTHE STANDARD MODEL 29

structure of W the Higgs self-interaction is given by the D-terms while
the F -terms contribute only to the mass matrix. The tree level potential
is

Vtree(H1,H2) = m2
1|H1|2 +m2

2|H2|2 −m2
3(H1H2 + h.c.)

+
g2 + g

′2

8
(|H1|2 − |H2|2)2 +

g2

2
|H+

1 H2|2, (5.11)

where m2
1 = m2

H1
+ µ2,m2

2 = m2
H2

+ µ2. At the GUT scale m2
1 = m2

2 =

m2
0 + µ20, m

2
3 = −Bµ0. Notice that the Higgs self-interaction coupling

in eq.(5.10) is fixed and defined by the gauge interactions as opposed to
the SM.

The potential (5.10), in accordance with supersymmetry, is positive
definite and stable. It has no nontrivial minimum different from zero.
Indeed, let us write the minimization condition for the potential (5.10)

1

2

δV

δH1
= m2

1v1 −m2
3v2 +

g2 + g′2

4
(v21 − v22)v1 = 0, (5.12)

1

2

δV

δH2
= m2

2v2 −m2
3v1 +

g2 + g′2

4
(v21 − v22)v2 = 0, (5.13)

where we have introduced the notation

< H1 >≡ v1 = v cos β, < H2 >≡ v2 = v sin β, v2 = v21+v
2
2 , tan β ≡ v2

v1
.

Solution of eqs.(5.12),(5.13) can be expressed in terms of v2 and sin 2β

v2 =
4(m2

1 −m2
2 tan

2 β)

(g2 + g′2)(tan2 β − 1)
, sin 2β =

2m2
3

m2
1 +m2

2

. (5.14)

One can easily see from eq.(5.14) that if m2
1 = m2

2 = m2
0+µ

2
0, v

2 happens
to be negative, i.e. the minimum does not exist. In fact, real positive
solutions to eqs.(5.12),(5.13) exist only if the following conditions are
satisfied:

m2
1 +m2

2 > 2m2
3, m2

1m
2
2 < m4

3, (5.15)

which is not the case at the GUT scale. This means that spontaneous
breaking of the SU(2) gauge invariance, which is needed in the SM to
give masses for all the particles, does not take place in the MSSM.

This strong statement is valid, however, only at the GUT scale. In-
deed, going down with energy, the parameters of the potential (5.10) are
renormalized. They become the “running” parameters with the energy
scale dependence given by the RG equations. The running of the param-
eters leads to a remarkable phenomenon known as radiative spontaneous

symmetry breaking to be discussed below.
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Provided conditions (5.15) are satisfied, the mass matrices at the tree
level are
CP-odd components P1 and P2 :

Modd =
∂2V

∂Pi∂Pj

∣

∣

∣

∣

∣

Hi=vi

=

(

tan β 1
1 cot β

)

m2
3, (5.16)

CP-even neutral components S1 and S2:

Mev =
∂2V

∂Si∂Sj

∣

∣

∣

∣

∣

=

(

tan β −1
−1 cot β

)

m2
3 +

(

cot β −1
−1 tan β

)

MZ
sin 2β

2
,

(5.17)
Charged components H− and H+:

Mch =
∂2V

∂H+
i ∂H

−
j

∣

∣

∣

∣

∣

Hi=vi

=

(

tan β 1
1 cot β

)

(m2
3 +MW cos β sinβ).

(5.18)
Diagonalizing the mass matrices, one gets the mass eigenstates:
{

G0 = − cos βP1 + sinβP2, Goldstone boson → Z0,
A = sin βP1 + cos βP2, Neutral CP = −1 Higgs,

{

G+ = − cos β(H−
1 )∗ + sin βH+

2 , Goldstone boson →W+,
H+ = sin β(H−

1 )∗ + cos βH+
2 , Charged Higgs,

{

h = − sinαS1 + cosαS2, SM Higgs boson CP = 1,
H = cosαS1 + sinαS2, Extra heavy Higgs boson,

where the mixing angle α is given by

tan 2α = tan 2β

(

m2
A +M2

Z

m2
A −M2

Z

)

.

The physical Higgs bosons acquire the following masses [14]:

CP-odd neutral Higgs A : m2
A = m2

1 +m2
2,

Charge Higgses H± : m2
H± = m2

A +M2
W , (5.19)

CP-even neutral Higgses H, h:

m2
H,h =

1

2

[

m2
A +M2

Z ±
√

(m2
A +M2

Z)
2 − 4m2

AM
2
Z cos2 2β

]

, (5.20)

where, as usual,

M2
W =

g2

2
v2, M2

Z =
g2 + g′2

2
v2.
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This leads to the once celebrated SUSY mass relations

mH± ≥MW , mh ≤ mA ≤MH ,

mh ≤MZ | cos 2β| ≤MZ , m2
h +m2

H = m2
A +M2

Z .
(5.21)

Thus, the lightest neutral Higgs boson happens to be lighter than the
Z boson, which clearly distinguishes it from the SM one. Though we
do not know the mass of the Higgs boson in the SM, there are several
indirect constraints leading to the lower boundary of mSM

h ≥ 135 GeV.
After including the radiative corrections, the mass of the lightest Higgs
boson in the MSSM, mh, however increases. We consider it in more
detail below.

5.3 Renormalization group analysis

To calculate the low energy values of the soft terms, we use the corre-
sponding RG equations. The one-loop RG equations for the rigid MSSM
couplings are [25]

dα̃i

dt
= biα̃

2
i , t ≡ logQ2/M2

GUT

dYU
dt

= −YL
(

16

3
α̃3 + 3α̃2 +

13

15
α̃1 − 6YU − YD

)

,

dYD
dt

= −YD
(

16

3
α̃3 + 3α̃2 +

7

15
α̃1 − YU − 6YD − YL

)

,

dYL
dt

= −YL
(

3α̃2 +
9

5
α̃1 − 3YD − 4YL

)

, (5.22)

where we use the notation α̃ = α/4π = g2/16π2, Y = y2/16π2.
For the soft terms one finds

dMi

dt
= biα̃iMi.

dAU

dt
=

16

3
α̃3M3 + 3α̃2M2 +

13

15
α̃1M1 + 6YUAU + YDAD,

dAD

dt
=

16

3
α̃3M3 + 3α̃2M2 +

7

15
α̃1M1 + 6YDAD + YUAU + YLAL,

dAL

dt
= 3α̃2M2 +

9

5
α̃1M1 + 3YDAD + 4YLAL,

dB

dt
= 3α̃2M2 +

3

5
α̃1M1 + 3YUAU + 3YDAD + YLAL.

dm̃2
Q

dt
= −

[

(
16

3
α̃3M

2
3 + 3α̃2M

2
2 +

1

15
α̃1M

2
1 )
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− YU (m̃
2
Q + m̃2

U +m2
H2

+A2
U )− YD(m̃

2
Q + m̃2

D +m2
H1

+A2
D)
]

,

dm̃2
U

dt
= −

[

(
16

3
α̃3M

2
3 +

16

15
α̃1M

2
1 )− 2YU (m̃

2
Q + m̃2

U +m2
H2

+A2
U )

]

,

dm̃2
D

dt
= −

[

(
16

3
α̃3M

2
3 +

4

15
α̃1M

2
1 )− 2YD(m̃

2
Q + m̃2

D +m2
H1

+A2
D)

]

,

dm̃2
L

dt
= −

[

3(α̃2M
2
2 +

1

5
α̃1M

2
1 )− YL(m̃

2
L + m̃2

E +m2
H1

+A2
L)

]

,

dm̃2
E

dt
= −

[

(
12

5
α̃1M

2
1 )− 2YL(m̃

2
L + m̃2

E +m2
H1

+A2
L)

]

,

dµ2

dt
= −µ2

[

3(α̃2 +
1

5
α̃1)− (3YU + 3YD + YL)

]

, (5.23)

dm2
H1

dt
= −

[

3(α̃2M
2
2 +

1

5
α̃1M

2
1 )− 3YD(m̃

2
Q + m̃2

D +m2
H1

+A2
D)

−YL(m̃2
L + m̃2

E +m2
H1

+A2
L)
]

,

dm2
H2

dt
= −

[

3(α̃2M
2
2 +

1

5
α̃1M

2
1 )− 3YU (m̃

2
Q + m̃2

U +m2
H2

+A2
U )

]

.

Having all the RG equations, one can now find the RG flow for the
soft terms. Taking the initial values of the soft masses at the GUT scale
in the interval between 102 ÷ 103 GeV consistent with the SUSY scale
suggested by unification of the gauge couplings (2.7) leads to the RG
flow of the soft terms shown in Fig.11. [23, 24]

One should mention the following general features common to any
choice of initial conditions:

i) The gaugino masses follow the running of the gauge couplings and
split at low energies. The gluino mass is running faster than the others
and is usually the heaviest due to the strong interaction.

ii) The squark and slepton masses also split at low energies, the stops
(and sbottoms) being the lightest due to relatively big Yukawa couplings
of the third generation.

iii) The Higgs masses (or at least one of them) are running down very
quickly and may even become negative.

Typical dependence of the mass spectra on the initial conditions (m0)
is also shown in Fig.12 [26]. For a given value of m1/2 the masses
of the lightest particles are practically independent of m0, while the
heavier ones increase with it monotonically. One can see that the lightest
neutralinos and charginos as well as the stop squark may be rather light.
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Figure 12. The masses of sparticles as functions of the initial value m0

5.4 Radiative electroweak symmetry breaking

The running of the Higgs masses leads to the phenomenon known as
radiative electroweak symmetry breaking. Indeed, one can see in Fig.11
that m2

2 (or both m
2
1 and m

2
2) decreases when going down from the GUT

scale to theMZ scale and can even become negative. As a result, at some
value of Q2 the conditions (5.15) are satisfied, so that the nontrivial
minimum appears. This triggers spontaneous breaking of the SU(2)
gauge invariance. The vacuum expectations of the Higgs fields acquire
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nonzero values and provide masses to quarks, leptons and SU(2) gauge
bosons, and additional masses to their superpartners.

In this way one also obtains the explanation of why the two scales are
so much different. Due to the logarithmic running of the parameters,
one needs a long ”running time” to get m2

2 (or both m2
1 and m2

2) to be
negative when starting from a positive value of the order of MSUSY ∼
102 ÷ 103 GeV at the GUT scale.

6. Constrained MSSM

6.1 Parameter space of the MSSM

The Minimal Supersymmetric Standard Model has the following free
parameters: i) three gauge couplings αi; ii) three matrices of the Yukawa
couplings yiab, where i = L,U,D; iii) the Higgs field mixing parameter
µ; iv) the soft supersymmetry breaking parameters. Compared to the
SM there is an additional Higgs mixing parameter, but the Higgs self-
coupling, which is arbitrary in the SM, is fixed by supersymmetry. The
main uncertainty comes from the unknown soft terms.

With the universality hypothesis one is left with the following set of
5 free parameters defining the mass scales

µ, m0, m1/2, A and B ↔ tan β =
v2
v1
.

While choosing parameters and making predictions, one has two possible
ways to proceed:

i) take the low-energy parameters like superparticle masses m̃t1, m̃t2,mA,
tan β, mixingsXstop, µ, etc. as input and calculate cross-sections as func-
tions of these parameters.

ii) take the high-energy parameters like the above mentioned 5 soft
parameters as input, run the RG equations and find the low-energy
values. Now the calculations can be carried out in terms of the initial
parameters. The experimental constraints are sufficient to determine
these parameters, albeit with large uncertainties.

6.2 The choice of constraints

When subjecting constraints on the MSSM, perhaps, the most re-
markable fact is that all of them can be fulfilled simultaneously. In our
analysis we impose the following constraints on the parameter space of
the MSSM:

• Gauge coupling constant unification;
This is one of the most restrictive constraints, which we have discussed
in Sect 2. It fixes the scale of SUSY breaking of an order of 1 TeV.
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• MZ from electroweak symmetry breaking;
Radiative EW symmetry breaking (see eq.(5.14)) defines the mass of the
Z-boson

M2
Z = 2

m2
1 −m2

2 tan
2 β

tan2 β − 1
. (6.1)

This condition determines the value of µ for given values ofm0 andm1/2.
• Yukawa coupling constant unification;

The masses of top, bottom and τ can be obtained from the low energy
values of the running Yukawa couplings via

mt = yt v sin β, mb = yb v cos β, mτ = yτ v cos β. (6.2)

They can be translated to the pole masses with account taken of the
radiative corrections. The requirement of bottom-tau Yukawa coupling
unification strongly restricts the possible solutions in mt versus tan β
plane [27] as it can be seen from Fig.13.
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Figure 13. The upper part shows the top quark mass as a function of tanβ for
m0 = 600 GeV, m1/2 = 400 GeV. The middle part shows the corresponding values of
the Yukawa couplings at the GUT scale and the lower part of the χ2 values.

• Precision measurement of decay rates;
We take the branching ratio BR(b → sγ) which has been measured
by the CLEO [28] collaboration and later by ALEPH [29] and yields
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the world average of BR(b → sγ) = (3.14 ± 0.48) · 10−4. The Standard
Model contribution to this process gives slightly lower result, thus leaving
window for SUSY. This requirement imposes severe restrictions on the
parameter space, especially for the case of large tan β.

• Anomalous magnetic moment of muon.
Recent measurement of the anomalous magnetic moment indicates small
deviation from the SM of the order of 2 σ. The deficiency may be easily
filled with SUSY contribution, which is proportional to µ. This requires
positive sign of µ that kills have of the parameter space of the MSSM [30].

• Experimental lower limits on SUSY masses;
SUSY particles have not been found so far and from the searches at LEP
one knows the lower limit on the charged lepton and chargino masses
of about half of the centre of mass energy [31]. The lower limit on the
neutralino masses is smaller. There exist also limits on squark and gluino
masses from the hadron colliders [32]. These limits restrict the minimal
values for the SUSY mass parameters.

• Dark Matter constraint;
Recent very precise astrophysical data restrict the amount of the Dark
matter in the Universe up to 23%. Assuming h0 > 0.4 one finds that the
contribution of each relic particle species χ has to obey Ωχh

2
0 ∼ 0.1÷0.3,.

This serves as a very severe bound on SUSY parameters [33].
Having in mind the above mentioned constraints one can find the

most probable region of the parameter space by minimizing the χ2 func-
tion [24]. We first choose the value of the Higgs mixing parameter µ
from the requirement of radiative EW symmetry breaking, then we take
the values of tan β from the requirement of Yukawa coupling unifica-
tion (see Fig.13). One finds two possible solutions: low tan β solution
corresponding to tan β ≈ 1.7 and high tan β solution corresponding to
tan β ≈ 30÷ 60.

What is left are the values of the soft parameters A, m0 and m1/2.
However, the role of the trilinear coupling A is not essential. In what
follows, we consider the planem0,m1/2 and find the allowed region in this
plane. Each point at this plane corresponds to a fixed set of parameters
and allows one to calculate the spectrum, the cross-sections, etc.

We present the allowed regions of the parameter space for low and high
tan β scenarios in Fig.14. This plot demonstrates the role of various
constraints in the χ2 function. The contours enclose domains by the
particular constraints used in the analysis [34].
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Figure 14. The χ2-distribution for low and high tanβ solutions. The different
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6.3 The mass spectrum of superpartners

When the parameter set is fixed, one can calculate the mass spectrum
of superpartners. Below we show the predicted mass spectrum corre-
sponding to the best fit values indicated by stars in Fig.14 (see Table
1) [24].

6.4 Experimental signatures at e
+
e
− colliders

Experiments are finally beginning to push into a significant region of
supersymmetry parameter space. We know the sparticles and their cou-
plings, but we do not know their masses and mixings. Given the mass
spectrum one can calculate the cross-sections and consider the possibil-
ities of observing new particles at modern accelerators. Otherwise, one
can get restrictions on unknown parameters.

We start with e+e− colliders and, first of all, with LEP II. In the
leading order creation of superpartners is given by the diagrams shown in
Fig.8 above. For a given center of mass energy the cross-sections depend
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SUSY masses in [GeV]

Symbol low tanβ high tan β

χ̃0
1(B̃), χ̃0

2(W̃
3) 214, 413 170, 322

χ̃0
3(H̃1),χ̃

0
4(H̃2) 1028, 1016 481, 498

χ̃±

1 (W̃
±), χ̃±

2 (H̃
±) 413, 1026 322, 499

g̃ 1155 950

ẽL, ẽR 303, 270 663, 621

ν̃L 290 658

q̃L, q̃R 1028, 936 1040, 1010

τ̃1, τ̃2 279, 403 537, 634

b̃1, b̃2 953, 1010 835, 915

t̃1, t̃2 727, 1017 735, 906

h, H 95, 1344 119, 565

A, H± 1340, 1344 565, 571

Table 1. Values of the SUSY mass spectra for the low and high tanβ solutions.

on the mass of created particles and vanish at the kinematic boundary.
Experimental signatures are defined by the decay modes which vary with
the mass spectrum. The main ones are summarized below.

Production Key Decay Modes Signatures

• l̃L,Rl̃L,R l̃±R → l±χ̃0
i ց cascade acomplanar pair of

l̃±L → l±χ̃0
i ր decays charged leptons +

/

ET

• ν̃ν̃ ν̃ → l±χ̃0
1

/

ET

• χ̃±
1 χ̃

±
1 χ̃±

1 → χ̃0
1l

±ν, χ̃0
1qq̄

′ isol lept + 2 jets +
/

ET

χ̃±
1 → χ̃0

2f f̄
′ pair of acomplanar

χ̃±
1 → lν̃l → lνlχ̃

0
1 leptons +

/

ET

χ̃±
1 → νl l̃ → νllχ̃

0
1 4 jets +

/

ET

• χ̃0
i χ̃

0
j χ̃0

i → χ̃0
1X, χ̃

0
j → χ̃0

1X
′ X = νlν̄l invisible

= γ, 2l, 2 jets

2l +
/

ET , l + 2j +
/

ET

• t̃it̃j t̃1 → cχ̃0
1 2 jets +

/

ET

t̃1 → bχ̃±
1 → bf f̄ ′χ̃0

1 2 b jets + 2 leptons +
/

ET

2 b jets + lepton +
/

ET
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• b̃ib̃j b̃i → bχ̃0
1 2 b jets +

/

ET

b̃i → bχ̃0
2 → bf f̄ ′χ̃0

1 2 b jets + 2 leptons +
/

ET

2 b jets + 2 jets +
/

ET

A characteristic feature of all possible signatures is the missing energy
and transverse momenta, which is a trade mark of a new physics.

Numerous attempts to find superpartners at LEP II gave no positive
result thus imposing the lower bounds on their masses [31]. Typical LEP
II limits on the masses of superpartners are

mχ0
1
> 40 GeV mẽL,R

> 105 GeV mt̃ > 90 GeV

mχ±

1
> 100 GeV mµ̃L,R

> 100 GeV mb̃ > 80 GeV

mτ̃L,R
> 80 GeV

(6.3)

6.5 Experimental signatures at hadron colliders

Experimental signatures at hadron colliders are similar to those at
e+e− machines; however, here one has much wider possibilities. Besides
the usual annihilation channel identical to e+e− one with the obvious
replacement of electrons by quarks (see Fig.8), one has numerous pro-
cesses of gluon fusion, quark-antiquark and quark-gluon scattering (see
Fig.15).

Experimental SUSY signatures at the Tevatron (and LHC) are

Production Key Decay Modes Signatures

• g̃g̃, q̃q̃, g̃q̃
g̃ → qq̄χ̃0

1

qq̄′χ̃±
1

gχ̃0
1







mq̃ > mg̃

/

ET +multijets

(+leptons)

q̃ → qχ̃0
i

q̃ → q′χ̃±
i

}

mg̃ > mq̃

• χ̃±
1 χ̃

0
2 χ̃±

1 → χ̃0
1l

±ν, χ̃0
2 → χ̃0

1ll Trilepton +
/

ET

χ̃±
1 → χ̃0

1qq̄
′, χ̃0

2 → χ̃0
1ll, Dilepton + jet +

/

ET

• χ̃+
1 χ̃

−
1 χ̃+

1 → lχ̃0
1l

±ν Dilepton +
/

ET

• χ̃0
i χ̃

0
i χ̃0

i → χ̃0
1X, χ̃

0
i → χ̃0

1X
′

/

ET +Dilept+(jets)+lept

• t̃1t̃1 t̃1 → cχ̃0
1 2 acollinear jets +

/

ET

t̃1 → bχ̃±
1 , χ̃

±
1 → χ̃0

1qq̄
′ single lepton +

/

ET + b′s

t̃1 → bχ̃±
1 , χ̃

±
1 → χ̃0

1l
±ν, Dilepton +

/

ET + b′s
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• l̃l̃, l̃ν̃, ν̃ν̃ l̃± → l ± χ̃0
i , l̃

± → νlχ̃
±
i Dilepton +

/

ET

ν̃ → νχ̃0
1 Single lept +

/

ET + jets
/

ET

Note again the characteristic missing energy and transverse momenta
events. Contrary to e+e− colliders, at hadron machines the background
is extremely rich and essential.gg q�qgg q�qgg qgqg qg

~g~g~g ~q; ~g�~q; ~g~g~g ~g~g; ~��; ~�0~q~q�~q ~q~g~q~g ~g~q~q~g
Figure 15. Gluon fusion, qq̄ scattering, quark-gluon scattering

6.6 The lightest superparticle

One of the crucial questions is the properties of the lightest superpar-
ticle. Different SUSY breaking scenarios lead to different experimental
signatures and different LSP.

• Gravity mediation
In this case, the LSP is the lightest neutralino χ̃0

1, which is almost 90%
photino for a low tan β solution and contains more higgsino admixture
for high tan β. The usual signature for LSP is missing energy; χ̃0

1 is
stable and is the best candidate for the cold dark matter in the Universe.
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Typical processes, where the LSP is created, end up with jets +
/

ET , or

leptons +
/

ET , or both jest + leptons +
/

ET .

• Gauge mediation
In this case the LSP is the gravitino G̃ which also leads to missing

energy. The actual question here is what the NLSP, the next lightest
particle, is. There are two possibilities:

i) χ̃0
1 is the NLSP. Then the decay modes are: χ̃0

1 → γG̃, hG̃, ZG̃.

As a result, one has two hard photons +
/

ET , or jets +
/

ET .

ii) l̃R is the NLSP. Then the decay mode is l̃R → τG̃ and the signature
is a charged lepton and the missing energy.

• Anomaly mediation
In this case, one also has two possibilities:
i) χ̃0

1 is the LSP and wino-like. It is almost degenerate with the NLSP.
ii) ν̃L is the LSP. Then it appears in the decay of chargino χ̃+ → ν̃l

and the signature is the charged lepton and the missing energy.
• R-parity violation
In this case, the LSP is no longer stable and decays into the SM

particles. It may be charged (or even colored) and may lead to rare
decays like neutrinoless double β-decay, etc.

Experimental limits on the LSP mass follow from non-observation of
the corresponding events. Modern lower limit is around 40 GeV .

7. The Higgs boson mass in the MSSM

One of the hottest topics in the SM now is the search for the Higgs
boson. It is also a window to a new physics. Below we consider properties
of the Higgs boson in the MSSM.

It has already been mentioned that in the MSSM the mass of the
lightest Higgs boson is predicted to be less than the Z-boson mass. This
is, however, the tree level result and the masses acquire the radiative
corrections. With account taken of the one-loop radiative corrections
the lightest Higgs mass is

m2
h ≈M2

Z cos2 2β +
3g2m4

t

16π2M2
W

log
m̃2

t1m̃
2
t2

m4
t

. (7.1)

One finds that the one-loop correction is positive and increases the mass
value. Two loop corrections have the opposite effect but are smaller [36].

The Higgs mass depends mainly on the following parameters: the top
mass, the squark masses, the mixing in the stop sector and tan β. The
maximum Higgs mass is obtained for large tan β, for a maximum value
of the top and squark masses and a minimum value of the stop mixing.
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The lightest Higgs boson mass mh is shown as a function of tan β in
Fig. 16 [35]. The shaded band corresponds to the uncertainty from the
stop mass and stop mixing for mt = 175 GeV. The upper and lower lines
correspond to mt=170 and 180 GeV, respectively.
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Figure 16. The mass of the lightest Higgs boson in the MSSM as a function of tan β

Combining all the uncertainties the results for the Higgs mass in the
CMSSM can be summarized as follows:

• The low tan β scenario (tan β < 3.3) of the CMSSM is excluded by
the lower limit on the Higgs mass of 113.3 GeV [7].

• For the high tan β scenario the Higgs mass is found to be [35]:

mh = 115± 3 (stopm) ± 1.5 (stopmix) ± 2 (theory) ± 5 (topm) GeV,

where the errors are the estimated standard deviations around the cen-
tral value.

However, these SUSY limits on the Higgs mass may not be so re-
stricting if non-minimal SUSY models are considered. However, more
sophisticated models do not change the generic feature of SUSY theories,
the presence of the light Higgs boson.

8. Perspectives of SUSY observation

With the LEP shut down, further attempts to discover supersymmetry
are connected with the Tevatron and LHC hadron colliders.

Tevatron

Tevatron Run II has the c.m. energy of 2 TeV with planned luminosity
almost 10 times greater than in RUN I. However, since it is a hadron
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collider, not the full energy goes into collision taken away by those quarks
in a proton that do not take part in the interaction. Due to a severe
background, this collider needs time to reach the integrated luminosity
required for SUSY discovery.

We show in Table 2 [37] the discovery reach of the Tevatron for squarks
of the third generation. Modern exclusion areas are also shown in plots
in Fig.17 [38]. One can see that they are still far from the expected
masses given in Table 1.

Decay Subsequent Final State of Discovery Reach

(Br = 100%) Decay b̃1
¯̃b1 or t̃1

¯̃t1 @20 fb(
− 1) (Run I)

b̃1 → bχ̃0
1 bb

/

ET 260 GeV/c2 (146 GeV/c2 )

t̃1 → cχ̃0
1 cc

/

ET 220 GeV/c2 (116 GeV/c2 )

t̃1 → blν̃ ν̃ → νχ̃0
1 l+l−b

/

ET 240 GeV/c2 (140 GeV/c2 )

t̃1 → blν̃χ̃0
1 l+l−b

/

ET - (129 GeV/c2 )

t̃1 → bχ̃±

1 χ̃±

1 → W (∗)χ̃0
1 l+l−b

/

ET ; 210 GeV/c2 (-)

t̃1 → bW χ̃0
1 l+l−bj

/

ET 190 GeV/c2 (-)

Table 2. Discovery reaches on Mb̃ and Mt̃ expected in Run II.

Stop in the Dilepton Channel, t̃ → l ν̃ b

M(t̃) (GeV/c2)

M
(ν̃

) 
(G

eV
/c

2 )

CDF ∫L dt = 107 pb-1

∑Br(t̃ → l ν̃ b) = 100%
e,µ,τ

M
(t̃)

 <
 M

(ν̃
) +

 M
(b

)

Aleph
L3
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CDF
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Figure 17. Exclusion plots for squarks and sneutrinos (left) and squarks and gluino
(right) at Tevatron
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LHC

The LHC hadron collider is the ultimate machine for a new physics at
the TeV scale. Its c.m. energy is planned to be 14 TeV with very high
luminosity up to a few hundred fb−1. The LHC is supposed to cover the
wide range of parameters of the MSSM (see Fig.18 [39]) and discover the
superpartners with the masses below 2 TeV [40]. This will be a crucial
test for the MSSM and the low energy supersymmetry.
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Figure 18. Expected sparticle reach at LHC

9. Conclusion

Supersymmetry is now the most popular extension of the Standard
Model. It promises us that new physics is round the corner at a TeV
scale to be exploited at new machines of this decade. If our expectations
are correct, very soon we will face new discoveries, the whole world
of supersymmetric particles will show up and the table of fundamental
particles will be enlarged in increasing rate. This would be a great step
in understanding the microworld.
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