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Abstract

These lectures contain an elementary introduction to the principles of quantum
field theory. Our aim is, starting from the very beginning and discussing the basic
concepts to build up the formalism needed to construct the Standard Model of particle
interactions.
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1 Lecture I

Fields, Lagrangians, Equations of Motion, Conservation Laws,
Quantization

The modern theory of fundamental interactions is the theory of Quantised Fields.
The main object of quantum field theory is a quantum field.

1.1 Fields

The Field is the most fundamental and universal form of matter known so far which
describes a system with an infinite number of degrees of freedom. It has already
appeared in classical physics while describing the action of two sources at a distance
(Fig.1). Because of a finite velocity of spread of interaction, limited by the velocity
of light, the source does not feel the other one immediately. The substance carrying
the interaction is called the field as it was introduced by Michael Faraday in the 19-th
century.

Figure 1:

The Quantum Field is the synthesis of the classical Faraday-Maxwell electromag-
netic field and the field of probabilities in non-relativistic quantum mechanics. The
quantum field is a single object replacing the fields and particles in classical physics.
One field of that sort being a function of a space-time point xµ describes all the particles
of the same kind in the Universe.

The concept of the quantum field enables us to describe systems with an uncon-
served number of particles and also transformations of one particle into another. El-
ementary act of any interaction becomes the interaction of several quantum fields at
a space-time point while the usual classical ”forces” appear to be secondary effects
resulting from the exchange of intermediate fields.

Mathematically, the field is a straightforward generalization of a point. In case of
a field we have an infinite and continuous system of points with an infinite number of
degrees of freedom.

1.2 Lagrangians

In what follows we consider the so-called Lagrangian approach to Quantum Field
Theory. It is constructed in full analogy with an ordinary Lagrangian mechanics of a
point. The main role is played by the Lagrangian function L(t) that actually is a
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function of dynamical variables and is a sum over all points of a system. In case of a
field theory the sum is replaced by the integral over the space. The correspondence
with classical mechanics is shown in Table 1.

Table 1.

ThePoint TheF ield
xiµ i = 1, 2, ..., N ϕ(xµ)

L(t) =
N∑
i=1

L(xi) L(t) =
∫

space
d3xL(x)

A =
t2∫
t1

L(t)dt A =
∫

time
L(t)dt =

∫
space−time

d4xL(x)

The action A then becomes an integral of the Lagrangian density function over the
space-time.

The Lagrangian density, usually called simply the Lagrangian, obeys the following
requirements:

1) Lorentz (Poincare) Invariance. This is a physical requirement of invariance
of equations of motion obtained from the Lagrangian (see below eq.(1.1)) with respect
to the choice of a frame. This means that the Lagrangian being a function of fields
and their derivatives has no explicit dependence on x:

L(x) = L[ϕ(x), ∂ϕ(x), ...].

The Lorentz invariance means that

L′(x′) = L[ϕ′(x′), ∂ϕ′(x′), ...] = L[ϕ(x), ∂ϕ(x), ...] = L(x),

i.e. L(x) is a scalar, while the fields may belong to various representations of the
Lorentz group like spinor, vector, etc.

2) Locality. This is a postulate which is experimentally verified. So far we have
no evidence of deviation from local QFT. Locality of L(x) means that it contains a
limited number of partial derivatives of the fields.

3) Correspondence with classical mechanics. Equations of motion in classical
mechanics contain second-order derivatives with respect to time. This means that the
Lagrangian should depend only on first-order derivatives of the fields in order to have
the proper equations of motion., i.e.

L(x) = L[ϕ(x), ∂ϕ(x)].

4) Unitarity. This is the property of the S-matrix following from the require-
ment of conservation of the norm of a state vector. Unitarity in turn means that
the Lagrangian should be a real (hermitean) function which provides real (hermitean)
dynamical invariants like energy, momentum, etc.

It should be noted that the Lagrangian is not uniquely defined. One can add to it
a total derivative of an arbitrary function

L → L′ = L + ∂µF
µ
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without changing the action, i.e. A′ = A, and hence the equations of motion. Strictly
speaking this is true if one ignores the topologically nontrivial contributions coming
from the boundary conditions. This is sometimes used to choose the Lagrangian in the
most useful form.

1.3 Equations of Motion

Equations of motion can be obtained from the Lagrangian with the help of the prin-
ciple of the least action, which states that during the motion of a classical system
the action along the path takes the minimal value, i.e. δA = 0. To find out the cor-
responding equation, consider the variation of the field δui(x) such that δui(x) = 0 at
the boundary. Then the equation δA/δui = 0 leads to the Euler-Lagrange equation of
motion

δL
δui(x)

− ∂µ
δL

δ∂µui(x)
= 0, (1.1)

where ∂µ ≡ ∂/∂xµ.

1.4 Dynamical Invariants

The equations of motion enable us to construct the dynamical invariants, i.e. time-
independent quantities such as the energy, momentum, angular momentum, charge,
etc.

Consider the variation δL corresponding to the transformation of the field ui → ui
+δui with the argument xµ being unchanged for the time being. One has

δL =
δL
δui

δui +
δL
δ∂µui

δ(∂µui).

Using the equation of motion for the first term and the fact that in our case δ∂µui =
∂µδui, we find that

δL = ∂µ
δL
δ∂µui

δui +
δL
δ∂µui

∂µδui.

So, finally we have

δL = ∂µ[
δL
δ∂µui

δui].

Consider now a global (rigid) transformation δui = iαaT a
ijuj, where parameters

αa = const and T a are the generators of the transformation. Then

δL = −αa∂µj
µa,

where the current jµa is

jµa = −i δL
δ∂µui

T a
ijuj. (1.2)

If L is invariant, i.e. δL = 0, there will be conserved currents

∂µj
µa = 0.
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Taking the integral over the whole space we have
∫
d3x(

∂

∂t
j0a −−→∇−→

j
a
) = 0.

If
−→
j

a
vanishes at spatial infinity, then the term with the total derivative vanishes and

we come to
d

dt

∫
d3xj0a(−→x , t) = 0,

i.e. the charge

Qa =
∫
d3xj0a(−→x , t) (1.3)

is conserved
dQa

dt
= 0. (1.4)

This is Neuther’s theorem.

1.5 Noether’s theorem

Let the action be invariant under some s-parameter transformation

{
xµ → x′µ = fµ(x, ω), ωk, k = 1, 2, ..., s

ui(x) → u′i(x
′) = Ui(x, ω), are the parameters

so that δA = 0.
Then there exist s dynamical invariants

Ck =
∫
d3xΘ0

k(x),
dCk

dt
= 0, k = 1, 2, ..., s,

where

Θµ
k =

δL
δ∂µui

(∂νuiX
ν
k −Ψi,k)−Xµ

kL, (1.5)

Xµ
k =

∂fµ(x, ω)

∂ωk

|ω=0, Ψi,k =
∂Ui(x, ω)

∂ωk

|ω=0 . (1.6)

The previous case (eq.(1.2)) corresponds ti the internal symmetry transformation when

Xµ
k = 0, Θµ

k = jµk , Ck = Qk.

1.5.1 Example 1: Translation
{
x′µ = xµ + ωµ, Xµ

k = δµk , Θµ
ν = T µ

ν ,
u′i(x

′) = ui(x), Ψi,k = 0, Cν = Pν .

Here T µ
ν and Pν are the energy-momentum tensor and four-momentum, respectively

T µν(L) =
δL
δ∂µui

∂νui − gµνL,

P ν =
∫
d3xT ν0(−→x , t). (1.7)

The conservation of the momentum P ν(t1) = P ν(t2) results from the invariance of the
Lagrangian with respect to translational invariance L(x+ ω) = L(x).
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1.5.2 Example 2: Lorentz rotation
{
x′µ = xµ + δLµνxν , X(ρσ)

ν = xσδρν − xρδσν ,

u′i(x
′) = A

j(µν)
i uj(x)δLµν , Ψ

(ρσ)
i,k = A

j(ρσ)
i uj.

Here A
j(ρσ)
i depends on the spin of a field. The conserved quantity now is the total

angular momentum

M τ(ρσ) =
δL
δ∂τui

(∂ρuix
σ − ∂σuix

ρ) (1.8)

+ L(xρgστ − xσgρτ)− δL
δ∂τui

A
j(ρσ)
i uj. (1.9)

The last term is the spin-tensor Sτ(ρσ).
We now illustrate these general expressions by some simple examples.

1.6 Illustration

1.6.1 Example 1: Scalar Fields

The Lagrangian with the above mentioned properties for a real scalar field is

Ls =
1

2
∂µϕ(x)∂

µϕ(x)− m2

2
ϕ2(x). (1.10)

The first term here is the kinetic energy and the last one is the mass term. Equation
of motion following from (1.9) is the well known Klein-Gordon equation

(2−m2)ϕ(x) = 0, (1.11)

where we use the notation 2 = −∂2 = −∂20 +
−→
∂x

2
.

We construct now the dynamical invariants (1.7):

T µν = ∂µϕ∂νϕ− gµνL,
T 00 = H = 1

2
[

·
ϕ2 +(

−→∇ϕ)2 +m2ϕ2],

P k =
∫
T 0kd−→x = − ∫

·
ϕ∂k ϕd−→x ,

where the dot means the derivative with respect to t.
To solve the K-G equation, it is useful to go to the momentum representation.

Performing the Fourier transform we have

ϕ(x) =
1

(2π)2

∫
d4keikxϕ̃(k),

where ϕ̃(k) obeys the equation

(k2 −m2)ϕ̃(k) = 0. (1.12)
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The solution of eq.(1.11) is

ϕ̃(k) =
√
2πδ(k2 −m2)ϕ(k),

where ϕ(k) is an arbitrary function of kµ with k0 = ±
√−→
k

2
+m2. Two possible signs

of the square root correspond to two linearly independent solutions

ϕ(x) = ϕ+(x) + ϕ−(x) (1.13)

such that

ϕ±(x) =
1

(2π)3/2

∫
d4ke±ikxδ(k2 −m2)ϕ̃±(k), k0 = +

√−→
k

2
+m2.

Taking the integral over k0 we get

ϕ±(x) =
1

(2π)3/2

∫
d
−→
k√
2k0

e±ikxa±(
−→
k ), (1.14)

with the redefinition a±(
−→
k ) ≡ ϕ̃±(k)/

√
2k0. Now the four-momentum takes the form

P µ =
∫
T 0µd−→x =

∫
d
−→
k kµa+(

−→
k )a−(

−→
k ) (1.15)

or if one restores the initial order of multipliers

P µ =
1

2

∫
d
−→
k kµ[a+(

−→
k )a−(

−→
k ) + a−(

−→
k )a+(

−→
k )]. (1.16)

One can give now the interpretation to these coefficients a±(
−→
k ). As follows from

eq.(1.15) the product a+(
−→
k )a−(

−→
k ) represents the particle density with momentum−→

k and energy k0. We shall see after quantization that a±(
−→
k ) will become the creation

(annihilation) operators and the product will be the operator of the number of particles
with a given momentum.

1.6.2 Example 2: Vector fields

The Lagrangian with due regard to the note on p.12 can be chosen to be

L = −1

4
Fµν(x)F

µν(x) +
m2

2
Uµ(x)U

µ(x), (1.17)

where Fµν(x) = ∂µUν(x)− ∂νUµ(x)(x).
The corresponding equation of motion

∂νF
νµ −m2Uµ = (2−m2)Uµ + ∂µ∂νU

ν = 0 (1.18)

is called the Proca equation. Taking the derivative of eq.(1.17) with respect to ∂µ we
get the constraint

∂µU
µ = 0 (1.19)
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which is called the Lorentz condition. Thus, the Proca equation is equivalent to the
K-G equation with the Lorentz condition. Therefore, the solutions of eq.(1.17) are the
same as eqs.(1.12), (1.18).

Uµ(x) = U+
µ (x) + U−

µ (x), (1.20)

U±
µ (x) =

1

(2π)3/2

∫
d
−→
k√
2k0

e±ikxU±
µ (

−→
k )

plus the constraint
k0U

±
0 (

−→
k ) = knU

±,n(
−→
k ), n = 1, 2, 3. (1.21)

The four-momentum and spin-vector for a real vector field are (cf.eq.(1.14))

P ν = −
∫
d
−→
k kν [U+

µ (
−→
k )U−,µ(

−→
k )],

−→
S = i

∫
d
−→
k kν [

−→
U

+
(
−→
k )×−→

U
−
(
−→
k )], (1.22)

where the arrow mean the three-vectors and the spin vector is defined by Sa =
ǫabc

∫
d−→x S0

bc. One can see that P ν in eq.(1.21) is not positive definite due to the
Minkowskian signature, while the positive definiteness of the Hamiltonian (P 0) is a
necessary requirement for stability of a classical system. However, we have not yet
used the constraint (1.20). Substituting eq.(1.20) into eq.(1.21) we have

−UµU
µ =

−→
U
−→
U − 1

k20
(
−→
k
−→
U )(

−→
k
−→
U ).

This form should be diagonalized, which can be done by introducing the local frame

−→
U (

−→
k ) = −→e 1a1(

−→
k ) +−→e 2a2(

−→
k ) +

−→
k

|−→k |
k0
m
a3(

−→
k ), (1.23)

where the polarization vectors −→e i obey the normalization properties

(−→e i
−→·e i) = δij ,

−→e 3 =

−→
k

|−→k |
.

Eq.(1.22) leads to −UµU
µ = anan, n = 1, 2, 3, so that eq.(1.21) becomes

P ν =
∫
d
−→
k kν

∑
n
[a+n (

−→
k )a−n (

−→
k )] =

= 1
2

∫
d
−→
k kν

∑
n
[a+n (

−→
k )a−n (

−→
k ) + a−n (

−→
k )a+n (

−→
k )],

which is now obviously positive definite. However, if we consider the projection of the
spin-vector along the momentum, we find out that it is not diagonal

S3 ∼ i[a+1 (
−→
k )a−2 (

−→
k )− a+2 (

−→
k )a−1 (

−→
k )] (1.24)
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making the interpretation less clear. To diagonalize eq.(1.23), we make the linear
substitution

a±1 =
b±1 + b±2√

2
, a±2 =

b±1 − b±2
i
√
2

, a±3 = b±3

and finally get

P ν =
1

2

∫
d
−→
k kν

∑

n

[b+n (
−→
k )b−n (

−→
k ) + b−n (

−→
k )b+n (

−→
k )],

S3 ∼ i[b+1 (
−→
k )b−1 (

−→
k )− b+2 (

−→
k )b−2 (

−→
k )]. (1.25)

Now the interpretation is straightforward. For instance, b+1 b
−
1 is the density of par-

ticles with momentum
−→
k , energy k0 and projection of the spin equal to +1. Actually,

b±1,2 correspond to circular polarization, while a±1,2 are linear polarization vectors. Due
to the absence of b+3 b

−
3 in eq.(1.25) it corresponds to a zero spin projection.

Thus, we conclude that a vector field with non-zero mass describes particles with
three possible spin projections equal to +1, 0,−1.

1.6.3 Example 3: Spinor fields

The Lagrangian now is

L = ψ(x)iγµ∂µψ(x)−mψ(x)ψ(x) (1.26)

and leads to the equation of motion which is the Dirac equation

(i∂̂ −m)ψ(x) = 0. (1.27)

Here ∂̂ ≡ γµ∂µ, γ
µ being the Dirac 4x4 γ-matrices. The spinor field ψα(x) is a column

vector

ψ(x) =




ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)




and the conjugated one is a row vector ψ(x) = ψ+(x)γ0, where ψ+means hermitean
conjugation.

Dynamical invariants here are also given by Noether’s theorem. The energy-momen-
tum tensor, charged current and spin-tensor are, respectively

T µν(x) =
i

2
[ψγµ∂νψ − ∂νψγµψ],

Jµ(x) = ψγµψ, (1.28)

Sτ(µν)(x) =
1

4
ψ(γτσµν + σµνγτ )ψ, σµν =

1

2i
[γµ, γν ].

To solve the Dirac equation we go to the momentum representation. Just like in
the bosonic case, there are two solutions

ψ±(x) =
1

(2π)3/2

∫
d−→p√
2p0

e±ipxψ±(−→p ),
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where ψ±(−→p ) obey the equation

(m± p̂)ψ±(−→p ) = 0. (1.29)

In the −→p = 0 frame this leads to

(γ0 ± I)ψ±(0) = 0.

Taking the particular representation for γ0matrix

γ0 =




1
1

−1
−1


 , I =




1
1

1
1




one gets the following two-parameter solutions for both the cases

ψ−
α (0) = c1δ1α + c2δ2α,

ψ+
α (0) = c3δ3α + c4δ4α. (1.30)

Here α is a spinor index running from 1 to 4 and δiα is the Kronecker symbol.
Hence, there are two independent solutions of eq.(1.29) which are actually two spin

eigenstates for both ψ+ and ψ−. To go to an arbitrary momentum one should perform
the Lorentz rotation of eq.(1.30).

Let us introduce a pair of such normalized solutions to the Dirac equation (1.29):

vs,±α (−→p ), s = 1, 2; α = 1, 2, 3, 4

and the conjugated ones v∗s,±α (−→p ) defined by

v∗s,±α (−→p ) = (vs,±α (−→p ))∗

with the normalization property

v∗s,±α (−→p )vτ,±α (−→p ) = δsτ .

Then for an arbitrary solution we have an expansion

ψ±
α (

−→p ) =
∑

s=1,2

vs,±α (−→p )a±s (−→p ). (1.31)

Substituting eq.(1.31) into eq.(1.28) we get

P ν =
1

2

∫
d−→p pν

∑

s

[a∗+s (−→p )a−s (−→p )− a∗−s (−→p )a+s (−→p )]. (1.32)

Note the very important difference in sign for the second term as compared to
the bosonic case, eq.(1.15). The Hamiltonian happens not to be positive definite. To
avoid this disaster, one needs the proper quantization procedure (Fermi-Dirac) to be
discussed below.
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For the interpretation of the coefficients a±s (
−→p ) it is also useful to consider the spin

projection and the charge operators:

S3 ∼ 1

2
[a∗+1 a−1 − a∗+2 a−2 + a∗−1 a+1 − a∗−2 a+2 ],

Q =
∫
ψ∗ψd−→x =

∫
d−→p

∑

s

[a∗+s a−s + a∗−s a+s ]. (1.33)

Now the interpretation becomes clear as in the previous cases. We see that the Dirac
field describes charged particles with two possible spin projections equal to ±1/2.

1.7 Quantization

The next step of our program is the quantization procedure as far as we know that at
small distances Nature maintains the quantum properties. Quantization in field theory
is a generalization of that one in Quantum mechanics with N particles when N → ∞.

We start with the consideration of the most popular model which is directly con-
nected with the free field theory, namely, with the harmonic oscillator.

1.7.1 Occupation number (”second” quantization) representation.

The Hamiltonian of the harmonic oscillator which enters into the Schrödinger equa-
tion is

H =
1

2
(p2 + ω2q2), (1.34)

where p and q are the momentum and coordinate, respectively. Solving the eigenvalue
equation

Hψn = Enψn,

we find the spectrum En = h̄ω(n + 1/2). The eigenfunctions happen to be connected
with each other by acting of some operators a+ and a

a+ψn =
√
n+ 1ψn+1, aψn =

√
nψn−1,

where

a+ =

√
ω

2
(q̂ − ip̂

ω
), a =

√
ω

2
(q̂ +

ip̂

ω
)

are usually called the rising and lowering operators, respectively, and q̂ and p̂ are the
operators of the coordinate and momentum in some representation. One can also define
the ground state ψ0 by aψ0 = 0.

The operators a+ and a obey the following algebra

aa+ = n̂+ 1, a+a = n̂, [a, a+] = 1,

[a, a] = 0, [a+, a+] = 0, (1.35)

where n̂ψn = nψn. The Hamiltonian now can be expressed in terms of these operators

H =
ω

2
(aa+ + a+a) = ω(n̂+ 1/2). (1.36)
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Because of the equidistant spectrum we can now interpret the operators to be
a+ - the creation operator of a quantum,
a - the annihilation operator of a quantum,
n̂ - the operator of a number of quanta.

Hence any n-quantum state can be obtained by acting of creation operators on the
vacuum state

ψn =
(a+)n√
n!

ψ0.

In case of N oscillators the Hamiltonian is simply a sum of those for the individual
oscillators

H =
N∑

k=1

Hk =
N∑

k=1

ωk(a
+
k ak + 1/2), (1.37)

while the algebra of the operators becomes

[ak, a
+
l ] = δkl, [ak, al] = 0, [a+k , a

+
l ] = 0. (1.38)

Thus, an arbitrary quantum state can be described by the so-called occupation num-
bers, i.e. the numbers telling you how many creation operators of a given type are
there

ψ(n1, ..., nN) =
∏

1≤k≤N

[
(a+k )

nk

√
nk!

]ψ0.

This is called the occupation number representation (or the Fock representa-
tion).

We will show now that the scalar field obeying the Klein-Gordon equation is equiv-
alent to a set of oscillators (1.37). Consider the 3-dimensional Fourier transform

u(t,−→x ) =
∫
d
−→
k [ei

−→
k −→x a(t,−→k ) + e−i

−→
k −→x a∗(t,−→k )].

Then, the K-G equation gives the equation of motion for a(t,
−→
k )

··
a (t,

−→
k ) + ω2

ka(t,
−→
k ) = 0,

where the frequency ω2
k =

−→
k

2
+ m2. This is nothing else than the oscillator-type

equation. If we now put the system into a ”box” of volume V = L3 with periodic
boundary conditions, we will have a discrete set of possible values of momenta

−→
k (n1, n2, n3) =

{
2π

L
n1,

2π

L
n2,

2π

L
n3

}
.

Each value of
−→
k n corresponds to an oscillator with the frequency

ω2
n = m2 +

4π2

L2
(n2

1 + n2
2 + n2

3).

Thus, the field obeying the K-G equation corresponds to a set of oscillators labelled
by three integers n1, n2, n3. Transition to an infinite volume L→ ∞ means that all the
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sums like eq.(1.37) become integrals while the operators are renormalized according to
the rules

(
2π

L

)3∑

k

→
∫
d
−→
k ,

(
L

2π

)3

δkk′ → δ(
−→
k −−→

k
′
), an →

(
2π

L

)3

a(
−→
k ).

The commutation relations, eq.(1.38) become

[a(
−→
k ), a+(

−→
l )] = δ(

−→
k −−→

l ), [a(
−→
k ), a(

−→
l )] = 0, [a+(

−→
k ), a+(

−→
l )] = 0. (1.39)

Therefore the quantization means the transformation from the field u(x) to the
operator u(x) acting on a state vector ψ. Commutation relations follow from those for
a+ and a (eq.(1.39))and will be obtained below.

1.7.2 Canonical quantization

This scheme of quantization is very natural from the point of view of classical mechanics
in the framework of Hamiltonian equations of motion. In the canonical formalism
the basic variables are the generalized coordinate q and generalized momentum p

p =
δL
δ

·
q
,

·
q=

∂q

∂t
.

The Hamiltonian equations of motion for some dynamical variable A(p, q) are of
the form

dA(p, q)

dt
= {A,H} , (1.40)

where the Poisson bracket is

{a, b} ≡ ∂a

∂q

∂b

∂p
− ∂a

∂p

∂b

∂q
. (1.41)

For an oscillator

H =
1

2
(p2 + ω2q2), {q, p} = 1, (1.42)

so the equations of motion are

·
q= {q,H} = p,

·
p= {p,H} = −ω2q.

Their solution can be expressed in terms of two functions a(±)(t):

q(t) =
a(+)(t) + a(−)(t)√

2ω
, p(t) = i

√
ω

2
(a(+)(t)− a(−)(t)),

where a(±)(t) obey the diagonal equations

·
a(±)(t)= ±iωa(±)(t)
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with the solution
a(±)(t) = a(±)(0)e±iωt.

After identification a(+) = a+, a(−) = a, eqs.(1.42) take the form

H =
ω

2
(aa+ + a+a),

{
a, a+

}
= −i. (1.43)

Canonical quantization can now be performed according to the following postu-
late of canonical quantization: All dynamical variables (q, p, a, a+, H,etc.) are the
operators acting on the wave function ψ with the commutation relations obtained by
the substitution

{a, b}classical → {a, b}quantum =
1

i
[a, b] .

Then the equation of motion for the operator A (1.40) becomes

i
dA

dt
= [A,H ] , (1.44)

while the commutators are

[q, p] = i,
[
a, a+

]
= 1.

1.7.3 Relativistic scheme of quantization

Within the Lagrangian approach the quantization can be performed in a totally Lorentz
covariant way. The postulate of quantization then is the following: all dynamical
variables are expressed through the field operators ui(x) in the same way as in classical
field theory with inclusion of commutation relations (to be specified).

For example, for the scalar field the four-momentum is given by eq.(1.15) where

a±(
−→
k ) are the operators.

To find out the physical meaning of the field operators u±(x) or a±(
−→
k ), we consider

the transformation properties of these operators under the group of translations

u′(x) = u(x− ω) = U−1(ω)u(x)U(ω). (1.45)

Here U(ω) = eiPµωµ

is the operator of translation, Pµ being the genarator. Infinitesimal
form of eq.(1.45) is

i
∂u(x)

∂xµ
= [u(x), Pµ], (1.46)

which is a generalization of eq.(1.44). For the Fourier components this leads to

kµa
±(
−→
k ) = ∓[a±(

−→
k ), Pµ]. (1.47)

Consider the eigenstate vector Φp

PµΦp = pµΦp.
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Then we have from eq.(1.47)

Pµa
+(
−→
k )Φp = (p+ k)µa

+(
−→
k )Φp,

Pµa
−(
−→
k )Φp = (p− k)µa

−(
−→
k )Φp.

Hence
a±(

−→
k )Φp = Φp±k, k2 = m2.

Therefore, the interpretation of a±(
−→
k ) is obvious:

a+(
−→
k ) is the creation operator for a particle with momentum

−→
k and mass m.

a−(
−→
k ) is the annihilation operator for a particle with momentum

−→
k and mass m.

Analogously,
u+(x) is the creation operator for a particle of mass m at a space-time point xµ ,
u−(x) is the annihilation operator for a particle of mass m at a space-time point xµ

.
Due to the uncertainty principle we know either the position or the momentum of a
particle.

The vacuum state is defined by

a−(
−→
k )Φ0 = 0, Φ∗

0a
+(
−→
k ) = 0, Φ∗

0Φ0 = 1.

Then an arbitrary s-particle state is

Φs =
∫
d
−→
k1 ...d

−→
ksF

(i1,...,is)
s (

−→
k1 , ...,

−→
ks)a

+
i1
(
−→
k1)...a

+
is(

−→
ks)Φ0, (1.48)

where Fs is called the wave function of a system of s particles in momentum represen-
tation. For any state we have the Fock representation

Φ =
∑

s

Φs

with Φs given by eq.(1.48).

1.7.4 Types of commutation relations

We will derive now the commutation relations between field operators in coordinate
representation. according to the general rules they are

{ui(x), uj(y)}∓ → [ui(x), uj(y)]∓ = ∆ij(x− y), (1.49)

where the ”∓” signs correspond to the Bose and Fermi cases, respectively.
For the scalar fields we have eq.(1.39)

[a−(
−→
k ), a+(−→q )] = δ(

−→
k −−→q ).

Taking the integral over d
−→
k d−→q we get

1
(2π)3

∫ d
−→
k√
2k0

d
−→q√
2q0
ei(qy−kx) {[, ] = δ} =

= 1
(2π)3

∫ d
−→
k√
2k0

d
−→q√
2q0
δ(
−→
k −−→q )ei(qy−kx) = 1

(2π)3

∫ d
−→
k

2k0
eik(y−x)

≡ 1
i
D−(x− y),
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where we have introduced the notation

1

(2π)3

∫
d
−→
k

2k0
eik(x−y) =

1

i
D−(y − x) = iD+(x− y). (1.50)

Now
[
u−(x), u+(y)

]
= −iD−(x− y),

[
u+(x), u−(y)

]
= −iD+(x− y), (1.51)

[u(x), u(y)] = −iD(x− y),

where

D(x− y) = D+(x− y) +D−(x− y) =
1

(2π)3

∫
d4ke−ik(x−y)ǫ(k0)δ(k

2 −m2),

ǫ(k0) =

{
1 k0 > 0,
−1 k0 < 0.

The obtained commutators obey the very important property of local commuta-
tivity, namely

[u(x), u(y)] = 0, (x− y)2 < 0,

which reflects the causal property of independence of two events conncted by a space-
like interval.

In case of charged massive vector fields the commutator is

[a−n (
−→
k ), a∗+m (−→q )] = δnmδ(

−→
k −−→q ). (1.52)

This leads to
[U∗−

n (
−→
k ), U+

m(
−→q )] = δ(

−→
k −−→q )[δnm + knkm

m2 ],

[U∗−
0 (

−→
k ), U+

n (
−→q )] = −k0kn

m2 δ(
−→
k −−→q ).

In coordinate space we have

[U∗
ν (x), Uµ(y)] = (gµν +

1

m2

∂2

∂xν∂xµ
)iD(x− y) (1.53)

with the samew function D(x− y).
For the spinor field one should remind the problem with the positive definiteness

of the energy. The four-momentum in eq.(1.32) is

P ν =
1

2

∫
d−→p pν

∑

s

[a∗+s (−→p )a−s (−→p )− a∗−s (−→p )a+s (−→p )]

so we are forced to choose the anticommutator relation instead of a commutator one

[a∗−s (
−→
k ), a+r (

−→q )]+ = δrsδ(
−→
k −−→q ), (1.54)
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which leads to

P ν =
1

2

∫
d−→p pν

∑

s

[a∗+s (−→p )a−s (−→p ) + a+s (
−→p )a∗−s (−→p )], (1.55)

that is now positive definite. The anticommutator, eq.(1.54) is of a fermi type and
leads to the following anticommutator for spinor operators in coordinate space

[ψ(x), ψ(y)] =
1

i
S(x− y), (1.56)

where
S(x− y) = (i∂̂x +m)D(x− y).

1.7.5 Normal Ordering

Knowledge of a commutation relation helps us to define the so-called normal form of
an operator which is useful when calculating the matrix elements.

Normal form of an operator is the one where all the creation operators a+ stand
to the left of all annihilation operators a−, denoted by double dots : ... :. For example,
the product of two operators is

u∗(x)u(y) = u∗+(x)u+(y) + u∗+(x)u−(y) + u∗−(x)u+(y) + u∗−(x)u−(y).

Then the normal product is defined by

: u∗(x)u(y) := u∗+(x)u+(y) + u∗+(x)u−(y) + u+(y)u∗−(x) + u∗−(x)u−(y).

Thus,
u∗(x)u(y) =: u∗(x)u(y) : −iD−(x− y).

When calculating the matrix elements one has

Φ∗
0 : ... : Φ0 = 0,

so the only contribution comes from the commutators.
The following postulate is usually applied: All the dynamical variables are written

in the normal form. For exaample,

L =
1

2
: ∂µϕ(x)∂

µϕ(x) : −m
2

2
: ϕ2(x) :

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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2 Lecture II

Continuous Symmetries, Global and Local Symmetries, Gauge
Fields

We now proceed to the construction of interacting fields. The Guiding idea:
forms of interactions are dictated by symmetry principles. The Lagrangians are
constructed to be invariant under transformations of the fields with respect to definite
symmetry groups.

2.1 Continuous Symmetries

Transformations can be discrete or continuous. Examples of discrete transformations
playing an important role in physics are

P - reflection of space −→x → −−→x : Pϕ(−→x , t) = ϕ(−−→x , t),
T - reflection of time t→ −t : Tϕ(−→x , t) = ϕ(−→x ,−t),
C - charge conjugation: Cϕ(x) = ϕ∗(x).

The fundamental property of local QFT is the CPT - invariance.
The idea of symmetry is very attractive and quite natural. We meet it everywhere

in Nature. A human body, at least from outside, is left-right symmetric. Well known
snowflakes (Fig.2) are invariant under i) reflection with respect to cc′ plane, ii) rotation
through π

3
k, where k is an integer.

Figure 2:

If we consider a polygon (n-angular), it is invariant under rotations through 2π
n
k .

When n tends to infinity, we get the invariance under an arbitrary rotation, i.e. we
come to a continuous symmetry called the U(1) invariance.

2.2 Global Symmetries

2.2.1 Global U(1) symmetry

U(1) is the group of unitary 1x1 matrices with a unit determinant, i.e. just the phase
factors of the form eiα. Clearly

eiαeiβ = eiβeiα,
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so the group is Abelian. The transformation looks as follows

U(α)ϕ(x) = eiαQϕ(x), (2.1)

where α is a real parameter independent of x and Q is the charge of ϕ, the generator
of the transformation.

The Lagrangian
L = ∂µϕ

∗∂µϕ−m2ϕ∗ϕ− λ(ϕ∗ϕ)2 (2.2)

is clearly invariant under U(1). It can only involve pairs ϕ∗ϕ. The Noether’s current
(1.2) is (δϕ = iαϕ)

jµ = −i δL
δ∂µϕ

ϕ+ i
δL

δ∂µϕ∗ϕ
∗ = −i(∂µϕ∗ϕ− ∂µϕϕ∗).

The complex fields ϕ∗, ϕ can be written in terms of their real components

ϕ =
ϕ1 + iϕ2√

2
, ϕ∗ =

ϕ1 − iϕ2√
2

.

The Lagrangian (2.2) becomes

L =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 − m2

2
(ϕ2

1 + ϕ2
2)−

λ

4
(ϕ2

1 + ϕ2
2)

2. (2.3)

It is invariant under rotation

ϕ1 → ϕ′
1 = cosα ϕ1 − sinα ϕ2,

ϕ2 → ϕ′
2 = sinα ϕ1 + cosα ϕ2.

For α≪ 1
ϕ′
1 = ϕ1 − αϕ2, ϕ′

2 = ϕ2 + αϕ1.

Hence

δϕi = iαtjiϕj, t =

(
0 +i
−i 0

)
.

The Noether’s current then is

jµ = −i∂µϕ1(iϕ2)− i∂µϕ2(−iϕ1) = ∂µϕ1ϕ2 − ∂µϕ2ϕ1. (2.4)

Note that ϕ1 and ϕ2 are degenerate: m2
1 = m2

2 = m2. This is a typical consequence of
a symmetry, but not necessary, as will be seen later.

Another example of invariant Lagrangian is

L = iψγµ∂µψ −mψψ, (2.5)

where the current takes the form

jµ = iψ(x)γµψ.
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2.2.2 Global SU(2) Symmetry

SU(2) is the group of unitary 2x2 matrices with a unit determinant

U(α) = eiα
aTa

, (2.6)

where the generators T a (a = 1, 2, 3) are T a = τ 2/2, τa being the Pauli matrices

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
.

Due to nonzero commutators
[T a, T b] = iǫabcT c,

where ǫabc is a totally antisymmetric tensor, ǫ123 = 1, SU(2) is a non-Abelian group.

Consider a doublet 2 of scalars ϕ =

(
ϕ1

ϕ2

)
, where ϕ1,2 are the complex fields. The

conjugated field is ϕ+ = (ϕ∗
1, ϕ

∗
2). Then the transformation of the fields under (2.6) is

ϕ′ = Uϕ = eiα
aTa

ϕ,
ϕ+′ = ϕ+U+ = ϕ+e−iαaTa

.

Note that U+U = 1, i.e. T+ = T.
The Lagrangian invariant under SU(2) looks like (2.2)

L = ∂µϕ
+∂µϕ−m2ϕ+ϕ− λ(ϕ+ϕ)2. (2.7)

For α≪ 1 δϕi = iαa(T a)ijϕj , so that the Noether’s current (1.2) is

jµa = i
δL
δ∂µϕi

T aj
i ϕj − i

δL
δ∂µϕ

+
i

(−ϕ+jT ai
j ) = − i

2
[∂µϕ+iT aj

i ϕj − ∂µϕiT
ai
j ϕ

+j].

Again the symmetry has forced ϕ1 and ϕ2 to be degenerate. This only happens if there
is a unique nondegenerate lowest energy state- vacuum. In our case ϕ1 = ϕ2 = 0.

2.2.3 SU(N) Group

A natural generalization of SU(2) group is SU(N). It is often used in particle physics
and we consider some general properties of this group.

SU(N) is the group of NxN unitary matrices with unit determinant:

U ∈ SU(N), U+U = 1, detU = 1.

The number of generators of SU(N) is the number of real parameters characterizing
the general SU(N) matrix. In general, an NxN matrix has 2N2 real parameters. The
condition U+U = 1 imposes N2 constraints and that of detU = 1 adds one more
constraint. Hence, the total number left is N2−1, which gives the number of generators
of SU(N). The usual parametrization is like eq.(2.6)

U = exp[i
N2−1∑

a=1

αaT a] ≡ exp(iαaT a), (2.8)
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where T a are the generators. They obey the following properties:

U−1 = U+ : exp(−iαaT a) = exp(−iαaT+a) ⇒ T a = T+a,
detU = 1 : detU = expTr lnU = exp Tr(iαaT a) ⇒ TrT a = 0.

The matrices T a belong to the Lie algebra of SU(N) group with the commutator

[T a, T b] = ifabcT c, (2.9)

where fabc (numbers) are called the structure constants of the group. Clearly, fabc is
antisymmetric in its indices: the fabc is a set of numbers which completely characterize
the group.

Note that up to now we have considered the set of N2− 1 , NxN matricesT a: these
are known as the generators of SU(N) in the fundamental representation. But any
set of N2−1 traceless hermitean matrices which satisfies the Lie algebra (2.9) can also
be a group.

Consider N complex fields ϕi (i = 1, 2, ..., N) forming a vector

ϕ =




ϕ1

:
ϕN


 .

The SU(N) transformation is
ϕ→ ϕ′ = Uϕ

or in the component notation

ϕi → ϕ′
i = U j

i ϕj ; δϕi = i(αaT a)jiϕj.

N fields transformed in this way are said to transform according to the fundamental
representation of SU(N), denoted by N . A complex conjugate field ϕ∗

i is transformed
as

ϕ∗
i → ϕ∗′

i = U∗j
i ϕ

∗
j .

If we take transpose, i.e. write ϕ∗
j as a row vector we will get the hermitean conjugate

field
(ϕ∗

i )
T = ϕ+i

transformed as
ϕ+i → ϕ+i′ = ϕ+j(U+)ij .

N fields transformed in this way are said to transform according to the conjugate
fundamental representation of SU(N), denoted by N .

Combining the fundamental representation with its conjugate we produce the direct
(tensor) product of representations being the NxN matrix

(ϕ⊗ χ+)ji = ϕiχ
+j = (ϕiχ

+j − 1

N
δjiϕkχ

+k) +
1

N
δjiϕkχ

+k. (2.10)
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If we take the trace of eq.(2.10)

Tr(ϕ⊗ χ+) = ϕkχ
+k

we find that the first term is a traceless matrix with N2 − 1 independent components:

M j
i = ϕiχ

+j − 1

N
δjiϕkχ

+k,

while the remaining matrix is diagonal with one component

Sj
i =

1

N
δjiϕkχ

+k.

It is useful to see how M and S are transformed under SU(N). One has

M j
i → (M ′)ji = U l

iϕlχ
+mU+j

m − 1

N
δjiU

l
kϕlχ

+mU+k
m .

Using the unitarity properties this leads to

(M ′)ji = U l
iϕlχ

+mU+j
m − 1

N
δjiϕlχ

+l.

or in matrix notation

M →M ′ = UMU+,

S → S ′ = S. (2.11)

The N2 − 1 independent components of the matrix M j
i are said to transform accord-

ing to the adjoint representation of SU(N) denoted by N2 − 1 . The remaining
component Sj

i is invariant under SU(N), it transforms as a singlet denoted by 1 .
So, we have shown the decomposition law to be valid for any SU(N) group

N ⊗N = N2 − 1⊕ 1.

Note that if we identify the structure constants fabc with the matrix elements of N2 −
1×N2 − 1 matrix T b

fabc = i(T b)ac

the matrices T b would be the generators of SU(N) in the adjoint representation.

2.3 Local Symmetries and Gauge Fields

2.3.1 Local Symmetries

Local symmetries in field theory were introduced by Yang and Mills in 1954. They
wondered what happens if one allows local symmetry transformations, i.e. the group
parameters αa be functions of space-time

αa = αa(x).
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The transformations
ϕ(x) → ϕ′(x) = U(x)ϕ(x) (2.12)

are called the gauge transformations.
This step happens to be nontrivial one. The kinetic terms in the Lagrangians are no

longer invariant. To see this, consider an N-component Dirac field ψ in the fundamental
representation of SU(N). The kinetic term behaves like

ψiγµ∂µψ → ψU+(x)iγµ∂µ(U(x)ψ) =
= ψi(U+γµU︸ ︷︷ ︸)∂µψ + ψU+iγµ(∂µU)ψ

γµ

The last term is a new one which makes the Lagrangian non-invariant. To remedy this
we introduce the so-called covariant derivative Dµ defined in such a way as to give
the invariant kinetic term

ψiγµDµψ → ψ
′
iγµD′

µψ
′ = ψiγµDµψ. (2.13)

Eq.(2.13) gives us the transformation of Dµ :

ψ
′
iγµD′

µψ
′ = ψU+iγµD′

µUψ
def
= ψiγµDµψ.

Hence
D′

µ = UDµU
+ (2.14)

and
(Dµψ)

′ = UDµψ. (2.15)

2.3.2 The Gauge Fields

Introducing the difference of two derivatives

Vµ = ∂µ −Dµ

we get with the help of eqs.(2.14), (2.15)

[(∂µ −Dµ)ψ]
′ = ∂µψ

′ − UDµψ = ∂µUψ + U∂µψ − UDµψ
= U(∂µ −Dµ)ψ + ∂µUψ.

Thus
(∂µ −Dµ)

′ψ′ = [U(∂µ −Dµ)U
+ + (∂µU)U

+]ψ.

This gives the transformation law for Vµ

V ′
µ = UVµU

+ + (∂µU)U
+. (2.16)

The first term of eq.(2.16) is the well known adjoint representation (2.11). It can be
decomposed in the generators Vµ = V a

µ T
a. The second term can also be expressed in

the same way as Ca
µT

a.
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Thus , we end up with N2−1 gauge fields V a
µ transformed according to the adjoint

representation of SU(N).
Now the locally invariant Lagrangian for fermions in the fundamental representation

takes the form

LF = ψiγµDµψ −mψψ (2.17)

= ψiγµ∂µψ −mψψ − iψγµV a
µ T

aψ

and contains the interaction. We need a kinetic term for fields Vµ as well and it
must be also gauge-invariant. To find it, we consider the commutator of two covariant
derivatives

[Dµ, Dν ] → [D′
µ, D

′
ν ] = U [DµDν −DνDµ]U

+.

Acting on some field ψ we have

[Dµ, Dν ]ψ = Dµ(Dνψ)−Dν(Dµψ) =
−(∂µVν − ∂νVµ − [Vµ, Vν ])ψ = −Gµνψ.

According to eqs. (2.14) and (2.15) the strength tensor Gµν has the following trans-
formation properties

Gµν → G′
µν = UGµνU

+.

Thus, the kinetic term which is invariant under SU(N) is

Lgauge =
1

2g2
Tr(GµνG

µν), (2.18)

where g is a number introduced for a proper normalization (see below). The invariance
of Lgauge follows from the properties of the matrices:

Tr(G′
µνG

′µν) = Tr(UGµνU
+UGµνU+) = Tr(U+UGµνG

µν) = Tr(GµνG
µν).

Consider now the coupling to scalar fields. The recipe is the following: substitute
the covariant derivative Dµ instead of ∂µ into the globally invariant Lagrangian, e.g.
(2.7)

Ls = (DµΦ)
+(DµΦ)− V (Φ+Φ). (2.19)

Eq.(2.19) is obviously gauge-invariant.
Note that Vµ = V a

µ T
a. The same is true for Gµν :

Gµν = ∂µV
a
ν T

a − ∂νV
a
µ T

a − V b
µV

c
ν [T

b, T c] =
= (∂µV

a
ν − ∂νV

a
µ − ifabcV b

µV
c
ν )T

a = Ga
µνT

a.

Redefining the fields V a
µ = igAa

µ we have

1

2g2
Tr(GµνG

µν) =
1

2g2
Ga

µνG
µνbTr(T aT b) =

1

4g2
Ga

µνG
µνa = −1

4
F a
µνF

µνa,

where
Ga

µν = igF a
µν , F a

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν
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and we accept the usual normalization of the generators in the fundamental represen-
tation

Tr(T aT b) =
1

2
δab.

Finally, the Lagrangian eqs. (2.17), (2.18) and (2.19) take the form

Lgauge = −1

4
F a
µνF

µνa, (2.20)

Lfermion = ψ(iγµ∂µ −m)ψ + gψγµAa
µT

a
Fψ,

Lscalar = [(∂µ − igAa
µT

a
S )Φ]

+[(∂µ + igAaµT a
S )Φ]− V (Φ+Φ).

They have the following remarkable properties:

i) the universal coupling constant g ;

ii) non-Abelian gauge theories are non-linear, i.e. contain self-interactions in a nat-
ural way;

iii) the gauge fields are massless, an explicit mass term violates the gauge invariance.

2.3.3 Note on Quantization of the Gauge Fields

having the Lagrangian for the gauge fields we can quantize them according to the
general rules. However, the straightforward quantization meets with some obstacles.
To see this we consider the canonical quantization. The generalized canonical momenta
corresponding to eqs. (2.18) are

paµ =
δL

δ∂0Aa
µ

= F a
µ0.

Hence pa0 = F a
00 = 0. At the same time we would like to preserve the usual commutation

relation [q, p] = 1. Clearly, we have a contradiction. The reason is that the Lagrangian
(2.18) is singular. Aa

0 has no canonically conjugated momenta, it is not a dynamical
variable, but a constraint, and can be eliminated from the equations.

Consider the gauge equation of motion (the Abelian case)

2Aν + ∂ν(∂µAµ) = 0. (2.21)

Applying the gauge transformation Aµ → A′
µ = Aµ + ∂µf we see that the longitudinal

part of the vector field ∂µAµ ≡ χ(x) is not invariant, but is transformed like

χ→ χ′ = χ+ ∂2f

and can be eliminated by choosing ∂2f = −χ. This choice of a gauge ∂µAµ = χ(x) = 0
is called the Lorentz gauge.

Thus, the gauge field can be divided into two parts

Aµ = Atr
µ + Along

µ ,
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where the physical degrees of freedom are associated only with the transverse part
obeying the equation

(gµν∂
2 − ∂µ∂ν)A

tr
µ = 0. (2.22)

The differential operator of eq.(2.22) Ktr
µν = gµν∂

2−∂µ∂ν has no inverse one needed for
a solution. This is another aspect of the same problem. Note that this problem was
absent in case of massive vector fields due to the mass term. Eqs. (1.22) are singular
in the m→ 0 limit.

The solution of the problem can be achieved via the following recipe: introduce a
symmetry breaking term to remove the degeneracy of the Lagrangian

Ltr → L = −1

4
FµνF

µν − 1

2α
(∂µAµ)

2, (2.23)

where α is a number. Then eq. (2.21) becomes

∂νFµν −
1

α
∂µ(∂A) = 2Aµ + (1− 1

α
)∂µ(∂A) = 0 (2.24)

and leads to
2∂µAµ = 2χ = 0. (2.25)

The differential operator in eq.(2.24) now is

Ktr
µν → Kµν = gµν2+ (1− 1

α
)∂µ∂ν .

Its Fourier transform is of the form

gµνk
2 − (1− 1

α
)kµkν = k2P tr

µν −
1

α
k2P l

µν ,

where

P tr
µν = gµν −

kµkν
k2

, P l
µν =

kµkν
k2

are the corresponding projectors. The inverse operator now exists:

K−1
µν =

1

k2
P tr
µν +

dl
k2
P l
µν , dl = α.

This enables us to solve eq.(2.24) making the Fourier transform. The diagonalization
can now be achieved by introducing the local frame

A±
µ (
−→
k ) = e1µa

±
1 (
−→
k ) + e2µa

±
2 (
−→
k ) + e3µa

±
3 (
−→
k ) + e0µa

±
0 (
−→
k ), (2.26)

with the commutation relation

[a−µ (
−→
k ), a+ν (

−→q )] = gµνδ(
−→
k −−→q ). (2.27)

Note the wrong sign for a0 (indefinite metric). However, due to the Lorentz condition

|−→k |a±3 (
−→
k )− k0a

±
0 (
−→
k ) = 0, |−→k | = k0,
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hence
a+3 a

−
3 = a+0 a

−
0

and the four-momentum contains only the contribution of the transverse quanta

P ν =
∫
d
−→
k kν

∑

s=1,2

a+s (
−→
k )a−s (

−→
k ). (2.28)

Eq.(2.28) is clearly positive definite. Eq.(2.27) leads to the following commutator of
the fields in coordinate space

[Aµ(x), Aν(y)] = igµνD(x− y), (dl = 1). (2.29)

2.3.4 The Ghost Fields

The situation is more complicated in the non-Abelian case. Eq.(2.25) here becomes

Dµ∂µχ
a = 0 (2.30)

or
∂2µχ

a + gfabcAb
µ∂µχ

c = 0.

So, one can not put χa = 0 any longer. It will be created due to the interaction with
the other fields. Of course, one may ignore the χ-fields in external states. But how
to eliminate unphysical contribution of the χ-fields from the loops? An elegant way
to solve this problem has been proposed by Faddeev and Popov. They introduced the
so-called ghost fields ξa, obeying the same equation (2.30) but with the Fermi statistics

Lghost = Dµξ
+a∂µξa. (2.31)

These fields appear only in closed loops. Due to the Fermi statistics the contribution
of the ghost fields has additional minus sign for each loop and cancels that of the χ-fields
restoring unitarity in a physical subspace.

2.3.5 BRST Invariance

One may ask now what happens to the gauge invariance after all these perturbations?
Hopefully, the answer is the following: the amplitudes of all the physical processes are
invariant. The shortest way to show this is the so-called BRST-invariance. It turns
out that the total Lagrangian

L = Lgauge + Lgauge−fixing + Lghost (2.32)

is invariant under some BRST transformation

δAa
µ = λ+Dµξ

a, δξ+a = − 1

α
λ+∂µA

a
µ, δξa = −1

2
gfabcλ+ξbξc, (2.33)

where λ is a constant anticommuting parameter and α is a gauge-fixing parameter.
BRST invariance is equivalent to the usual gauge invariance in the physical sector

with the gauge transformation parameter being ωa(x) = λ+ξa(x). This enables us to
prove the gauge invariance of physical amplitudes.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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3 Lecture III

Spontaneous Symmetry Breaking, Goldstone Particles, Higgs
Effect

3.1 Spontaneous Symmetry Breaking

The breaking of symmetry sometimes plays a role as important as the symmetry itself.
Solving equations of motion that are differential ones, we have to impose some boundary
or initial conditions. Let the Lagrangian be invariant under some symmetry group.
What about the initial state? There may be different possibilities. The potential may
have symmetrical or asymmetrical minima, they may be stable or unstable (see Fig.3).

Figure 3:

Spontaneous symmetry breaking is the asymmetric ground (initial) state for a
symmetric Lagrangian. The necessary condition for it is the degeneracy of the vacuum.
Why the vacuum is so important? This is because in QFT particle excitations of a
field ϕ are quantized fluctuations of ϕ around the lowest energy state (vacuum). The
constant value of the field corresponding to the vacuum is called the vacuum expecta-
tion value (vev). Both the vev and the kind of fluctuations about it are determined by
L.

To determine the spectrum of particles we expand the potential about the minimum

V (ϕi) = V (ϕi0) +
∑
i

∂V
∂ϕi

|ϕi=ϕi0
(ϕi − ϕi0)+

+ 1
2

∑
i,j

∂2V
∂ϕi∂ϕj

|ϕi=ϕi0
(ϕi − ϕi0)(ϕj − ϕj0) + ...
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The mass matrix

Mij =
∂2V

∂ϕi∂ϕj

|ϕi=ϕi0
(3.1)

should be diagonalized to determine the particle spectrum.

3.1.1 Spontaneous Breaking of Discrete Symmetry

Consider the Lagrangian for a real scalar field obeying the discrete symmetry ϕ→ −ϕ
:

L =
1

2
(∂µϕ)

2 − m2

2
ϕ2 − λ

4
ϕ4. (3.2)

When m2 > 0 and λ > 0 the potential has the only minimum ϕ0 = 0 (Fig.4a) and the
mass matrix is

∂2V

∂ϕ2
|ϕ=0 = m2.

Figure 4:

The situation changes when m2 < 0. Substituting in this case m2 → −m2, we have

E2 = −→p 2 −m2, v =
p

m
=

√
E2 +m2

E
> 1,

that means that the spectrum contains a tachyon state. However, this conclusion is
based on the unstable vacuum ϕ0 = 0 . There are the other solutions

V ′ = 0 ⇒ ϕ1,2 = ±m
λ
,

∂2V

∂ϕ2
|ϕ=ϕ1,2 = 2m2.

The potential now can be rewritten as

V (ϕ) =
λ

4
(ϕ2 − η2)2, η =

m√
λ

and has two stable minima ϕ1,2 = ±η (Fig.4b).
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The spontaneous symmetry breaking now corresponds to L(ϕ) = L(−ϕ), but
vac(ϕ) 6= vac(−ϕ). Taking the asymmetrical vacuum state and shifting the field
ϕ = η + χ we get the Lagrangian

L(χ) = 1

2
(∂µχ)

2 − λη2χ2 − ληχ3 − λ

4
χ4, (3.3)

which does not manifest any obvious symmetry, describing a particle with the mass√
2m.
The question naturally arises whether it is possible to restore the symmetry due

to the tunneling process from one well to another. To answer this question, one has
to calculate the tunneling amplitude proportional to exp(iS), where S is the action
along the path. This action is purely imaginary and does go to infinity when the
volume V → ∞, so the probability of tunneling goes to zero. Hence, the restoration of
symmetry is possible only in small domains.

3.1.2 Spontaneous Breaking of Continuous Symmetry

Figure 5:

Here we meet a new phenomenon. Consider for simplicity the U(1) invariant La-
grangian

L = ∂µϕ
∗∂µϕ− V (ϕ∗ϕ) (3.4)

or in terms of real fields

L =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 − V (ϕ2
1 + ϕ2

2). (3.5)

The potential V must be bounded from below so as to have a ground state. We choose

V =
m2

2
(ϕ2

1 + ϕ2
2) +

λ

4
(ϕ2

1 + ϕ2
2)

2. (3.6)
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Now there are again two possibilities:
i) m2, λ > 0. The potential is shown in Fig.5. The minimum is derived from the
equations

∂V

∂ϕ1

= m2ϕ1 + λϕ1(ϕ
2
1 + ϕ2

2) = 0,

∂V

∂ϕ2
= m2ϕ2 + λϕ2(ϕ

2
1 + ϕ2

2) = 0. (3.7)

The only solution is ϕ10 = ϕ20 = 0. The symmetry is not broken. As before, we have
the degenerated spectrum

m2(ϕ1) = m2(ϕ2) = m2.

ii) m2 = −µ2 < 0, λ > 0. The potential now looks like the bottom of the bottle shown

Figure 6:

in Fig6. Equations (3.7) here have another solution

ϕ2
10 + ϕ2

20 = v2 =
µ2

λ
.

Geometrically they are the points on a circle with the radius v in the (ϕ1, ϕ2) plane
(see Fig.7). Physically, a non-zero value of the field corresponds to a condensation of
pairs so that the value of the condensate < ϕ∗ϕ >= v2 6= 0.

We see that the vacuum is no longer unique! The O(2) symmetry transfers any
point on this circle into another. One can choose any point, say ϕ10 = v, ϕ20 = 0 or
ϕ10 = ϕ20 = v/

√
2, etc.

The mass matrix (3.1) is given by

∂2V
∂ϕ1∂ϕ2

= 2λϕ1ϕ2,
∂2V
∂ϕ2

1
= −µ2 + λ(ϕ2

1 + ϕ2
2) + 2λϕ2

1,
∂2V
∂ϕ2

2
= −µ2 + λ(ϕ2

1 + ϕ2
2) + 2λϕ2

2.

To diagonalize it we choose ϕ10 or ϕ20 to vanish, say ϕ10 = v, ϕ20 = 0, then

M =

(
2λv2 0
0 0

)
. (3.8)
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Figure 7:

Thus ϕ′
1 = ϕ1 − v corresponds to a massive particle of mass m2 = 2λv2 = 2µ2,

while ϕ′
2 = ϕ2 is massless. This result is independent of the choice of the vev. For any

point on a circle after diagonalization the conclusion is the same.
The Lagrangian with the new fields becomes

L =
1

2
(∂µϕ

′
1)

2 +
1

2
(∂µϕ

′
2)

2 − λv2ϕ
′2
1 − λvϕ′

1(ϕ
′2
1 + ϕ

′2
2 )−

λ

4
(ϕ

′2
1 + ϕ

′2
2 )

2. (3.9)

The O(2) symmetry is no longer manifest. It is spontaneously broken.
Consider another parametrization of the U(1) model. If we write down the complex

field in polar coordinates

ϕ(x) =
1√
2
ρ(x)eiθ(x). (3.10)

The derivative becomes

∂µϕ(x) =
1√
2
eiθ(x)[∂µρ(x) + i∂µθ(x)ρ(x)],

so the Lagrangian is

L =
1

2
(∂µρ)

2 +
1

2
ρ2(∂µθ)

2 − V (ρ2), (3.11)

where

V (ρ2) = −µ2ρ2 +
λ

4
ρ4 =

λ

4
(ρ2 − v2)2 − λ

4
v4. (3.12)

We see that the field θ disappears out of the potential. This is a manifestation of the
U(1) symmetry. To find the mass of the particle corresponding to the”radial” field
ρ(x), we expand the potential around the minimum value ρ0 = v. One finds

ρ(x) = v + η(x), m2
ρ = 2µ2,

while mθ = 0 due to the absence of the quadratic θ-term in the Lagrangian (3.12).
So the final conclusion is the following: the spectrum of the model (3.5) when

m2 = −µ2 < 0 consists of two particles, one massive and one massless.
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3.2 Goldstone Particles

The presence of massless particles is not the matter of chance, but is a general rule
known as the Goldstone theorem that states that when a global continuous symme-
try is spontaneously broken, there exists a number of massless particles (Goldstone
bosons) equal to the number of broken symmetries.

Consider now the generalization of this result to a non-Abelian global symmetry.

3.2.1 SU(2) symmetry

Let ϕ =

(
ϕ1

ϕ2

)
be a complex doublet of SU(2). Then an SU(2) invariant Lagrangian

is
L = ∂µϕ

+∂µϕ− V (ϕ+ϕ). (3.13)

If we take as before
V = −µ2(ϕ+ϕ) + λ(ϕ+ϕ)2

the minimum will be achieved for

ϕ+ϕ = µ2/2λ ≡ v2.

Choosing the parametrization like in eq.(3.10)

ϕ(x) =
1√
2
ei

τaξa

v

(
0

H(x) + v

)
(3.14)

we have

∂µϕ(x) =
1√
2
ei

τaξa

v

{(
0

∂µH(x)

)
+ i

τa∂µξ
a

v

(
0

H(x) + v

)}
.

Note that in eq.(3.14) we still have four real fields: ξa, a = 1, 2, 3 and H .
The Lagrangian (3.13) now becomes

L =
1

2

{
(0, ∂µH)− i

∂µξ
a

v
(0, H + v)τa

}

×
{(

0
∂µH(x)

)
+ i

τa∂µξ
a

v

(
0

H(x) + v

)}
− V (H + v)

=
1

2
(∂µH)2 +

1

2
(∂µξ

a)2
(H + v)2

v2
− V (H + v). (3.15)

This looks just like the U(1) case, but the three fields ξa, (a = 1, 2, 3 in SU(2)) are
found to be massless. H(x) is massive and the original manifest SU(2) symmetry is no
longer manifest, but becomes a ”secret” symmetry. The number of massless states is
in general given by the

Goldstone Theorem: There are as many massless Goldstone bosons as there
are directions in the space of the fields ϕi (internal symmetry space) along which the
vacuum is degenerate, i.e. not unique.
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Consider a transformation of the vacuum generated by some charges Qa, a =
1, 2, ..., N. Let

Qk|0 > 6= 0, k = 1, 2, ...M (broken generators),
Qn|0 >= 0, n =M + 1, ..., N (unbroken generators).

According to the Noether theorem (eq.(1.4) and eq.(1.44))

·
Q

a

= 0 = i[H,Qa].

Hence
[H,Qa]|0 >= 0

or
H(Qa|0 >) = Qa(H|0 >). (3.16)

Equation (3.16) means that for any k = 1, 2, ...,M the state Qa|0 >is degenerated
with the vacuum state |0 >, i.e. corresponds to the massless excitations called the
Goldstone bosons. Therefore the number of Goldstone bosons equals M, the number
of broken generators.

Two comments are in order: i) the number of broken generators depends on the
choice of representation of the scalar field; ii) in case of fermion generators Qa the
corresponding particles will be fermions. This possibility is realized in supersymmetric
models.

To realize the necessity of massless particles in the case of spontaneous symme-
try breaking, we concentrate on some properties of Goldstone bosons. Consider the
transformation of some state vector under the group of symmetry

eiαQ|a(−→k ) >= |a(−→k ) > +iαQ|a(−→k ) > +...,

where Q is the generator. Let
Q|a(−→k ) >∼ v, (3.17)

where v = 0 corresponds to a symmetry state while v 6= 0 means that the state is not
invariant under the symmetry transformation. As far as

Q =
∫
d3xj0(x),

we can find the matrix element of a current

< 0|jµ(x)|a(−→k ) >∼ v · kµ.

Taking the derivative we have

< 0|∂µjµ(x)|a(
−→
k ) >∼ v · k2. (3.18)

However, according to the Noether theorem the current is conserved, i.e. ∂µj
µ(x) = 0.

To avoid the discrepancy with eq.(3.18) we must put either v = 0 (unbroken symmetry),
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or v 6= 0 , but k2 = m2 = 0 (Goldstone boson). Therefore, if a symmetry is broken,
the massless particles inevitably appear.

Example: U(1) or SO(2) symmetry.
According to eq.(2.5) the current is

jµ = ∂µϕ1ϕ2 − ∂µϕ2ϕ1.

If < ϕ1 >= v , we shift the field ϕ1 = ϕ′
1 + v so that < ϕ′

1 >= 0. Then the current
becomes

jµ = −v∂µϕ2 − ϕ′
1∂

µϕ2 + ∂µϕ′
1ϕ2. (3.19)

Taking the matrix element between the vacuum and one-particle states we see that the
only contribution comes from the first term of eq.(3.19)

< 0|jµ(x)|a2(
−→
k ) >= −v < 0|∂µϕ2|a2(

−→
k ) >= −vikµeikx.

So
< 0|∂µjµ(x)|a2(

−→
k ) >= vk2eikx.

Thus, either v = 0 and m1 = m2 = m, or m1 6= 0, and m2 = 0, which corresponds to
spontaneous symmetry breaking, a+2 (

−→
k )|0 >= |a2(

−→
k ) > being the Goldstone boson.

3.3 The Higgs Effect

3.3.1 Spontaneous Breaking of Local Gauge Invariance

We now come to the phenomenon known as the Higgs effect - the appearance of the
mass of the gauge boson due to spontaneous symmetry breaking and disappearance of
Goldstone bosons.

Consider first the Abelian case, namely, local U(1) invariance. The Lagrangian

L = −1

4
FµνF

µν +Dµϕ
∗Dµϕ+ µ2ϕ∗ϕ− λ(ϕ∗ϕ)2 (3.20)

is invariant under the local phase transformation

ϕ → ϕ′ = eiα(x)ϕ, (3.21)

Aµ → A′
µ = Aµ +

1

e
∂µα(x).

The scalar potential is degenerate with the minima given by

|ϕ0|2 =
v2

2
=
µ2

2λ
.

Shifting the field ϕ we choose the parametrization

ϕ(x) =
1√
2
(η(x) + v)eiθ(x)/v.
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The gauge transformation (3.21) now is

θ(x) → θ′(x) = θ(x) + vα(x), (3.22)

where θ(x) is the Goldstone boson field. according to eq.(3.32) one can choose the
gauge (it is called the unitary gauge), where θ′(x) = 0, i.e. α(x) = −θ(x)/v. Thus, the
Goldstone boson disappears, it is not a physical particle. What happens to the degree
of freedom then? To answer this question, we define a new set of fields

ϕ′(x) = e−iθ(x)/vϕ(x) = 1√
2
(η(x) + v),

Bµ(x) = Aµ − 1
ev
∂µθ(x).

The derivatives are

(Dµϕ)
′ = UDµϕ = e−iθ/v 1√

2
[∂µη(x)− ieBµ(η + v)]eiθ/v,

Fµν(A) = ∂µAν − ∂νAµ = ∂µBν − ∂νBµ = Fµν(B),

and the Lagrangian becomes

L =
1

2
|∂µη(x)− ieBµ(η + v)|2 + µ2

2
(η + v)2 − λ

4
(η + v)4

− 1

4
Fµν(B)F µν(B) (3.23)

= −1

4
Fµν(B)F µν(B) +

1

2
(∂µη)

2 − µ2η2 +
1

2
(ev)2BµB

µ

+
1

2
e2BµB

µη(2v + η)− λvη3 − 1

4
λη4.

This Lagrangian describes a massive vector boson with the mass MB = ev and
a massive scalar η with the mass mη =

√
2µ. Thus, instead of a massless scalar

(the Goldstone boson) we have a third (the longitudinal) degree of freedom of a vector
field. Note the conservation of degrees of freedom: 2 real scalar fields (ϕ1, ϕ2) or (η, θ)
plus 2 polarization states of a massless photon versus 1 real scalar Higgs field η plus 3
polarization states of a massive vector field, i.e. 2+ 2 = 3+1. The Goldstone boson is
”eaten” by the vector field thus acquiring a mass.

Let us see now how the same phenomenon happens in non-Abelian case which is
pretty close to the Standard Model. Consider the SU(2) invariance. Choosing the
scalar field in the doublet representation we get the familiar Lagrangian

L = −1

4
F a
µνF

µνa +DµΦ
+DµΦ− V (Φ+Φ), (3.24)

where
V (Φ+Φ) = −µ2Φ+Φ+ λ(Φ+Φ)2, µ2, λ > 0.

In the unitary gauge one can define

Φ(x) = 1√
2
ei

τaξa

v

(
0

H(x) + v

)
,

Φ′(x) = U(x)Φ(x) = 1√
2

(
0

H(x) + v

)
,

Bµ = U−1AµU + U−1∂µU.
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The Lagrangian is then

L = [DµΦ
′]+DµΦ′ + µ2Φ′+Φ′ − λ(Φ′+Φ′)2 − 1

4
F a
µν(B)F µνa(B) (3.25)

Again the three Goldstone bosons ξa have disappeared. The final form of the La-
grangian is

L = −1

4
F a
µν(B)F µνa(B) +

1

2
(∂µH)2 − µ2H2 +

1

8
(gv)2Ba

µB
µa (3.26)

+
1

2
g2Ba

µB
µaH(2v +H)− λvH3 − 1

4
λH4.

It describes a triplet of massive vector fields Ba
µ (a = 1, 2, 3) with the mass MB

= 1
2
gv and a massive scalar Higgs field H with a mass mH =

√
2µ. Note again the

conservation of degrees of freedom.
Therefore, as a result we have no massless states in the physical spectrum: the

Goldstone bosons are ”eaten” by the vector fields and become their longitudinal com-
ponents. The remaining scalar particle is massive and is usually called the Higgs
boson.

Exactly this effect takes place in the Standard Model, where the W and Z bosons
acquire their masses due to the spontaneous symmetry breaking mechanism, the only
known mechanism so far which gives the masses to the gauge bosons preserving the
gauge invariance at the same time. The conservation of the gauge invariance plays the
crucial role in renormalizability of a theory (see below).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
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4 Lecture IV

Interaction, S-Matrix, Perturbation Theory, Feynman Rules

Up to now we considered the theory of free quantum fields. The equations of motion
were linear and their solutions obeying the principle of superposition were the plain
waves. The coefficients of the Fourier transform were quantized.

4.1 Interaction

How to introduce an interaction of quantum fields? Interaction means a nonlinear
equation of motion which in its turn implies the presence of higher-order polynomials in
the Lagrangian. What happens then to the free states which are the eigenvalues of the
free Hamiltonian? There are two possibilities: i) strong deformation of the spectrum:
new eigenstates, new solutions of equation of motion, etc.; ii) weak deformation of the
free theory, i.e. a perturbation of the free motion.

The latter situation is symbolically shown in Fig.7. It is based on the following
hypothesis: There exist a weak coupling limit and a perturbation theory expansion.
If so, then the perturbation theory gives us, like in Quantum mechanics, a regular way
to construct scattering amplitudes.

Figure 8:

4.1.1 Interaction Representation

Consider the Schrödinger equation for the amplitude

i
∂ψ(t)

∂t
= H0ψ(t)

with a solution
ψ(t) = eiH0tΦ, (4.1)

where Φ is a constant (independent of time). For an interacting system the Schrödinger
equation is

i
∂ψ(t)

∂t
= (H0 +HI)ψ(t).
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The solution now is given by eq.(4.1), however Φ is no longer a constant but obeys the
equation

i
∂Φ(t)

∂t
= eiH0tHIe

−iH0tΦ(t),

or

i
∂Φ(t)

∂t
= HI(t)Φ(t), (4.2)

where HI(t) =
∫
d−→xH(x) is the Hamiltonian in the so-called interaction represen-

tation. Eq.(4.2) is called the Schrödinger equation in the interaction representation.
To find the mean value of any operator B one can now use the Schrödinger as well

as the interaction representation

Bt = ψ∗(t)Bψ(t) = Φ∗(t)eiH0tBe−iH0tΦ(t) = Φ∗(t)B(t)Φ(t).

4.2 Scattering Matrix (S-matrix)

Suppose that the interaction adiabatically vanishes at t → ±∞. Then the S-matrix is
defined by

Φ(∞) = SΦ(−∞). (4.3)

The S-matrix as an operator is characterized by matrix elements

Sαβ =< β|S|α >,

where |α > and < β| are in- and out-states, respectively. The transition probability P
is given by the modulus squared of the S-matrix elements: P ∼ |Sαβ|2.

To find an explicit expression for the S-matrix, consider the Schrödinger equation
(4.2) perturbatively. For this purpose define first a finite-time operator S(t, t0) such
that

Φ(t) = S(t, t0)Φ(t0). (4.4)

Substituting it into eq.(4.2) we have

S(t, t0) = 1− i

t∫

t0

H(t′)dt′ + (−i)2
t∫

t0

H(t′)dt′
t′∫

t0

H(t′′)dt′′ + ..., (4.5)

where H(t) ≡ HI(t). Consider the interaction range in the last term of eq.(4.5). It is
shown in Fig.8a (a dashed triangle). Changing the order of integration we can rewrite
the last term as follows

t∫

t0

dt′′
t∫

t′′

dt′H(t′)H(t′′)

or redefining the variables
t∫

t0

dt′
t∫

t′

dt′′H(t′′)H(t′),
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Figure 9:

which corresponds to the integration range shown in Fig.8b. Summing up the two
expressions we find

S2 =
(−i)2
2

t∫

t0

dt′





t′∫

t0

dt′′H(t′)H(t′′) +

t∫

t′

dt′′H(t′′)H(t′)





(4.6)

What is written in the braces is the so-called chronological or T-product defined
by

T{H(t′)H(t′′)} =

{
H(t′)H(t′′), t′ > t′′

H(t′′)H(t′), t′ < t′′
. (4.7)

Hence, the second order contribution to the S-matrix can be written as

S2 =
(−i)2
2

t∫

t0

dt1

t∫

t0

dt2T{H(t1)H(t2)}. (4.8)

The generalization to higher orders is straightforward

S =
∑

n

Sn, (4.9)

Sn =
(−i)n
n!

t∫

t0

dt1...

t∫

t0

dtnT{H(t1)...H(tn)}.

Formally summing the series (4.9) we get

S(t, t0) = T



exp[−i

t∫

t0

H(t)dt]



 = T



exp[−i

t∫

t0

dt
∫
d−→xH(x)]



 .

In case when an interaction does not contain derivatives there is a simple relation
between the Hamiltonian and the Lagrangian of the corresponding field theory

HI(t) = −LI(t) = −
∫
d−→x LI(x).

With the help of this relation and taking the limit t→ ∞, t0 → −∞, we get the final
expression for the S-matrix

S = S(∞,−∞) = T exp[i
∫
d4xLI(x)], (4.10)
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that is generally valid. Eq.(4.10) underlines the Lagrangian perturbation theory.
Recall some properties of the S-matrix:

1. Relativistic invariance. Due to eq.(4.10) this is achieved by the invariance of
the Lagrangian discussed above.

2. Causality. This property comes from the causal properties of the Green func-
tions or the propagators of free particles.

3. Unitarity (Conservation of the norm of the wave function)

Φ∗(∞)Φ(∞) = Φ∗(−∞)Φ(−∞).

For the S-matrix this leads to

S+S = SS+ = 1,

which means that the Lagrangian must be a hermitean function of fields,i.e.
L+ = L.

4.3 Perturbation Theory

The perturbation theory is constructed on the basis of eq.(4.10). The total Lagrangian
is divided into two parts

Ltotal= L0+gLI , (4.11)

where L0 is a free field Lagrangian and LI is an interaction. The coupling constant
g determines the strength of interaction and serves as an expansion parameter. The
solution of eq.(4.2) can be represented as a power series

S(g) = 1 +
∞∑

n=1

1

n!

∫
dx1...dxng

nSn(x1, ..., xn), (4.12)

where
Sn(x1, ..., xn) = inT (LI(x1)...LI(xn)).

To calculate Sn, consider the T-product more thoroughly. Recall the normal ordering
of two operators

A(x)B(y) =: A(x)B(y) : +A(x)B(y).

The last term is usually called the normal pairing and is a c-number (not an opera-
tor). The T-product can be expressed in terms of N-products

T (A(x)B(y)) =

{
A · B, x0 > y0

B · A, x0 < y0
=

{
: AB : +AB
: BA : +BA

Note that : AB :=: BA :, hence

T (A(x)B(y)) =: A(x)B(y) : +A(x)B(y),
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where

A(x)B(y) =

{
A(x)B(y), x0 > y0

B(y)A(x), x0 < y0

is called the chronological pairing (a c-number).
Let us find the chronological pairing for the scalar field. According to eq.(1.51) we

have

ϕ(x)ϕ(y) = −iD−(x− y)Θ(x0 − y0) + iD+(x− y)Θ(y0 − x0) ≡ −iDc(x− y),

where Dc(x) is a causal Green function.
To reduce the T-product of a number of field operators to the N-product, the

following theorem is to be applied:
Wick Theorem:
1.The product of n linear operators is equal to a sum of normal orderings with all

possible pairings including the term without pairing.
2.The T-product of n linear operators is equal to a sum of normal orderings with

all possible chronological pairings including the term without pairing.
To illustrate this theorem, consider the product of four operators:

In the case of T-product all pairings should be substituted by chronological pairings.

4.3.1 Causal Green Functions of Free Fields

Consider the free equation of motion in the presence of a source

(2−m2)ϕ(x) = −J(x), (4.13)

where J(x) is an external source of a scalar field. The solution can be found with the
help of a Green function

ϕ(x) =
∫
dyG(x− y)J(y),

where the Green function G(x) obeys the equation

(2−m2)G(x) = −δ(x). (4.14)

The solution of eq.(4.14) can be found in momentum representation

G(x) =
1

(2π)4

∫ e−ikx

m2 − k2
d4k. (4.15)

Eq.(4.15) contains poles when k0 = ±
√
m2 +

−→
k

2
. This means that we have to de-

fine the contour of integration so as to avoid the poles. However, different contours
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of integration lead to different properties of the Green functions. The causal Green
function

Dc(x) = Θ(x0)D−(x)−Θ(−x0)D+(x)

corresponds to the following choice

Dc(x) =
1

(2π)4

∫ e−ikx

m2 − k2 − iǫ
d4k, ǫ→ +0. (4.16)

The contour of integration is shown in Fig.10. The causal Green function for spinor

Figure 10:

and vector fields are constructed in full analogy with eq.(4.16)

Sc
αβ(x) = (i∂̂ +m)αβD

c(x) =
1

(2π)4

∫
e−ikx(m+ k̂)αβ
m2 − k2 − iǫ

d4k, (4.17)

Dc
µν(x) = (gµν +

∂µ∂ν
m2

)Dc(x), m 6= 0, (4.18)

Dc
µν(x) = (gµν +

∂µ∂ν
∂2

dl)D
c(x), m = 0. (4.19)

4.4 Feynman Rules

4.4.1 Feynman Rules in x-space

S-matrix elements in perturbation theory admit a very clear graphical interpretation,
known as the Feynman rules:
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ui(x)uj(y) ⇔ propagator,

u(x) ⇔ External line

: A(x)B(x)... : ⇔ V ertex.

Example 1 LI = −λ : ϕ4(x) :

S −matrix element Graphical Interpretation

S1(x) = −iλ : ϕ4(x) :

S2(x, y) = i2λ2T{: ϕ4(x) :: ϕ4(y) :} (use the Wick theorem)

= i2λ2 : ϕ4(x)ϕ4(y) :

+16i2λ2ϕ(x)ϕ(y) : ϕ3(x)ϕ3(y) :

+72i2λ2(ϕ(x)ϕ(y))2 : ϕ2(x)ϕ2(y) :

+96i2λ2(ϕ(x)ϕ(y))3 : ϕ(x)ϕ(y) :

+24i2λ2(ϕ(x)ϕ(y))4

We take into account the combinatorial factors. The graphical rules can be used to
construct the S-matrix elements without explicit use of the Wick theorem. It is usually
more useful to draw the graphs by taking into account the symmetry factors.

Example 2 QED LI = e : ψγµAµψ :
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ψ(x)ψ(y) ⇔ propagator,

Aµ(x)Aν(y) ⇔ propagator,

eψγµAµψ ⇔ V ertex

Different kinds of fields are usually denoted by different types of lines. The arrow on
a spinor line distinguishes the ψ and ψ operators.

Example 3 Yang-Mills Theory

L = −1

4

[
∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

]2

Aa
µ(x)A

b
ν(y) ⇔

gfabcAb
µA

c
ν∂µA

a
ν ⇔

g2fabcAb
µA

c
νf

adeAd
µA

e
ν ⇔

A crossed line means the derivative in the corresponding Lagrangian.

4.4.2 Feynman Rules in p-space

It is sometimes more useful to perform calculations directly in momentum space. To
calculate the matrix element, one has to sandwich the S-operator between the state
vectors

Φ...k... = a+1 (
−→
k1)...a

+
s (
−→
ks)Φ0. (4.20)

In n-th order of perturbation theory

Sn =
∑∫

dx1...dxnK(x1, ..., xn) : ui(xi)...uj(xj)... :,

Thus the amplitude is proportional to

M ∼ Φ∗
...k... : ui(xi)...uj(xj)... : Φ...k...

Dividing ui(xi) into two parts ui = u+i + u−i and taking into account the properties of
the vacuum

u−Φ0 = 0 = Φ∗
0u

+,
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we conclude that M 6= 0 only if all u± cancel with the corresponding a∓ from eq.(4.20)
producing the commutators. Otherwise, they will act on the vacuum giving a vanishing
result.

Using the general expression for the Fourier transform

u±(xj) =
1

(2π)3/2

∫
e±ipxj

∑

σ

v±σ (
−→p )a±σ (−→p )d−→p , (4.21)

where the coefficients v±σ (
−→p ) depend on the field under consideration (cf. eqs. (1.13),

(1.22) and (1.31)) and taking into account the commutation relations, eqs (1.39), (1.52)
and (1.54), we finally get

M ∼
∫ ∏

in−particles

(2π)−3/2e−ikixiv−σ (
−→
ki )

∏

out−particles

(2π)−3/2e−ikfxfv+σ (
−→
kf ) ·

·K(x1, ..., xn)dx1...dxn, (4.22)

where the coefficient function K(x1, ..., xn) is a product of the corresponding D -
functions. Evaluating the integral over {dx} we get the contraction of the Fourier
transforms of the Dc-functions.

The above procedure leads to the following rules to evaluate the matrix elements
in the momentum space (Feynman Rules):

1. Draw the corresponding Feynman diagrams by taking into account all topological
possibilities (the Wick theorem);

2. Introduce the momentum variables for every line;

3. Any external line corresponding to an initial (final) state is associated with a
factor

(2π)−3/2v−σ (
−→p in) ((2π)−3/2v+σ (

−→p out).

4. Any internal line with momentum q is associated with

(2π)−4Dc
αβ(q).

5. Any vertex gives
igQα(2π)

4δ(
∑

pi),

where g is the coupling constant, Q is the matrix (operator) of the corresponding
Lagrangian, all pi are the ingoing momenta.

6. Integrate over all the momenta;

7. In the case of Fermi-fields take into account an additional multiplier (−)c , where
c is the number of closed fermion loops;

8. Take into account a symmetry factor.
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4.5 Illustration

Example 1 LI = −λ : ϕ4(x) :
In this case

v−(−→p ) = v+(−→p ) = (2p0)
−1/2,

Dc(q) = 1
i

1
m2−q2−iǫ

, Q = 1.

Consider the amplitude for 2-particle elastic scattering in the second order of pertur-
bation theory. The Feynman graphs are shown in Fig.11. We consider more thoroughly

Figure 11:

the contribution of the graph shown in Fig.11a. According to the rules written above
we have

Ma = [(2π)122k012k
0
22k

0
32k

0
4]

−1/2 1

i

1

(2π)4

∫ d4q1
m2 − q21 − iǫ

1

i

1

(2π)4

∫ d4q2
m2 − q22 − iǫ

·(4.23)

·i2λ2(2π)8δ(k1 + k2 − q1 − q2)δ(q1 + q2 − k3 − k4)
4!

2(4!)2

Evaluating the integral with the help of the δ -function and collecting the factors we
get from eq.(4.23)

Ma =
λ2

2

δ(k1 + k2 − k3 − k4)√
16k01k

0
2k

0
3k

0
4

1

(2π)6

∫ d4q

(m2 − q2)(m2 − (q − k1 − k2)2)
.

We shall discuss the evaluation of the remaining integral later. The total second order
contribution is

M (2) =Ma +Mb +Mc.

Example 2 QED

L = −1

4
F 2
µν + ψ(i∂̂ −m)ψ + eψγµAµψ

Fµν = ∂µAν − ∂νAµ, ∂̂ ≡ γµ∂µ. (4.24)
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The corresponding Feynman rules are:

Electron in an initial state
Electron in a final state
Positron in an initial state
Positron in a final state
Photon in an initial or final
state with polarization eνµ
Propagation of electron 1 → 2

(or positron 2 → 1)
Propagation of a photon

from µ to ν (Feynman gauge)

V ertex µ

Example 3 Yang-Mills Theory

L = −1

4
F a
µνF

a
µν −

1

2α
(∂µA

a
µ)

2 −Dµξ
a
∂µξ

a,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (4.25)

Dµξ
a
= ∂µξ

a
+ gfabcξ

b
Ac

µ.

The second term in eq.(4.25) is the gauge-fixing one while ξ are the corresponding
ghost fields. The Feynman rules corresponding to eq.(4.25) are:
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V ector propagator 1
i

1
(2π)4

δab gµν−(1−α)kµkν/k2

k2+iǫ

Ghost propagatorfield i 1
(2π)4

δab

k2+iǫ

3− V ertex igfabc(2π)4δ(p+ k + q)·
·[(p− k)ρgµν + (k − q)µgνρ+
(q − p)νgµρ]

4− V ertex −ig2{fabef cde(gµρgνσ − gµσgνρ)
+permutations} · (2π)4δ(∑ pi)

ghost− vector vertex i
2
gfabcqµ(2π)

4δ(k + q + p)

4.6 Probabilities of Scattering Processes

The described technique allows us to calculate the amplitude of a process

Φ∗
p′SΦp = δ(

∑
p−

∑
p′)F (p, p′).

To find out the probability, we have to take the square of the modulus

W =
|Φ∗

p′SΦp|2
Φ∗

p′Φp
∼ (2π)−4V T︸ ︷︷ ︸ δ(

∑
p−

∑
p′)|F (p, p′)|2. (4.26)

δ(0)

It is proportional to δ(0) = (2π)−4V T and goes to infinity. However, we are interested
in the probability of the process when we have in an initial state s particles with mo-
menta

−→
k 1, ...

−→
, ks and quantum numbers σ1, ..., σs scattered into an interval of momenta

−→p 1, ...
−→, pr per unit time per unit volume:

w = (2π)3s−4n1...ns|F (p, p′)|2δ(
∑

p−
∑

p′)dp1...dpr, (4.27)

where n1...ns is the average number of particles in the initial state per unit volume.
The amplitude F (p, p′) is calculated by the Feynman rules.

4.6.1 Two-particle scattering

Consider the two-particle scattering (s = r = 2). Note that w 6= 0 even if S = 1, i.e.
in the absence of interaction (see Fig.8). To select the effect of interaction, we consider
the matrix element

Φ∗
...p...(S − 1)Φ...k....
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Define the scattering amplitude (we limit ourselves to spinless particles, for simplicity)

Φ∗
0a

−
1 (
−→p1)a−2 (−→p2)(S − 1)a+1 (

−→
k1)a

+
2 (
−→
k2)Φ0 =

= i δ
(4)(p1+p2−k1−k2)

2π
√

p01p
0
2k

0
1k

0
2

f(p1, p2, k1, k2).

The effective differential cross-section according to eq.(4.27) is

dσ = (2π)2n1n2|f |2
d−→p1d−→p2
p01p

0
2k

0
1k

0
2

δ(4)(p1 + p2 − k1 − k2).

Integrating over −→p1 ,−→p2 we get the scattering probability into a solid angle dΩ

dσ

dΩp′
=

p′0(p
′)3

p[(p′)2Q0 − p′0(
−→p ′−→Q )]

|f |2, (4.28)

where we use the notation

−→p1 = −→p , −→p2 = −→p ′ , p ≡ |−→p |, p′ ≡ |−→p ′|,−→Q =
−→
k1 +

−→
k2 .

The total cross-section is

σ =
∫

4π

dΩ
dσ

dΩ
.

4.6.2 Two-particle decay

Another example is a two-particle decay (s = 1, r = 2). Symbolically it is shown in
Fig.12. Kinematically, it is possible if the mass M > m1+m2. The probability is equal

Figure 12:

to

w = 2πn
|F |2
2p0

d−→p1d−→p2
2p012p

0
2

δ(4)(k − p1 − p2). (4.29)

To find the total probability of a two-particle decay, one has to integrate over −→p1 and
−→p2 . The result is

wtot =
k

32π2M2

∫
dΩ|F (k,Ω)|2, (4.30)

where 4k2 = M2 − 2(m2
1 +m2

2) +
(m2

1−m2
2)

2

M2 . This probability defines the total width of
a particle decay as a sum of partial widths

wtot = Γtot =
∑

i

Γi.
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In its turn, the life-time is given by τ = 1/Γtot or h̄/Γtot if we restore the Planck
constant.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
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5 Lecture V

Radiative Corrections, Renormalization, Model Building

The Feynman rules provide us a straightforward algorithm to calculate the S-matrix
elements for different processes. Higher order terms of perturbation theory expansion
are usually called the radiative corrections (after QED). It happens that the ra-
diative corrections can be calculated not for every Lagrangian, which introduces some
severe limitations on the form of interactions.

5.1 Radiative Corrections

Consider the Compton scattering amplitude in QED. Graphically it is shown in Fig.13.
So, in perturbation theory the amplitude is given by a power series in α = e2/4π, the

Figure 13:

fine structure constant
M = αM1 + α2M2 + ... (5.1)

Consider the contribution to M2 from the first diagram with a loop ∼ α2 (Fig.14).
According to the Feynman rules we have an integral

Iµν(p) =
∫
d4qSp[γµ(m+ q̂)γν(m+ q̂ − p̂)]

[m2 − q2][m2 − (q − p)2]
.

Consider the ultraviolet behaviour of the integrand (q → ∞). For q ≫ m, p we have
the rough estimate

∫ Λ d4qq2

(q2)2
=
∫ Λ d4q

q2
∼
∫ Λ

dq2 ∼ Λ2 → ∞.
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Figure 14:

Here Λ is an ultraviolet cut-off parameter. In the limit Λ → ∞ we have a divergence
called the ultraviolet divergence. A more correct calculation (gauge invariant) gives

Iµν(p) = (gµνp
2 − pµpν)[ln

Λ2

p2
+ finite part]. (5.2)

So, the amplitude of Compton scattering is

M(...) = αR1 + α2[aR1 ln
Λ2

p2
+R2] + ..., (5.3)

where R1 and R2 are some regular (as Λ → ∞) functions of moments, α is the coupling
constant and a is a number.

5.1.1 Vacuum Polarization

The appearance of a divergent contribution is the general feature of quantum field the-
ory. Its origin is connected with the properties of the vacuum. The vacuum in QFT is
not an empty space. It is a fluctuating medium where the creation and annihilation of
virtual particles occur causing the polarization of the medium. The effect of vacuum
polarization by the virtual pairs is shown in Fig.15. It makes the ”bare” charge unob-

Figure 15:

servable. One cannot avoid interaction with the polarized medium. What we have is
an effective charge. The difference is proportional to the polarization effect
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We see that the divergence is the same as in eq.(5.2), so probably it can be absorbed
into the redefining of the coupling.

5.2 Renormalization

5.2.1 The Idea of Renormalization

This is just the idea of renormalization (redefining). Let αbare be singular (infinite) so
that αobservable be finite and try to expand all the quantities in terms of αobservable.

Taking the bare coupling to be

αbare = α+ xα2 ln
Λ2

µ2
+ ..., (5.4)

where α is the renormalized coupling, we get the amplitude, eq.(5.3), in the form

M(...αbare...) = M̃(...α...) =

= αR1 + α2[aR1 ln
Λ2

p2
+R2 + x ln Λ2

µ2 ] + ....

Choosing x so that M̃ to be finite when Λ → ∞ we get x = −a, so

M̃(...α...) = αR1 + α2[aR1 ln
µ2

p2
+R2] + .... (5.5)

Now the expression for the amplitude is finite. At first sight it contains a new
parameter, µ, that plays the role of some normalization point. However, according to
eq.(5.4), the coupling is also µ-dependent: α = α(µ). So, this dependence is fictitious.
The physical result is µ-independent. One can choose any convenient definition. This
is the statement of renormalization group invariance, which forms the basis of the
renormalization group method, a powerful technique used to improve the perturbation
theory expansions.

Natural questions arise: Is it always possible to absorb the infinities into the redefin-
ing of some couplings? Do all the amplitudes become finite simultaneously? To answer
these questions, we need more deep understanding of the renormalization procedure.

5.2.2 Renormalizability

Consider some arbitrary Feynman diagram G, Fig.16 and try to find out whether it is
ultraviolet divergent or not. For this purpose we have to count the number of powers
of momenta in the integrand: any internal loop gives d4p, i.e. 4; any derivative in the
vertex gives the momentum in p-space, i.e. 1; any internal line gives the propagator
that behaves like prl/p2, i.e. rl−2, where rl = 0, 1, 2 for various fields. Collecting these
numbers together we obtain the quantity called the index of a diagram (UV)

ω(G) = 4L+
∑

vertex

δv +
∑

internal lines

(rl − 2), (5.6)
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Figure 16:

where L is the number of loops and δv is the number of derivatives in a given vertex v.
Now the absence of ultraviolet divergences means ω(G) < 0. However, one should

be careful. There may be subdivergences like the one shown in Fig.17. So the necessary

Figure 17:

condition for the finiteness is

ω(γi) < 0, ∀γi ⊂ G,

where γi are all possible subgraphs of G including G itself.
There exists a more simple way to answer the same question without examining all

the diagrams. It can be derived directly from the Lagrangian.
Let us introduce the quantity called the index of a vertex (UV)

ωv = δv + bv +
3

2
fv − 4, (5.7)

where δv, bv and fv are the numbers of derivatives, internal boson and fermion lines,
respectively. Then the index of a diagram, eq.(5.6), is equal to

ω(G) =
∑

vertex

ωv + 4, (5.8)

where we have used that usually rl(boson) = 0 and rl(fermion) = 1.
Eq.(5.8) tells us that the finiteness (ω(G) < 0) can occur if ωv < 0. Before formu-

lating any general statements when it really happens, let us introduce some examples.
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Figure 18:

5.2.3 Example: Li = −λϕ4.

In this case δv = 0, fv = 0, ωv = bv−4. The situation is shown in Fig.18. Here the solid
(dashed) lines denote the internal (external) particles, respectively. We see that there
exists a limited number of divergent structures in the ϕ4 theory. They are vacuum
graphs, two- and four-point functions. All the other diagrams having more that four
legs are convergent.

It is useful to introduce the notion of the maximum index of a vertex when all the
lines are internal. All the theories can be classified according to the value of ωmax

v :

ωmax
v =





< 0 Superrenormalizable No divergent structures
0 Renormaliozable F inite ♯ of divergent structes
> 0 Nonrenormalizable Infinite ♯ of divergent structures

Only for the first two types of theories we can handle the ultraviolet divergences in
perturbation theory. The following theorem is valid:

Theorem: In any renormalizable theory all the UV divergences can be absorbed
into the redefining (renormalization) of a finite number of parameters: the couplings
gi, the fields ϕj and the masses mj.

Ignoring the possible mixing these renormalizations are described by the following
formulae:

gBare
i = Zgi(g,m, ...)gi,

ϕBare
j = Zϕj

(g,m, ...)ϕj, (5.9)

mBare
j = Zmj

(g,m, ...)mj.

Eqs.(5.9) are called the multiplicative renormalization.

57



Thus, the theory to be renormalizable should have ωmax
v ≤ 0. This requirement can

be reformulated in terms of dimensions.
Consider an arbitrary Lagrangian which is a product of the field operators and their

derivatives
LI(x) = g

∏

i,j

ϕi(x)∂ϕj(x). (5.10)

The action is the four-dimensional integral

A =
∫
d4xL(x). (5.11)

Let us calculate the dimensions of the quantities in eqs. (5.10), (5.11). As far as the
action is dimensionless (we use the natural units h̄ = c = 1)

[A] = 0,

the dimension of the coupling constant is [g] = −ωmax
v (in mass units). Thus the

renormalizability requirement is:

Renormalizability : [g] ≥ 0. (5.12)

Let us see when this requirement is satisfied.

5.2.4 Illustration

Lϕ4 = −λϕ4, [ϕ] = 1 ⇒ [λ] = 0, R
LQED = eψγµAµψ, [Aµ] = 1, [ψ] = 3/2 ⇒ [e] = 0, R

Lgauge = −1
4
F 2
µν = 1

4

[
∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

]2
, [Aµ] = 1 ⇒ [g] = 0, R

LY ukawa = yψϕψ, [ϕ] = 1, [ψ] = 3/2 ⇒ [y] = 0. R

So, all these models are renormalizable.

L = −hϕ6, [ϕ] = 1 ⇒ [h] = −2, NR
L = Gψψψψ, [ψ] = 3/2 ⇒ [G] = −2, NR
L = κψ∂µVµψ, [ψ] = 3/2, [Vµ] = 1 ⇒ [κ] = −1, NR
L = γψ∂µϕγ

µψ, [ϕ] = 1, [ψ] = 3/2 ⇒ [γ] = −1. NR

All these models on the contrary are nonrenormalizable. Note that they include the
four-fermion or current-current interaction.

The resume is the following: The only renormalizable interactions are:
i) ϕ4 interaction;
ii) Yukawa-type interaction;
iii) Gauge-type interaction.

The ϕ3 interaction is superrenormalizable.
If one considers the spins of particles involved, they are severely limited. The

renormalizable interactions contain only fields with spin 0, 1/2 and 1. All the models
with spin 3/2,2, etc. are nonrenormalizable. The latter contain also gravity. So,
quantum gravity is nonrenormalizable.
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Force Model Symmetry Spectrum Renormalizability
Strong Quantum SU(3) gauge massive spin1/2 Yes

Chromo- unbroken quarks
Dynamics massless spin 1
(QCD) gluons

Weak and Glashow- U(1) gauge massive spin 1/2 Yes
Electro- Weinberg- unbroken quarks and leptons
Magnetic Salam model SU(2) gauge massive spin 0

(GWS) spontaneously Higgses
broken massless spin 1

photon
massive spin 1
intermediate bosons

Gravity Einstein SL(2,C) massless spin2 No
Gravity gauge graviton

all particles

Table 1:

As far as we don’t know how to handle the nonrenormalizable interactions because
the ultraviolet divergences are out of control, we are left only with three pieces out
of which we can construct the Standard Model, namely, the ϕ4, the Yukawa and the
gauge interactions with scalar, spinor and vector particles.

Note should be made concerning the vector fields withM 6= 0. Recall the propagator
for the massive vector field

VµVν = i
gµν − kµkν/M

2

M2 − k2 − iǫ
.

This gives rl = 2, leading to the nonrenormalizability. The only known way out of this
puzzle is spontaneous symmetry breaking. Due to the presence of a gauge invariance
the propagator is

VµVν = i
gµν − (1− dl)kµkν/k

2

M2 − k2 − iǫ
.

So, rl = 0 and the theory remains renormalizable. This mechanism is used in the
Standard Model to acquire masses for intermediate vector bosons without destroying
the renormalizability.

5.3 Model Building

We now have at our disposal all the necessary ingredients to construct the Standard
Model of particle interactions. Four fundamental forces of Nature are described in
terms of the Lagrangian quantum field theory (see Table 2.)

Quantum gravity is not constructed up to now. The known versions of the theory
are nonrenormalizable. However, there are some new ideas connected with supersym-
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metry, the supergravity models, which have better UV properties. This subject is
under intensive theoretical investigation.

5.3.1 Finite Theories

One may wonder, is it possible to construct quantum field theory without ultraviolet
divergences, i.e. a Finite Field Theory without infinities, without renormalizations,
etc.?

Surprisingly the answer is positive. The guiding idea is related with the gauge
fields. Recall the vacuum polarization effect. It happens that while the matter fields
cause the screening of the bare charge, the gauge fields cause an antiscreening, i.e.
produce an opposite effect. Consider the radiative corrections to the propagator of a
spinor field. The diagrams are shown in Fig.19. The first diagram contains virtual

Figure 19:

gauge field, while the second contains the virtual scalar one. Both diagrams diverge,
but the sum is convergent. The cancellation of divergences occurs if the couplings are
equal.

Another example of cancellation of divergences is given by the gauge propagator.
The diagrams are shown in Fig.20. One-loop radiative corrections are divergent and

Figure 20:

proportional to

ln Λ2(
11

3
N − 2

3
nf ),

where N corresponds to the SU(N) gauge group and nf is the number of fermions in
the fundamental representation. Cancellation takes place if

nf =
11

2
N, (

33

2
for SU(3)).

Noninteger number of fermions looks unphysical. Note, however, that 1 Majorana
fermion (Cψ = ψ) counts as 1/2 of the Dirac fermion field, so

11

2
N Dirac Fermions = 11N Majorana Fermions.
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The Majorana fermions are necessary ingredients of supersymmetry, the symmetry
which transforms fermions into bosons and vice versa. This symmetry is now used to
construct generalizations of the Standard Model.

The first finite four-dimensional QFT has been constructed within sypersymmetric
models. This is the so-called N=4 extended SUSY Yang-Mills theory. Unfortunately,
it cannot be used to construct realistic models due to unsatisfactory particle content.
Later on, the N=2 and N=1 supersymmetric models were elaborated, also free from
ultraviolet divergences. The latter models provide us with the possibility to construct
finite realistic Grand Unified Theories.

These finite models need no renormalization procedure at all. They are safe at
small distances (large momenta). Extremist’s point of view is that nature is described
by finite theories. There is a very restricted number of models of that sort. They have
some remarkable properties: a single coupling constant, fixed number of generations,
fixed set of the Higgs fields.

5.4 Concluding Remarks

We presented here a brief discussion of the basic concepts of Quantum Field Theory.
This is a formalism needed to construct the Standard Model of particle interactions.
Modern attempts to go beyond the Standard Model are also made in the context
of Quantum Field Theory. These are the Grand Unified models which unify strong
interactions together with electroweak ones, the supersymmetric generalization of the
Standard Model and GUTs, and at last the supergravity theories attempted to include
the gravitational force into this universal scheme. Quantum field theory promises to
be the most natural framework for further development of particle theory.

Still new ideas appeared in recent years. Higher space-time dimensions and the
Kaluza-Klein ideology got the new life within supergravity. Even more revolutionary
is the development of the string theory. In this approach the local QFT appears
to be the low-energy (large distance) limit of some fundamental nonlocal theory, the
superstring theory, which pretends to be the ultimate theory of everything. However,
even in this case the QFT remains the main tool of the description of physics below
the Planck scale.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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