Recent Developments of the Lund Fragmentation Model.

F. Söderberg (fredrik@thep.lu.se)

B. Andersson

S. Mohanty

Outline:

- I Review of the Lund fragmentation model.
- II How to fragment a gluonic string according to the area law.
 - → Monte Carlo implementation: ALFS.
- III Model predictions: the Coherence chains.
- IV Status report: implementing B.E.-effects in ALFS.

The Lund Model (1+1-D)

- Use the Massless Relativistic String as a model for the QCD force field acting upon the q and \overline{q} placed at the endpoints.
- $q \overline{q}$ pair produced (e^+e^-) at a single space-time point moving apart, stretching the field in between them.

The Lund Model (1+1-D)

- String state may decay by the production of new $q \overline{q}$ pairs at different vertices along the string field.
- The vertices are space like separated.
- No interaction between the $q \overline{q}$ from the same vertex i.e. the field ends on the endpoint charges. Confinement

String → Minimal Surface

- The surface is stable against small deformations. Infrared stability
- The dynamics is completely determined by a single boundary curve, the Directrix.
- There is a wave moving across the surface, bouncing at the endpoints (q,\overline{q}) . The internal excitations will affect the endpoints in turn.
- Therefore,
 - a process on the string surface \equiv
 - \equiv a process along the Boundary.

The Breakup Problem: Find the Probability

• The Lund Area Law:

$$dP_n = \prod N d^2 p_j \delta(p_j^2 - m_i^2) \delta(\sum_{1}^{n} p_j - p_{tot}) \times \exp(-bA)$$

The Breakup Problem: Find the Probability.

- Assume that we have reached the vertex x.
- Probability to produce the hadron p_j $\rightarrow f(z) dz$.
- Lund Fragmentation Function:

$$f(z) = N\frac{1}{z}(1-z)^a exp\left(-\frac{bm^2}{z}\right)$$

The Lund Model (3+1-D)

- Gluons are interpreted as internal excitations on the string .
- The space-time surface spanned by the string is a minimal surface.

The Directrix

• The Directrix can be constructed by laying out the parton energy-momenta in colour order.

How do we Fragment

a Multigluonic String

(According to the Area-law)?

How to Fragment a Multigluonic String

- (1+1)-D \rightarrow (generalise) \rightarrow (3+1)-D
- Remember: a process on the string surface
 a process along the Boundary.
 Fragmentation process along the directrix.
- Symmetries (string dynamics): There are many ways to represent the same area.

Fragmentation in (3+1)-D "Building the plaquettes"

$$\begin{aligned} & \boldsymbol{p} = \boldsymbol{z} \cdot \boldsymbol{x} + \bar{\boldsymbol{z}} \cdot \boldsymbol{k} \\ & \boldsymbol{x'} = (1 - \boldsymbol{z}) \cdot \boldsymbol{x} + (1 - \bar{\boldsymbol{z}}) \cdot \boldsymbol{k} \\ & (\bar{\boldsymbol{z}} \text{ fixed because } p^2 = m^2) \end{aligned}$$

$$p = zx + \frac{k}{2} \left(1 - \frac{zx^2}{xk} \right)$$

$$x' = (1 - z)x + \frac{k}{2} \left(1 + \frac{zx^2}{xk} \right)$$

$$k \cdot x = \frac{m^2}{z}$$

Fragmentation Recipe

- initialize $\mathbf{x} = k_q$.
- generate a z value from the distribution f(z).
- find a segment along the directrix **k**, such that $k \cdot x = \frac{m^2}{z}$
- find hadron momentum p, and the next x.
- repeat all steps (except initialisation!)

DOES IT WORK?

No!

Why?

- Close to a gluon corner $k \cdot x < \frac{m^2}{z}$
- We note: the Directrix is defined down to some cut-off.
- Our method: Modify it locally → pass the corners. It will produce excitations at the hadronic mass scale.

It works!

- B. Andersson, S. Mohanty & F. Söderberg
 Eur. Phys. J. C21 (2001) 631
 hep-ph/0106185
- The model is implemented in a Monte-Carlo ALFS

Author: S. Mohanty (sandipan@thep.lu.se)

Language: C++/Fortran interface \exists

Will soon be published!

Predictions

- The plaquettes (1+1-D surface embedded in 3+1-D) are central in ALFS.
- What does the geometry look like?
- Flat regions? (up to $p_{\perp}^2 < \delta$). If they $\exists \rightarrow$ How many hadrons are there? Regularities?

$$\{p_1\} \oplus \underbrace{\{p_2,\ldots,p_j\}}_{C.C.} \oplus \{p_{j+1}\} \oplus \underbrace{\{p_{j+2},\ldots,p_n\}}_{C.C.}$$

Flat Regions \exists \rightarrow Coherence Chains

only a single hadron mass is used! fragmentation model without $p_{\perp}!$

Chainlength (n) independent of cms-energy.

But smaller the mass, more the number of particles that will fit into a chain.

Particle mass has almost no effect on the number of chains detected.

Total number of chains is a function of global event variables.

Bose-Einstein Correlations

 Identical particles → same final state of particles can be obtained in many different ways.

 Monte Carlo (probabilistic description) → event weight.

$$w = 1 + \frac{\cos(\frac{\Delta A}{2\kappa})}{\cosh(\frac{b\Delta A}{2} + \frac{\Delta(\Sigma p_{\perp}^2)}{2\sigma_{p_{\perp}}^2})}$$

- Effect: Enhancement of probability for production of identical bosons with similar energy momenta.
- Large multiplicities ⇒ large number of calculations would be required.

Flat Regions \rightarrow Coherence Chains

• Amplitudes for events where particles have been exchanged across a hard gluon corner is small.

- Coherence chains are big enough to be expected to give some BE effect, while small enough to allow calculations to be done.
- We only need to consider exchanged 'diagrams' in which particles are exchanged with other particles in a group where the energy momenta are all in a plane?

Summary

- String fragmentation can be formulated as a process along the directrix.
- Fragmentation → building a set of plaquettes along the directrix.
- Our model has been implemented in a Monte-Carlo: ALFS.
- The hadronic curve passes through a set of (almost) planar regions → Coherence Chains.
- String Symmetrisation will soon be implemented in ALFS and it will be based upon the Coherence Chains.