

Latest ATLAS results from the heavy flavour physics

S. Tokár, Comenius Univ., Bratislava On behalf of the ATLAS collaboration

Topics in This Talk

- > ATLAS basics
- Important moments of LHC 2011-13
- > Motivation for top physics
- Top production cross section (7 TeV: diff. Xsec, 8 TeV total Xsec vs NNLO...)
- > Top quark mass (3D template, ...)
- Single top production (t-channel, Wt-channel,...)
- > B-quark processes ($B^{0}_{S} \rightarrow \mu^{+}\mu^{-}$, b-prod. X-section,)

Atlas experiment

Pile-up example

At one bunch crossing:

- ✓ Triggered event contains $Z \rightarrow \mu^+ \mu^-$
- ✓ In total 25 interactions

Important LHC-2012/3 moments

Higgs, SuSy...

19-Jul-13

S. Tokar, ATLAS results, HQ13, Dubna

1st moment: Higgs boson

 $M_H^{atlas} = (125.5 \pm 0.2 \pm 0.6) \text{ GeV};$ $M_H^{cms} = (125.7 \pm 0.3 \pm 0.3) \text{ GeV}$

It looks we have SM Higgs, but ...

19-Jul-13

 $\sigma_{SM} \cdot Br_{SM}$

1st moment: Higgs- what is it?

What is Higgs boson?

- Fundamental Boson: New interaction which is not gauge
- Composite Boson: New underlying dynamics

If New Physics exist at Λ_{NP} radiative correction to M_{H} : Which symmetry keeps M_{H} away from Λ_{NP} ? Fermions: Chiral symmetry, Gauge Bosons: Gauge symmetry Scalar Bosons: Sypersymmetry, Scale/Conformal symmetry ...? Hopes on SuSy: stop loops compensate the top loop contribution,

but no stop seen...

SM Higgs: Favoured by EW precision tests but...

a possible Scenarios of EWSB \rightarrow Dynamical (non-perturbative) EWSB:

- ✓ Pseudo-Goldstone Higgs
- ✓ Scalar Resonance

New physics is in Higgs boson !!!

2nd moment: SuSy - no hints so far...

t,t, production

SuSy:

- No hints of stop: m_{stop} > 600GeV Problems with "naturalness"
- *Stop* is scalar and can get also quadratic corrections - mainly from gluino – it should be light < 1.5 TeV
- No hints of neutralino (dark matter candidate)

Status: March 26, 2013

If SUSY is right, could well be **beyond the MSSM.** If SUSY is **natural**, it *must* be

beyond MSSM.

... but SuSy is still alive \rightarrow c.f. M.Reece/LHCP2013

3rd moment: Exotics - no hints so far...

A lot of interesting searches, but no hints of:

- Extra dimensions (quantum BH, KKgravitons)
- ✓ V' bosons
- ✓ New quarks
- ✓ Limits on Contact interaction set > 10 TeV
- Compatibility with SM !

[1] ATLAS-CONF-2013-018 (Ht +³X)<sup>selection of the available mass limits on new states or phenomena shown
 [2] ATLAS-CONF-2013-051 (Same-sign dilepton + b-tags)
 [3] ATLAS-CONF-2013-056(Zb/t + X) [4] ATLAS-CONF-2013-060 (Wb + X)
</sup>

19-Jul-13

S. Tokar, ATLAS results, HQ13, Dubna

Top quark physics on ATLAS

Motivation, Cross section, top quark mass Single top quark

Top quark physics: Motivation

□ Top quark production X-sections: test of QCD → top is produced at very small distances $1/m_t \Rightarrow$

 $\alpha_{s}(\text{m}_{\text{top}})\approx 0.1\text{: pert. expansion }$ converges rapidly

Top decays before hadronization

 $\frac{1/m_t}{Production time < } \frac{1}{\Gamma_t} \frac{1}{\Lambda} \frac{1}{\Lambda} \frac{1}{\Lambda} \frac{1}{\Lambda^2}$

- \rightarrow study of spin characteristics (production mechanisms)
- \rightarrow W helicity measurement (test of EW V-A structure)
- Cross sections sensitive to new physics
 - \rightarrow resonant production of $t\bar{t}$, decay: $t \rightarrow H^+b$

Important background for Higgs studies

Top Quark Production

S. Tokar, ATLAS results, HQ13, Dubna

Top Quark Decay

Cross Section of Top Quark production

Theory 2012-13 - big success:

Cross section of ttbar production known at NNLO + NNLL !!!

t \overline{t} Production Cross Section

Top quark X-section: Experiment vs Theory

Factorization theorem:

$$(\sigma = \sum_{i,j} \int dx_1 dx_2 F_i^{(1)}(x_1, \mu_F) F_j^{(2)}(x_2, \mu_F) (\hat{\sigma}_{ij}(s; \mu_F, \mu_R))$$

experiment Parton Distribution Functions (PDFs)

 $F_i^{(\lambda)}(x_{\lambda}, \mu_F) \equiv$ probability density to observe a parton *i* with longitudinal momentum fraction x_{λ} in incoming hadron λ , when probed at a scale μ_F

 $\mu_{\rm F} \equiv$ factorization scale (a free parameter) - it determines the proton structure if probed (by virtual photon or gluon) with $q^2 = -\mu_F^2$

$$\mu_R \equiv$$
 renormalization scale – defines size of strong coupling constant

Usual choice: $\mu_{F} = \mu_{R} = \mu \in (m_{t}/2, 2m_{t})$

theory

t T Production Cross Section

Theory for top X-section is at NNLO:

Xsec is expanded into series of strong coupling constant:

$$\sigma_{ij}\left(\beta,\frac{\mu^2}{m^2}\right) = \frac{\alpha_s^2}{m^2} \left\{ \sigma_{ij}^{(0)} + \alpha_s \left[\sigma_{ij}^{(1)} + L\sigma_{ij}^{(1,1)}\right] + \alpha_s^2 \left[\sigma_{ij}^{(2)} + L\sigma_{ij}^{(2,1)} + L^2\sigma_{ij}^{(2,2)}\right] + O\left(\alpha_s^3\right) \right\}$$

$$LO \sim \alpha_s^2, \quad NLO \sim \alpha_s^3, \quad NNLO \sim \alpha_s^4 \quad \cdots \quad \beta = \sqrt{1 - 4m^2/s} \quad L \equiv \text{big log term}$$

NLO: virtual and real corrections are added to LO

Virtual corrections:

Taking $|A+B|^2 = ... + AB^* + ..., AB^* \sim \alpha_s^3$

Real corrections – with real gluons (~ α_s^3):

Current status of top pair production

- Before NNLO: Beneke, Falgari, Klein, Schwinn `09-`11 Ahrens, Ferroglia, Neubert, Pecjak, Yang `10-`11 Kidonakis `04-`11 Aliev, Lacker, Langenfeld, Moch, Uwer, Wiedermann '10 Cacciari, Czakon, Mangano, Mitov, Nason '11
 - NNLO: qq: Bärnreuther, Czakon, Mitov, Phys. Rev. Lett., April '12 qq': Czakon, Mitov, JHEP, July '12 qg: Czakon, Mitov, JHEP, October '12 Gluon fusion: Czakon, Fiedler, Mitov, Phys. Rev. Lett., March'13

Publicly available software:

- HATHOR: Aliev, Lacker, Langenfeld, Moch, Uwer, Wiedemann `10 NNLO
- Top++, Czakon, Mitov `11

NNLO + NNLL soft gluon resummation in Mellin-space

TOPIXS, Beneke, Falgari, Klein, Piclum, Schwinn, Ubiali, Yan `12 NLO + approximations for NNLO + NNLL soft and Coulomb resummation in x-space

Theory (NNLO) vs Experiment

arXiv:1303.6254, PRL... NNLO+NNLL scales [pb] pdf [pb] σ_{tot} [pb] +0.110(1.5%)+0.169(2.4%)Tevatron 7.164 -0.200 (2.8%) -0.122 (1.7%) +4.4(2.6%)+4.7(2.7%)LHC 7 TeV 172.0 -5.8 (3.4%) -4.8 (2.8%) +6.2 (2.5%) +6.2 (2.5%) LHC 8 TeV 245.8 -6.4 (2.6%) -8.4(3.4%)+22.7 (2.4%) +16.2(1.7%)LHC 14 TeV 953.6 -33.9(3.6%)-18.8 (1.9%) 5% 2.8% **NNLO**_{approx} NNLO \rightarrow NNLO + NNLL σ_{tot} [pb] Experiment, LHC, $t\bar{t}$ cross section: 7 TeV: $161.9 \pm 2.5 \pm 5.0 \pm 3.6$ pb 5%, CMS DiL $173.3 \pm 2.3 \pm 9.8$ pb 5.8% CMS+ATLAS 8 TeV: 227 ± 3 ± 9.8 ± 10 pb 6.7% CMS-comb.

$t\bar{t}$ cross section measurement

- Selection criteria: trigger + offline selection \Rightarrow candidate events
- $\hfill\square$ Depends on the analysed channel of $t\bar{t}$ production
 - Iepton+jets (L+J), dilepton (D-L) and all hadronic mode (A-H)
 - *l*∨2*b*2*j* 2(*l*∨)2*b* 2*b*4*j* all: +1*j*, 2*j*...
 - LJ: single lepton high- $p_T(E_T)$ trigger applied + Reconstructed level:
 - ✓ 1 high- p_{τ} lepton + ≥4 high- p_{τ} jets (1-2b-tagged) + high E_{T}
 - ✓ Restricted on pseudo-rapidity, $p_T(E_T) > 20 \text{ GeV } E_T > 20 \text{ GeV}$
 - Selection criteria for DL and AH follow their topologies

D Background processes – non $t\overline{t}$ events also pass Selection criteria:

- Basic bkgd processes for LJ channel:
 - ✓ W+jets, Z+jets, diboson, single top quark, multijets
- Bkgd processes: studied using MC + data driven techniques

 $\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkg}}{A \cdot \varepsilon \int L dt}$

19-Jul-13

 $N_{obs}(N_{bkg}) \equiv$ observed (expected bkgd) events A \equiv acceptance, $\varepsilon \equiv$ trigger efficiency, $L \equiv$ luminosity

$t\bar{t}$ cross section: 8 TeV, lepton + jets

- \checkmark Large E_T^{mis} and $m_T(W)$ $1 e / \mu (p_{\tau}(I) > 40 \text{ GeV})$ \geq 3 jets (p_{τ} (jet) > 25 GeV) 1 or more *b*-tagged jet
- **Employs** likelihood discriminant for $t\bar{t}$ and W+Jets normalization
- Discriminant based on aplanarity and lepton pseudorapidity $D_i = \frac{L_i}{L_i^s + L_i^b}$
- Dominant uncertainty (11%) is signal modeling

ATLAS-CONF-2012-149

19-Jul-13

From L.fit: $N(t\bar{t}) = 76000 \pm 500$ $\sigma_{t\bar{t}} = 241 \pm 2(\text{stat.}) \pm 31(\text{syst.}) \pm 9(\text{lumi.}) \text{ pb}$ $\sigma_{t\bar{t}}^{theo} = 245.8^{+6.2}_{-8.4} (\text{stat.})^{+6.2}_{-6.4} (\text{pdf}) \text{ pb}$ arXiv:1303.6254 S. Tokar, ATLAS results, HQ13, Dubna

$t\bar{t}$ cross section measurement at 8 TeV

Collision energy $\sqrt{s}=8$ TeV

- ATLAS: l+jets with 5.8 fb⁻¹ : 241±2(stat) ± 31(syst) ± 9(lumi) pb ATLAS-CONF-2012-149
- CMS l+jets with 2.8 fb⁻¹ : 228 ± 9(stat) ± 29(syst(± 10(lumi) pb
- CMS dilepton with 2.4 fb⁻¹: $227 \pm 3(\text{stat}) \pm 11(\text{syst}) \pm 10(\text{lumi}) \text{ pb}$

<u>CMS PAS TOP-12-006</u>, <u>CMS PAS TOP-12-007</u>

At $\sqrt{s}=8$ TeV not full sample taken – statistics plays no role at > 2fb⁻¹ Main task: a correct treatment of systematics (hadronization, pileup...) Progress in MC tools: a good perspective for going < 5% uncertainty

ATLAS $t\bar{t}$ cross section measurement

Collision energy $\sqrt{s}=7$ TeV

✓ Statistical error plays no role ...

CMS combined at 7 TeV: 165.8 ± 2.2 (stat) ± 13.2 (syst)

ATLAS + CMS combined at 7 TeV: 173.3 ± 2.3 (stat) ± 9.8 (syst)

Total uncertainty : 5.8%

ATLAS-CONF-2012-134 / CMS PAS TOP-12-003

$t\bar{t}$ differential cross section @ATLAS

7 TeV, 2.05 fb⁻¹, L+J, at least one b-tag

To be udated soon

- $t\overline{t}$ reconstruction by likelihood-based kinematic fitter
- Robust unregularized unfolding of m_{tt} , y_{tt} , p_{Ttt} compared with MCFM, ALPGEN, MC@NLO (and approx. NNLO for m_{tt})
- Mostly systematics dominated (Jet/E_{Tmiss} reco.): 10~20% Full covariance matrix provided
- All the measurements are in agreement with SM!

Top Quark Mass Measurement

Top quark mass is one of the SM 25 parameters...

Top Quark Mass

Pole mass: corresponds to pole in propagator of "free" particle it can never be determined with accuracy better than Λ_{OCD} .

Pole mass is close to invariant mass of the top decay products. Ambiguities: extra radiation, color reconnection and hadronization.

Pole mass vs short distance mass perturbatively (+ non-perturbative corrections):

Only short range (< $1/\overline{m}$) corrections to top propagator are taken into account

$$\boldsymbol{m}_{pole} = \boldsymbol{\bar{m}} \left(\boldsymbol{\bar{m}} \right) \left(1 + \frac{4}{3} \frac{\boldsymbol{\bar{\alpha}}_s \left(\boldsymbol{\bar{m}} \right)}{\boldsymbol{\pi}} + 8.28 \left(\frac{\boldsymbol{\bar{\alpha}}_s \left(\boldsymbol{\bar{m}} \right)}{\boldsymbol{\pi}} \right)^2 + \cdots \right) + \boldsymbol{O} \left(\Lambda_{QCD} \right)$$
19-Jul-13 S. Tokar, ATLAS results, HQ13, Dubna

Top mass and EW precision physics

Masses of top, W and Higgs are bounded by

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} \left(1 + \Delta r \right)$$

From rad. corrections to W-boson propagator (any process, e.g. $\mu^- \rightarrow \nu_{\mu} W^- \rightarrow \nu_{\mu} e^- \overline{\nu}_e$):

Precise M_W and $m_t \Rightarrow$ constraint on M_H !

- ✓ LHC can improve: Δm_t and ΔM_w
- ✓ Stringent consistency test of SM

W

How to measure top quark mass?

Top quark mass can be reconstructed in all $t\bar{t}$ topologies (L+J, DiL, A-H) Best results usually in lepton + jets topology

- Different approaches are used usually:
- ✓ Template methods
 - signal template: a distribution of an observable sensitive to m_{top}.
 - Data distribution compared to combination of signal template (different m_{top}) + bkgd one
- Matrix element methods use dependence of top pair production Xsec on top quark mass.
- ✓ Any variable correlated with top quark mass can be used for determination of top mass – e.g. mean lepton p_T (L+J, DiL)

$$\boldsymbol{m}_{top}^{reco} = \boldsymbol{m}(\boldsymbol{b}, \boldsymbol{l}, \boldsymbol{v}_l)$$

ATLAS Top Mass: 3D Template

✓ Lepton+jets, 4.7fb⁻¹, 7TeV

 Event observables (recostr. by a kinematic likelihood fit):

$$m_{top}^{reco}$$
 , m_W^{reco} and R_{lb}^{reco}

$$\boldsymbol{R}_{lb}^{reco} = \begin{cases} \frac{\boldsymbol{p}_{T}^{\boldsymbol{b}_{had}} + \boldsymbol{p}_{T}^{\boldsymbol{b}_{lep}}}{\boldsymbol{p}_{T}^{W_{jet1}} + \boldsymbol{p}_{T}^{W_{jet2}}} \geq 2\boldsymbol{b}\text{-tags} \\ \frac{\boldsymbol{p}_{T}^{b_{lag}}}{0.5\left(\boldsymbol{p}_{T}^{W_{jet1}} + \boldsymbol{p}_{T}^{W_{jet2}}\right)} & 1\boldsymbol{b}\text{-tag} \end{cases}$$

 R_{lb}^{reco} is sensitive to bJSF \Downarrow

Signal and bkgd templates from MC:

- Signal m_{top}^{reco} templates as a function of
- ✓ m_{top} varied in (167.5 177.5 GeV),
- ✓ JSF (Jet energy Scale Factor) in (0.95,1.05)
- ✓ bJSF (b-Jet energy Scale Factor) –in (0.95,1.05)

 m_W^{reco} templates – functions of input JSF R^{reco} templates – functions of input UNICE w

 R_{lb}^{reco} templates – functions of input (*bJSF*, m_{top})

Fit m_{top}^{reco} , R_{lb}^{reco} - Landau+Gauss of input m_{W}^{reco} - 2×Gauss

S. Tokar, ATLAS results, HQ13, Dubna

3D-template fit

Unbinned likelihood fit to the data for all events - fit output: m_{top}, JSF, bJSF (and n_{bkg}):

$m_{top} = 172.31 \pm 0.75 (s+J+b) \pm 1.35 (syst) \text{ GeV}$

New ATLAS measurement: significant improvement of systematic uncertainty 40% (b-tagging, ISR/FSR)

Work towards LHC combination ongoing: important to achieve a common treatment of modelling uncertainties (e.g. hadronisation)

Single Top Quark production

Single top quark production

Production via EW forces (predicted by SM)

- ✓ Cross section measurement ($\sim |V_{tb}|^2$) to test SM predictions
- ✓ Direct measurement of CKM matrix element |V_{tb}|
- ✓ Charge asymmetry ($t \text{ vs } \overline{t}$) is sensitive to proton PDF (u,d)
- ✓ Important for search of new physics
- ✓ Important background for Higgs studies

Single top: background for t-channel

Single top quark production first observed by D0 and CDF in 2009

Smaller backgrounds originate from Z+jets, Wt-channel and s-channel single topquark production, and diboson production.

To cope with background Multivariate techniques (MVT) are used: Neural Networks (NN), Boosted Decision Tree (BDT)...

Basic idea: a set of different kinematic variables (M_{Ivb} , H_T , M_{jj} , M_T ...) is used as input for MVT which employ them to optimize Signal vs Background.

Output of MVT: output discriminant – 1d representation of multidim. separation contour 19-Jul-13 S. Tokar, ATLAS results, HQ13, Dubna 32

Single top quark: t-channel cross section

L+jets, L=1.04 fb⁻¹, pp collision data at $\sqrt{s} = 7$ TeV

Event selection:

- ✓ exactly one charged lepton (e or μ), p_T>25 GeV
- ✓ 2 or 3 jets, $|\eta|$ < 4.5, p_T > 25 GeV / *b*-tagged central jet
- ✓ and $\boldsymbol{E}_T > 25 \,\text{GeV}, \ \boldsymbol{m}_T(\boldsymbol{W}) > (60 \,\text{GeV} \boldsymbol{E}_T)$

	Electron		Muon	
	2-jet	3-jet	2-jet	3-jet
single-top <i>t</i> -channel	447 ± 11	297 ± 7	492 ± 12	323 ± 8
<i>tt</i> , other top	785 ± 52	1700 ± 120	801 ± 53	1740 ± 130
W+light jets	350 ± 100	128 ± 56	510 ± 150	209 ± 91
W+heavy flavour jets	2600 ± 740	1100 ± 400	3130 ± 880	1270 ± 480
Z+jets, diboson	158 ± 63	96 ± 44	166 ± 61	80 ± 31
Multijet	710 ± 350	580 ± 290	440 ± 220	270 ± 140
Total expected	5050 ± 830	3900 ± 520	5530 ± 930	3900 ± 520
Data	5021	3592	5592	3915

NN discriminant: 12 (18) input variables in l+2(3)-jets data set: $m(\ell vb)$, the highest p_T untagged jet $|\eta(j_u)|$, and $E_T(j_u)$ - most important

Single top quark: t-channel

Main uncertainties:
✓ ISR/FSR (14%)
✓ B-tag. eff. (13%)
✓ 24% total,5% stat.

Measured Xsec in the t-channel, simultaneously in 2-jet and 3-jet channels:

 $\sigma_{t} = 83 \pm 4 (\text{stat})_{-19}^{+20} (\text{syst}) \text{ pb} = 83 \pm 20 \text{ pb}$ Significance: 7.2 σ Phys. Lett.B717(2012)330 $|V_{tb}|^{2} \text{ extracted: ratio of the observed } \sigma_{t} \text{ and SM expectation:}$ $|V_{tb}| = 1.13_{-0.13}^{+0.14} (\text{exp.}) \pm 0.02 (\text{theo.}) + 95\% \text{ C.L. lower limit } |V_{tb}| \text{ is } 0.75.$ $L = 5.8 \text{fb}^{-1} @ 8 \text{ TeV}, \qquad \sigma_{t} = 95.1 \pm 2.4 (\text{stat.}) \pm 18.0 (\text{syst.}) \text{ pb}$ refined cuts (jets,miss-E_T) $|V_{tb}| = 1.04_{-0.11}^{+0.10} |V_{tb}| > 0.80 @ 95\% \text{CL}$ ATLAS-CONF-2012-132

t-channel - top/antitop cross-section

Measurement of separate t- and \overline{t} -quark cross-section, L=4.7fb⁻¹ at 7TeV

$$\sigma_t(t) = 41.9^{+1.8}_{-0.8} \text{ pb}$$

$$\sigma_t(\bar{t}) = 22.7^{+0.9}_{-1.0} \text{ pb},$$

Lepton + jets (2 or 3) used - lepton charge from W decay \rightarrow charge of light quark

Main uncertainties: Event fractio ATLAS Preliminary \s = 7 Te\ Several kinematic variables + 2 jets tannen t-channel (top) Cross-section: JES (19.5 %) 0. ttbar, Wt combined into one W+heavy flavour **R**_t: stat. (5.5 %), **NN-discriminant** 0.05 bkg. norm. (4.5 %), JES (4 %) (*l*+2j: 15 var., *l*+3j: 19 var.) 2 4 |η(j)| **ATLAS** Preliminary $\int L dt = 4.7 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$ $\sigma_t(t) = 53.2 \pm 1.7 (\text{stat.}) \pm 10.7 (\text{syst.}) \text{ pb}$ ATLAS result ABKM09 $\sigma_t(\overline{t}) = 29.5 \pm 1.5 (\text{stat.}) \pm 7.3 (\text{syst.}) \text{ pb}$ NNPDF 2.1 **MSTW2008** $R_t = 1.81 \pm 0.10 (\text{stat.})^{+0.21}_{-0.20} (\text{syst.})$ GJR08 CT10 (+ D0 W asym.) CT10 Sensitivity to *u* and *d* PDFs 1.5 1.6 1.7 1.8 1.9 2 2.1 1.2 1.3 14 2.2 19-Jul-13 R, S. Tokar, ATLAS re ATLAS-CONF-2012-056

Single top quark: Wt-channel

Single top quark summary

Single top s-channel: at 7 TeV, L=0.7 fb⁻¹ The found limit: $\sigma_{s-ch} < 26.5$ pb at 95% CL

Good agreement with SM

Top Quark properties

Top quark properties

Examples of new physics

New physics contributions can change, w.r.t. the SM, properties of the Wtb vertex or modify the production mechanism of top quarks.

W helicity fractions in top decay

In SM *Wtb* vertex is given by EW V-A structure SM expectation (NNLO) for *W* helicity fractions (<u>PRD.81.111503</u>): $F_0 = 0.687 \pm 0.005$, $F_L = 0.311 \pm 0.005$ and $F_R = 0.0017 \pm 0.0001$ From angular distribution of top decay products (lepton):

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta^*} = \frac{3}{4}\left(1-\cos^2\theta^*\right)F_0 + \frac{3}{8}\left(1-\cos\theta^*\right)^2F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2F_R$$

JHEP 1206(2012) 088

 $\theta^* \equiv$ angle (lepton, b-quark reversed mom.) in W boson rest frame

Combined (I+jets, dilepton) channel at 1.04 fb^{-1.} $F_0 = 0.67 \pm 0.03 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$ $F_L = 0.32 \pm 0.02 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$ $F_R = 0.01 \pm 0.01 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$

LHC combination (ATLAS-CONF-2013-033, CMS_PAS_TOP-12-025)

- $F_0 = 0.626 \pm 0.034$ (stat.) ± 0.048 (syst.)
- $F_L = 0.359 \pm 0.021$ (stat.) ± 0.028 (syst.)

Main syst: MC modelling, jet reconstruction, detector modelling

Anomalous Wtb couplings

Deviation of F_0 , F_L , F_R from SM prediction \Rightarrow New Physics contributing to Wtb:

$$L_{Wtb} = -\frac{g}{\sqrt{2}}\overline{b}\gamma^{\mu} \left(V_L P_L + V_R P_R\right) W_{\mu}^{-} - \frac{g}{\sqrt{2}}\overline{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_W} \left(g_L P_L + g_R P_R\right) W_{\mu}^{-} + h.c.$$

 P_L (P_R) is the left (right)-handed chirality operator: $1 \mp \gamma_5$

In SM (tree level): $V_L = V_{tb} \approx 1$ and $V_R = g_L = g_R = 0$

Couplings V_L , V_R , g_L and g_R can be expressed via new physics scale Λ

b

Limits on anomalous couplings: from measurement of W hel. fractions using their dependence on the couplings

Large g_R region (2nd solution of quadratic eq.)
 disfavoured by the single top production
 Xsection measurement

Limits on Im(g_R): [-0.20, 0.30] at 95% CL

19-Jul-13

S. Tokar, ATLAS results, HQ13, Dubna

Spin correlation in $t\bar{t}$ events, at 7 TeV

- Polarization of t and \overline{t} quarks in $t\overline{t}$ sample is predicted to be very small but their spins should be correlated.
- $t\overline{t} \rightarrow W^+W^-b\overline{b} \rightarrow l^+\nu l^-\overline{\nu}b\overline{b}$ **Dilepton topology** with large missing E_{τ} and \geq 2jets:
- Reconstructed distribution of $\Delta \phi$ (= azimuthal angle of two leptons) for e^+e^- , μ^+e^- , $e^\pm\mu^\mp$ channels
- Degree of correlation:

$$A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$$

Spin correlation: from $\Delta \phi$ distribution \rightarrow a binned likelihood fit for linear superposition

The combined fit:

$$f^{SM} \cdot N_{t\bar{t}corr}^{SM} \left(\Delta\phi\right) + \left(1 - f^{SM}\right) \cdot N_{uncorr}^{MC} \left(\Delta\phi\right)$$

$$f^{SM} = 1.30 \pm 0.14 (\text{stat.})^{+0.27}$$

$$A_{havin}^{meas} = A_{havin}^{SM} \cdot f^{SM}$$

$$A^{meas}_{basis} = A^{SM}_{basis} \cdot f^{SM}$$

$$A_{helicity} = 0.40 \pm 0.04 (\text{stat.}) {+0.08 \atop -0.07} \text{ vs } A_{helicity}^{SM} = 0.31$$
$$A_{\text{max}} = 0.57 \pm 0.06 (\text{stat.}) {+0.12 \atop -0.10} \text{ vs } A_{\text{max}}^{SM} = 0.44$$
S results, HQ13, Dubna

Main background:

- \checkmark Z/ γ * + jets
- ✓ Fake leptons
- single top
- dibosons

PRL.108,212001(2012)

Top quark charge determination

B-physics results

Decay $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$, b-hadron production cross section Measurement of ϕ_{s} from $B_{s}^{-} J/\psi \phi$ Angular Analysis of $B_{d}^{0} \rightarrow K^{*0} \mu^{+}\mu^{+}$ $\Upsilon(nS)$ production cross section

Search for the decay $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$

- ✓ $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ is highly suppressed in SM: BR=(3.5±0.3)×10⁻⁹
- ✓ Analysis is based on dimuon trigger, sample 4.9fb⁻¹at 7 TeV
- ✓ BR($B_s^0 \rightarrow \mu^+ \mu^-$) is measured w.r.t. reference decay ($B^\pm \rightarrow J / \psi K^\pm$)

$$BR(B_s^0 \to \mu^+ \mu^-) = BR(B^{\pm} \to J / \psi K^{\pm} \to \mu^+ \mu^- K^{\pm}) \times \frac{f_u}{f_s} \times \frac{N_{\mu^+ \mu^-}}{N_{J/\psi K^{\pm}}} \times \frac{A_{J/\psi K^{\pm}}}{A_{\mu^+ \mu^-}} \frac{\varepsilon_{J/\psi K^{\pm}}}{\varepsilon_{\mu^+ \mu^-}}$$

relative production probability of B^{\pm} and B_{s}^{0} (f_{u}/f_{s}), event yields after bkgd subtraction and acceptance and efficiency ratios

Background:

- continuous smooth dependence on m($\mu\mu$), from $b\bar{b} \rightarrow \mu^+\mu^- X/2$
- Resonant one B decay with 1 or 2 hadrons identified as muons.

Discriminating variables for BDT:

- takes into account $B_s^0 \rightarrow \mu^+ \mu^-$ separated from PVtx
- Two body topology

Multivariate technique BDT applied to select candidate events

Extracted limits: $BR(B_s^0 \rightarrow \mu^+ \mu^-) < 1.5 \times 10^{-8}$ at 95% CL.

ATLAS-CONF-2013-076

LHCb evidence

 N_{obs} = 6 events P-value(B) = 58% P-value(S_{SM}+B) = 24% !

m_{μμ} [MeV]

19-Jul-13

S. Tokar, ATLAS results, HQ13, Dubi

b-hadron production cross section

- □ Single muon trigger used with $p_T > 6GeV$
- Based on partial reconstruction of the b-hadron decay final state $D^{*+}\mu^{-}X$, with $D^{*+} \rightarrow \pi^{+}D^{0}(\rightarrow K^{-}\pi^{+})$
- □ selection: $p_T(K^-\pi^+\pi^+)>4.5$ GeV and $|\eta(K^-\pi^+\pi^+)|<2.5$ inv. Mass 2.5 <m(D^{*+}\pi⁻)<5.4 GeV

$$H_{b} \rightarrow D^{*+}\mu^{-}X \text{ cross section:}$$
Fraction of $H_{b} \rightarrow D^{*+}\mu^{-}X$

$$\sigma(pp \rightarrow H_{b}X' \rightarrow D^{*+}\mu^{-}X) = \frac{f_{b} \times N(D^{*+}\mu^{-} + D^{*-}\mu^{+})}{2\varepsilon BL}$$
Candidate events

Efficiency, branching $D^{*+} \rightarrow \pi^+ D^0(\rightarrow K^-\pi^+)$, integrated luminosity

- ✓ For efficiency $b\overline{b}$ MC sample is used
- ✓ Unfolding is used to extract b-component
- ✓ Main systematics: tracking + μ -reconstruction

Integ. b-hadron X-sec. for $p_T(H_b) > 9$ GeV and $|\eta(H_b)| < 2.5$:

$$p(pp \rightarrow H_b X) = 32.7 \pm 0.8 (\text{stat.}) \pm 3.1 (\text{syst.}) + \frac{2.1}{-5.6} (\alpha) \pm 1.1 (L) \mu b$$

 $\rightarrow \sigma(pp \rightarrow b\bar{b}X) = 288 \pm 4 \text{ (stat.)} \pm 48 \text{ (syst.)} \ \mu\text{b}$ LHCb: 284±20±48 μb

Comparison with theory: POWHEG+PYTHIA $\sigma = 22.2^{+8.9}_{-5.4} (scale)^{+2.1}_{-1.9} (m_b)^{+2.2}_{-2.1} (PDF)^{+1.6}_{-1.5} (hadr)$

pp collisions at \sqrt{s} = 7 TeV, $\int Ldt$ = 3.3 pb⁻¹

Nucl.Phys.B864(2012)341

Angular Analysis of $B^0_d \rightarrow K^{*0} \mu^+ \mu$

SM: $B^0 \rightarrow K^{*0}\mu^+\mu^-$ with $K^{*0} \rightarrow K^+\pi^-$ is a FCNC decay – via loops, BR=(1.06±0.1)×10⁻⁶

- ✓ Described by: $\mu\mu$ invariant mass (q²) + 3 angles (θ_L , θ_K and ϕ)
- \checkmark Usually $d^2\Gamma/dq^2d\cos\theta_L$ and $d^2\Gamma/dq^2d\cos\theta_K$
- \checkmark extracted: K^{*0} longitudinal polarisation fraction F₁ lepton forward/backward asymmetry A_{FR}

 $\frac{1}{\Gamma}\frac{d^2\Gamma}{dq^2d\cos\theta_L} = \frac{3}{4}F_L(q^2)(1-\cos^2\theta_L) + \frac{3}{8}(1-F_L(q^2))(1+\cos^2\theta_L) + A_{FB}(q^2)\cos\theta_L,$ $d^2\Gamma$ $\Gamma dq^2 d\cos\theta_K$

Analysis: 7TeV, $\int Ldt = 4.9 \text{ fb}^{-1}$. Likelihood fit applied to the angular distributions

$B^0{}_d \to K^{\star 0} \; \mu^+ \mu^-$: F_L and A_{FB} comparison

Summary results on $A_{FB} \equiv lepton FB$ asymmetry $A_{FB} \equiv K^{*0}$ longit. polarisation10 $N_{sig} \equiv Nr.$ of signal events14

q^2 range (GeV ²)	N_{sig}	A_{FB}	F_L
$2.00 < q^2 < 4.30$	19 ± 8	$0.22 \pm 0.28 \pm 0.14$	$0.26 \pm 0.18 \pm 0.06$
$4.30 < q^2 < 8.68$	88 ± 17	$0.24 \pm 0.13 \pm 0.01$	$0.37 \pm 0.11 \pm 0.02$
$10.09 < q^2 < 12.86$	138 ± 31	$0.09 \pm 0.09 \pm 0.03$	$0.50 \pm 0.09 \pm 0.04$
$14.18 < q^2 < 16.00$	32 ± 14	$0.48 \pm 0.19 \pm 0.05$	$0.28 \pm 0.16 \pm 0.03$
$16.00 < q^2 < 19.00$	149 ± 24	$0.16 \pm 0.10 \pm 0.03$	$0.35 \pm 0.08 \pm 0.02$
$1.00 < q^2 < 6.00$	42 ± 11	$0.07 \pm 0.20 \pm 0.07$	$0.18 \pm 0.15 \pm 0.03$

lepton forward-backward asymmetry A_{FB}

fraction of longitudinal polarised $K^{*0} F_L$

19-Jul-13

Comparison with others: ATLAS vs BaBar, Belle, CDF and LHCb

Measurement of ϕ_s from B_s ->J/ $\psi \phi$

CPV phase ϕ_s : phase difference between $B_s - \overline{B}_s$ mixing followed by \overline{B}_s decay and direct B_s ($\rightarrow J/\psi \phi$) decay Analysis: 4.9fb⁻¹, at 7 TeV

SM prediction: $\phi_s^{SM} \approx -2\beta_s = -0.0363^{+0.0016}_{-0.0015} \approx 2^\circ$

- $\checkmark \text{Uses} B_s^0 \to J/\psi (\to \mu^+ \mu^-) \phi (\to K^+ K^-)$
- ✓ Disentangle (final state of B⁰_s decay)
 - CP-even states: (CP= +1, /L=0, L=2)
 - and CP-odd states: (CP= -1, /L=1)
- Analyzed: angular distributions in transversity coordinate system

$$\begin{split} \phi_s &= 0.12 \pm 0.25(stat.) \pm 0.11(syst.) \text{ rad} \\ \Delta \Gamma &= 0.053 \pm 0.021(stat.) \pm 0.009(syst.) \ ps^{-1} \\ \Gamma &= 0.677 \pm 0.007(stat.) \pm 0.003(syst.) \ ps^{-1} \\ |A_0(0)|^2 &= 0.529 \pm 0.006(stat.) \pm 0.011(syst.) \\ |A_{\parallel}(0)|^2 &= 0.220 \pm 0.008(stat.) \pm 0.009(syst.) \\ \delta_{\perp} &= 3.89 \pm 0.46(stat.) \pm 0.13(syst.) \end{split}$$

ATLAS-CONF-2013-039

$\Upsilon(nS)$ production cross section

Uncertainties: statistical, systematic, and luminosity

51

50

0 60 70 ນີ p_{_}[GeV]

Y(nS) production cross section

A tension between data and

theoretical model seen!

Ratios of differential $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(1S)$ X-sec × Br($\Upsilon \rightarrow \mu^+\mu^-$) vs Υp_T and $\Upsilon |y|$ (direct production vs prod. via excited states)

Dif. Xsec $d^2\sigma / dp_T dy \times Br(\Upsilon \to \mu^+ \mu^-)$ for $\Upsilon(1S)$, full phase space, vs

- ✓ NNLO* Color Singlet Mechanism (CSM)
- ✓ Color Evaporation Model (CEM).

Other b-physics results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

19-Jul-13

S. Tokar, ATLAS results, HQ13, Dubna

Summary

- LHC measurements at 7 and 8 TeV have a significant impact on theoretical conceptions.
- Top quark physics, with full NNLO from theory and new LHC measurements, enters into high precision era !
- Potential of heavy quark (top, b) physics:
 - ✓ Internal tests of SM (precise measurement of top mas, top Xsec, top spin correlations, b-quark Xsec...)
 - ✓ Window for a new physics (single top, anomalous coupling, ttbar resonances, ...)
 - ✓ B-production cross section (QCD tests)
 - ✓ Study of B-decay ($B^0_s \rightarrow \mu\mu$, $B^0_d \rightarrow K^{*0} \mu^+\mu$...)
 - ✓ Production of upsilonia
 - ✓ Measurement of CPV phase ϕ_s

Perspectives: to improve systematics (hadronisation, pileup,ISR/FSR,...) to process full statistics at 7 and 8 TeV

Top quark mass summary

2d-analysis: m_{top} + jet energy scale factor (JSF) are determined simultaneously using m_{top}^{reco} , m_W^{reco} distributions \rightarrow in-situ jet scaling.

ATLAS and CMS top mass summary

19-Jul-13

S. Tokar, ATLAS results, HQ13, Dubna

A few top Cross Section issues

Higher order real and virtual corrections exhibit IR and UV divergences:

Example:

$$q$$
 propagator = $\frac{1}{\left(p+k\right)^2} = \frac{1}{2E_pE_k} \cdot \frac{1}{1-\beta_p\cos\theta}, \quad \beta_p = \sqrt{1-m^2/E_p^2}$

✓ IR singularity: $E_k \rightarrow 0$ and $1 - \beta_p \cos \theta \rightarrow 0 \Rightarrow$ cancelled when Xsec of virtual and real emission are summed also mass singularities are cancelled \Rightarrow Cancelation is not full \Rightarrow presence of big logs (L) in Xsec terms !

✓ UV singularities in loops () are handled by renormalization.

In real we observe $t\overline{t}$ decay products not $t\overline{t}$ Factorization is used based on the narrow width approximation:

 \checkmark polarized top quarks are produced on mass shell ✓ polarized on-shell top quarks decay Narrow width app. vs direct $pp \rightarrow WWbb$:

For LHC 7TeV/DIL: Xsec(fb) 837 vs 841 also done for 14 and 1.96TeV

3D-template fit

Unbinned likelihood fit to the data for all events - fit output: m_{top} , JSF, bJSF (and n_{bkg}): $L(m_{top}^{reco}, m_{W}^{reco}, R_{tlb}^{reco} | m_{top}, JSF, bJSF, n_{bkg}) =$ $\prod_{i}^{N} P_{top} (m_{top}^{reco} | m_{top}, JSF, bJSF, n_{bkg})_{i} \times P_{W} (m_{W}^{reco} | JSF, n_{bkg})_{i} \times P_{R_{lb}} (R_{lb}^{reco} | m_{top}, bJSF, n_{bkg})_{i}$

$$\boldsymbol{P}_{top} = \left(\boldsymbol{N} - \boldsymbol{n}_{bkg}\right) \boldsymbol{P}_{top}^{sig} + \boldsymbol{n}_{bkg} \boldsymbol{P}_{top}^{bkg} \cdots$$

 $m_{top} = 172.31 \pm 0.75 (s+J+b) \pm 1.35 (syst) GeV$ JSF = 1.014 ± 0.003 (stat) ± 0.021 (syst) bJSF = 1.014 ± 0.003 (stat) ± 0.021 (syst)

New ATLAS preliminary measurement: significant improvement of sytematic uncertainty (especially b-tagging)

Work towards LHC combination ongoing: important to achieve a common treatment of modelling uncertainties (e.g. hadronisation)

W helicity fractions in top decay

In SM *Wtb* vertex is given by EW V-A structure SM expectation (NNLO) for *W* helicity fractions (<u>PRD.81.111503</u>): $F_0 = 0.687 \pm 0.005$, $F_L = 0.311 \pm 0.005$ and $F_R = 0.0017 \pm 0.0001$ From angular distribution of top decay products (lepton):

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta^*} = \frac{3}{4}\left(1-\cos^2\theta^*\right)F_0 + \frac{3}{8}\left(1-\cos\theta^*\right)^2F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2F_R$$

 $\theta^* \equiv$ angle (lepton, b-quark reversed mom.) in W boson rest frame

Combined (l+jets, dilepton) channel at 1.04 fb⁻¹:

 $F_0 = 0.67 \pm 0.03 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$ $F_L = 0.32 \pm 0.02 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$ $F_R = 0.01 \pm 0.01 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$

LHC combination (ATLAS-CONF-2013-033, CMS_PAS_TOP-12-025)

- $F_0 = 0.626 \pm 0.034$ (stat.) ± 0.048 (syst.)
- $F_L = 0.359 \pm 0.021$ (stat.) ± 0.028 (syst.)

Main syst: MC modelling, jet reconstruction, detector modelling

58

b-hadron production cross section

$p_{\rm T}(D^{*+}\mu^{-})$	$N(D^{*+}\mu^{-})$
9-12 GeV	334 ± 33
12-15 GeV	1211 ± 56
15–20 GeV	1527 ± 55
20–30 GeV	1049 ± 42
30-45 GeV	310 ± 21
45-80 GeV	76 ± 10

$ \eta(D^{*+}\mu^{-}) $	$N(D^{*+}\mu^{-})$
0.0 - 0.5	1330 ± 47
0.5 - 1.0	1207 ± 47
1.0 - 1.5	919 ± 48
1.5 - 2.0	890 ± 60
2.0-2.5	317 ± 37

Table 1: Fitted number of opposite charge $D^*\mu$ pairs for different p_T and $|\eta|$ bins.

Various processes contribute to the $D^{*+}\mu^{-}$ data sample:

- ✓ Direct semileptonic decay: $b \rightarrow D^+\mu^-X$; = the signal contribution used for this measurement.
- ✓ Decays of two c-hadrons, one of them decaying semileptonically: $c \rightarrow D^{*+}X$; $\underline{c} \rightarrow \mu^{-}X'$.
- ✓ Direct semileptonic τ decay: b → D^{*+} τ ⁻X; τ ⁻→ → μ ⁻ $\underline{\nu}_{\mu}$ ν_{τ} (γ).
- ✓ Decays of b-hadrons with two c-hadrons in the final state, one of them decaying semileptonically:
- $\checkmark b \to D^{*_+} \underline{D} X; \underline{D} \to \mu^- X'.$
- ✓ Decays of two b-hadrons, one of them decaying semileptonically: $b \rightarrow D^{*+}X$; $b \rightarrow \mu X'$.
- ✓ A D+ meson accompanied by a fake muon, contributing to both opposite-sign and same-sign charge combinations. The contribution from combinations with misidentied muon charge is negligible.