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Introduction

The problem of interpretation of scalar mesons, tightly related to the most
profound topics concerning the QCD vacuum, is faraway to be solved. This
concerns as parameters of the scalar mesons as their nature and status of some of
them (J.Beringer et al. (PDG), PR D86 (2012) 010001). E.g., applying our
method of the uniformizing variable in the 3-channel analyses of multi-channel ππ
scattering (Yu.S.Surovtsev et al., PR D81 (2010) 016001; Yu.S.Surovtsev et al.,
PR D85 (2012) 036002) we have obtained parameters of the f0(600) and
f0(1500) which differ considerably from results of analyses utilizing other methods
(mainly based on dispersion relation and Breit-Wigner approaches).
Reasons for this difference were understood in our works of previous year
(Yu.S. Surovtsev et al., PR D 86 (2012) 116002; arXiv: 1206.3438v2 [hep-ph];
1207.6937[hep-ph]). We have shown that when studying wide multi-channel
resonances, as the scalar ones, the Riemann-surface structure of the S-matrix of
considered processes must be allowed for properly. For the scalar states this is, as
minimum, the 8-sheeted Riemann surface. This is related with a necessity to
analyze jointly coupled processes ππ → ππ,KK, ηη because (it was shown)
studying only ππ scattering it is impossible to obtain correct values for the scalar
states parameters. For calculating masses, total widths and coupling constants of
resonances with channels, one must use the poles on sheets II, IV and VIII,
depending on the state type.
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Important conclusion: Even if a wide state does not decay into a channel which
opens above its mass but it is strongly connected with this channel, one ought to
consider this state taking into account the Riemann surface sheets related to the
threshold branch-point of this channel. I.e., the standard dispersion relation
approach in which amplitudes are considered on the 2-sheeted Riemann surface
does not suit for correct determination of this state parameters.
Note an importance of our above conclusions because our approach is based only
on the demand for analyticity and unitarity of amplitude using an uniformization
procedure. The construction of the amplitude is essentially free from any dynamical
(model) assumptions utilizing only the mathematical fact that a local behaviour of
analytic functions determined on the Riemann surface is governed by the nearest
singularities on all corresponding sheets. Therefore it seems that our approach
permits us to omit theoretical prejudice in extracting the resonance parameters.

Analyzing only ππ → ππ,KK, ηη(ηη′) (Yu.S.Surovtsev, P.Bydžovský,
V.E.Lyubovitskij, PR D85 (2012) 036002) in the 3-channel approach, we have
shown that experimental data on the ππ scattering below 1 GeV admit two
possibilities for parameters of the f0(600) with mass, relatively near to the
ρ-meson mass, and with the total widths about 600 and 950 MeV – solutions ”A”
and ”B”, respectively.
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Furthermore, it was shown that for the states f0(1370), f0(1500) (as a
superposition of two states, broad and narrow) and f0(1710), there are four
scenarios of possible representation by poles and zeros on the Riemann surface
giving the similar description of the above processes and, however, the quite
different parameters of some resonances. E.g., for the f0(600) (A solution),
f0(1370) and f0(1710), a following spread of values is obtained for the masses and
total widths respectively: 605-735 and 567-686 MeV, 1326-1404 and
223-345 MeV, and 1751-1759 and 118-207 MeV.

Adding to the combined analysis the data on decays J/ψ → φ(ππ,KK) from the
DM2, Mark III and BES III Collaborations, we have considerably diminished a
quantity of the possible scenarios (Yu.S. Surovtsev, P. Bydžovský, R. Kamiński,
V.E. Lyubovitskij, and M. Nagy, arXiv: 1207.6937[hep-ph]). Moreover the di-pion
mass distribution of the J/ψ → φππ decay of the BES III data from the threshold
to about 850 MeV prefers surely the solution with the more wide f0(600) –
B-solution. This is a problem because most of physicists (J.Beringer et al. (PDG),
PR D86 (2012) 010001) prefer the less wide f0(600).

Therefore here we widen our combined analysis adding also accessible data on the
decays ψ(2S) → J/ψ(ππ) and Υ(2S) → Υ(1S)ππ from the Argus, Crystal Ball,
CLEO, CUSB, Mark II Collaborations.
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There are also other problems related to interpretation of scalar mesons, e.g., as to
an assignment of the scalar mesons to lower qq̄ nonets.

There is a number of properties of the scalar mesons, which do not allow one
satisfactorily to make up the lowest nonet. The main of them is inaccordance of
the approximately equal masses of the f0(980) and a0(980) and the found ss̄
dominance in the wave function of the f0(980). If these states are in the same
nonet, the f0(980) must be heavier than a0(980) for 250-300 MeV, because a
difference of masses of s- and u-quarks is 120-150 MeV. In connection with this,
various variants for solution are proposed. The most popular one is the 4-quark
interpretation of f0(980) and a0(980) mesons, in favour of which as though
additional arguments have been found on the basis of interpretation of the
experimental data on the decays φ→ γπ0π0, γπ0η (N.N.Achasov, NP A 675
(2000) 279c). However, the 4-quark model, beautifully solving the old problem of
the unusual properties of scalar mesons, sets new questions. Where are the 2-quark
states, their radial excitations and the other members of 4-quark multiplets
9, 9∗, 36 and 36∗, which are predicted to exist below 2.5 GeV (R.L.Jaffe, PR D 15
(1977) 267, 281)? We proposed our way to solve this problem.

Further we shall consider mainly the 3-channel case because it was shown that this
is a minimal number of channels needed for obtaining correct values of scalar
resonance parameters. However for convenience and having in mind other
problems, we shall mention sometimes the 2- and N-channel cases.
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Method of the uniformizing variable in the 3-channel ππ scattering

Our model-independent method which essentially utilizes a uniformizing variable
can be used only for the 2-channel case and under some conditions for the
3-channel one. Only in these cases we obtain a simple symmetric (easily
interpreted) picture of the resonance poles and zeros of the S-matrix on the
uniformization plane. The 2- or 3-channel S-matrix is determined on the 4- or
8-sheeted Riemann surface, respectively. The matrix elements Sij , where
i, j = 1, 2, 3 denote channels, have the right-hand cuts along the real axis of the s
complex plane (s is the invariant total energy squared), starting with the channel
thresholds si (i = 1, 2, 3), and the left-hand cuts. The Riemann-surface sheets are
numbered according to the signs of analytic continuations of the square roots√
s− si (i = 1, 2, 3) as follows:

I II III IV V VI VII VIII

Im
√
s− s1 + − − + + − − +

Im
√
s− s2 + + − − − − + +

Im
√
s− s3 + + + + − − − −
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Figure : Sewing together the sheets of the Riemann surface.
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Our approach is based on such general principles, as analyticity and unitarity, and
realizes an idea of the consistent account of the nearest (to the physical region)
singularities on all sheets of the Riemann surface of the S-matrix, thus giving a
chance to obtain a model-independent information on multi-channel resonances
from the analysis of data on the coupled processes.
The main model-independent contribution of resonances is given by poles and
corresponding zeros on the Riemann surface. A reasonable and simple description
of the background should be a criterion of correctness of this statement.
Obviously, we deal with renormalized quantities, and the poles of S-matrix
correspond to dressed particles.

If a resonance has the only decay mode (1-channel case), the general statement
about a behaviour of the process amplitude is that at energy values in a proximity
to the resonance one it describes the propagation of resonance as if the latter were
a free particle. This means that in the matrix element the resonance (in the limit
of its narrow width) is represented by a pair of complex conjugate poles on sheet II
and by a pair of conjugate zeros on the physical sheet at the same points of
complex energy.
This model-independent statement about the poles as the nearest singularities
holds also when taking account of the finite width of a resonance.

Yu.S. Surovtsev (BLTP JINR) Scalar mesons in multi-channel ππ scattering, decays... 9 / 38



Obviously, the statement that the poles corresponding to resonances are the
nearest (to the physical region) singularities holds also in the multi-channel case.

In order to obtain an arrangement of poles and zeros of multi-channel resonance
on the Riemann surface, we use the proved fact that on the physical sheet, the
S-matrix elements can possess only the resonance zeros (beyond the real axis), at
least, around the physical region. Therefore it ought to obtain formulas expressing
analytic continuations of the S-matrix elements to all sheets in terms of those on
the physical sheet.
D.Krupa, V.A.Meshcheryakov, Yu.S.Surovtsev, NC A109 (1996) 281.
Then, starting from the resonance zeros on sheet I, one can obtain the
arrangement of poles and zeros of resonance on the whole Riemann surface.
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Consider the N -channel S-matrix (all channels are two-particle ones) determined
on the 2N -sheeted Riemann surface. The latter has the right-hand (unitary) cuts
along the real axis of the s-variable complex plane (si,∞) (i = 1, 2, · · · , N means
a channel) through which the physical sheet is sewed together with other sheets.
The branch points are at the vanishing values of the channel momenta

kα = (s/4−m2
α)

1/2.

For the time being, the left-hand cut related with the crossing-channel
contributions, will be neglected in the Riemann-surface structure; in principle, their
contributions can be taken into account in the background of the corresponding
amplitudes.
Here it is convenient to use the following enumeration of sheets (see, e.g.,
M. Kato, Ann.Phys. 31 (1965) 130): the physical sheet is denoted as L0, other
sheets through Li1···ik where i1 · · · ik are a system of subscripts of those
channel-momenta kin which change signs at analytical continuations from the
physical sheet onto the indicated one.
Then the analytical continuations of S-matrix elements Sik to the unphysical sheet

Li1···ik are S
(i1···ik)
ik . We will obtain the formula expressing S

(i1···ik)
ik in terms of

S
(0)
ik (matrix elements Sik on the physical sheet L0), using the reality property of

the analytic functions and the N -channel unitarity. The direct derivation of these
formulas requires rather bulky algebra. It can be simplified if we use Hermiticity of
the K-matrix.
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To this end, first, we shall introduce the notation: S[i1···ik] means a matrix in
which all the rows are composed of the vanishing elements but the rows i1, · · · , ik,
that consist of elements Sinim . In the matrix S{i1···ik}, on the contrary, the rows
i1, · · · , ik are zeros. Therefore,

S[i1···ik] + S{i1···ik} = S.

Further Δ[i1···ik] and Δ{i1···ik} denote the diagonal matrices with zero
non-diagonal elements and with the diagonal ones

Δ
[i1···ik]
ii =

⎧⎨
⎩

1 if i ∈ (i1 · · · ik),
0 for remaining i,

and Δ
{i1···ik}
ii =

⎧⎨
⎩

0 if i ∈ (i1 · · · ik),
1 for remaining i,

respectively. Further using relation of the S- and K-matrices

S =
I + iρ1/2Kρ1/2

I − iρ1/2Kρ1/2
where ρij = 0 (i �= j), ρii = 2ki/

√
s

and SS+ = I, it is easy to obtain that K = K+, i.e., the K-matrix has no
discontinuity when going across the two-particle unitary cuts and has the same
value in all sheets of the Riemann surface of the S-matrix. Using the latter fact,
we obtain the needed formula. The analytical continuations of the S-matrix to the
sheet Li1···ik will be represented as

S(i1···ik) =
S(0){i1···ik} − iΔ[i1···ik]

Δ{i1···ik} − iS(0)[i1···ik] .
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From the last formula the corresponding relations for the S-matrix elements can be
derived by the formula for the matrix division. In Table the result is shown for the
3-channel case. We have returned to more standard enumeration of sheets by
Roman numerals I, II,...,VIII.

L0 L1 L12 L2 L23 L123 L13 L3

Process I II III IV V VI VII VIII

1 → 1 S11
1
S11

S22

D33

D33

S22

detS
D11

D11

detS
S33

D22

D22

S33

1 → 2 S12
iS12

S11

−S12

D33

iS12

S22

iD12

D11

−D12

detS
iD12

D22

D12

S33

2 → 2 S22
D33

S11

S11

D33

1
S22

S33

D11

D22

detS
detS
D22

D11

S33

1 → 3 S13
iS13

S11

−iD13

D33

−D13

S22

−iD13

D11

D13

detS
−S13

D22

iS13

S33

2 → 3 S23
D23

S11

iD23

D33

iS23

S22

−S23

D11

−D23

detS
iD23

D22

iS23

S33

3 → 3 S33
D22

S11

detS
D33

D11

S22

S22

D11

D33

detS
S11

D22

1
S33

In Table, the superscript I is omitted to simplify the notation, detS is the
determinant of the 3× 3 S-matrix on sheet I, Dαβ is the minor of the element
Sαβ, that is, D11 = S22S33 − S2

23, D22 = S11S33 − S2
13, D33 = S11S22 − S2

12,
D12 = S12S33 − S13S23, D23 = S11S23 − S12S13, etc.
These formulas show how singularities and resonance poles and zeros are
transferred from the matrix element S11 to matrix elements of coupled processes.
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Let us explain in the 2-channel example how pole cluster describing resonance
arises. In the 1-channel consideration of the scattering 1 → 1 the main
model-independent contribution of resonance is given by a pair of conjugate poles
on sheet II and by a pair of conjugate zeros on sheet I at the same points of
complex energy in S11. (Conjugate poles and zeros are needed for real analyticity.)
In the 2-channel consideration of the processes 1 → 1, 1 → 2 and 2 → 2, we have

SII
11 =

1

SI
11

, SIII
11 =

SI
22

SI
11S

I
22 − (SI

12)
2
, SIV

11 =
SI
11S

I
22 − (SI

12)
2

SI22
,

SII
22 =

SI
11S

I
22 − (SI

12)
2

SI
11

, SIII
22 =

SI
11

SI
11S

I
22 − (SI

12)
2
, SIV

22 =
1

SI
22

,

SII
12 =

iSI
12

SI
11

, SIII
12 =

−SI
12

SI
11S

I
22 − (SI

12)
2
, SIV

12 =
iSI

12

SI
22

.

In S11 a resonance is represented by a pair of conjugate poles on sheet II and by a
pair of conjugate zeros on sheet I and also by a pair of conjugate poles on sheet III
and by a pair of conjugate zeros on sheet IV at the same points of complex energy
if the coupling of channels is absent (S12 = 0). If the resonance decays into both
channels and/or takes part in exchanges in the crossing channels, the coupling of
channels arises (S12 �= 0). Then positions of the poles on sheet III (and of
corresponding zeros on sheet IV) turn out to be shifted with respect to the
positions of zeros on sheet I. Thus we obtain the cluster (of type (a)) of poles and
zeros.
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In the 2-channel case, 3 types of resonances are obtained corresponding to a pair
of conjugate zeros on sheet I only in S11 – the type (a), only in S22 – (b), and
simultaneously in S11 and S22 – (c).
In the 3-channel case, we obtain 7 types of resonances corresponding to 7 possible
situations when there are resonance zeros on sheet I only in S11 – (a); S22 – (b);
S33 – (c); S11 and S22 – (d); S22 and S33 – (e); S11 and S33 – (f); S11, S22

and S33 – (g). The resonance of every type is represented by the pair of
complex-conjugate clusters (of poles and zeros on the Riemann surface).
A necessary and sufficient condition for existence of the multi-channel resonance is
its representation by one of the types of pole clusters. A main model-independent
contribution of resonances is given by the pole clusters and possible remaining
small (model-dependent) contributions of resonances can be included in the
background. This is confirmed further by the obtained very simple description of
the background.
The cluster type is related to the nature of state. E.g., if we consider the ππ, KK
and ηη channels, then a resonance, coupled relatively more strongly to the ππ
channel than to the KK and ηη ones is described by the cluster of type (a). In
the opposite case, it is represented by the cluster of type (e) (say, the state with
the dominant ss̄ component). The glueball must be represented by the cluster of
type (g) as a necessary condition for the ideal case.
Whereas cases (a), (b) and (c) can be related to the resonance representation by
Breit-Wigner forms, cases (d), (e), (f) and (g) practically are lost at the
Breit-Wigner description.
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One can formulate a model-independent test as a necessary condition to
distinguish a bound state of colorless particles (e.g., a KK molecule) and a qq̄
bound state (D.Morgan, M.R.Pennington, PR D48 (1993) 1185; D.Krupa,
V.A.Meshcheryakov, Yu.S.Surovtsev, Nuovo Cim. A109 (1996) 281).
In the 1-channel case, the existence of the particle bound-state means the presence
of a pole on the real axis under the threshold on the physical sheet.

In the 2-channel case, existence of the bound-state in channel 2 (KK molecule)
that, however, can decay into channel 1 (ππ decay), would imply the presence of
the pair of complex conjugate poles on sheet II under the second-channel threshold
without the corresponding shifted pair of poles on sheet III.

In the 3-channel case, the bound state in channel 3 (ηη) that, however, can decay
into channels 1 (ππ decay) and 2 (KK decay), is represented by the pair of
complex conjugate poles on sheet II and by the pair of shifted poles on sheet III
under the ηη threshold without the corresponding poles on sheets VI and VII.

According to this test, earlier we rejected interpretation of the f0(980) as the KK
molecule because this state is represented by the cluster of type (a) in the
2-channel analysis of processes ππ → ππ,KK and, therefore, does not satisfy the
necessary condition to be the KK molecule (D.Krupa, V.A.Meshcheryakov,
Yu.S.Surovtsev, NC A109 (1996) 281).
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It is convenient to use the Le Couteur-Newton relations (K.J.LeCouteur,
Proc.Roy.Soc. A256 (1960) 115; R.G.Newton, J.Math.Phys. 2 (1961) 188). They
express the S-matrix elements of all coupled processes in terms of the Jost matrix
determinant d(k1, · · · , kN ) ≡ d(s) that is a real analytic function with the only
branch-points at ki = 0:

Sii(s) =
d(i)(s)

d(s)
,

∣∣∣∣∣∣∣∣∣

Si1i1(s) · · · Si1ik(s)
...

...
...

Siki1(s) · · · Sikik(s)

∣∣∣∣∣∣∣∣∣
=
d(i1···ik)(s)

d(s)
.

Rather simple derivation of these relations, using the ND−1 representation of
amplitudes and Hermiticity of the K-matrix, can be found in Ref. (M.Kato,
Ann.Phys. 31 (1965) 130).
The analytical structure of the S-matrix on all Riemann sheets given above is thus
expressed in a compact way by these relations. The real analyticity implies

d(s∗) = d∗(s) for all s.

The unitarity condition requires further restrictions on the d-function for physical
s-values which will be discussed below in the example of 3-channel S-matrix.
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In order to use really the representation of resonances by various pole clusters, it
ought to transform our multi-valued S-matrix, determined on the 8-sheeted
Riemann surface, to one-valued function. But that function can be uniformized
only on torus with the help of a simple mapping. This is unsatisfactory for our
purpose. Therefore, we neglect the influence of the lowest (ππ) threshold
branch-point (however, unitarity on the ππ cut is taken into account). This
approximation means the consideration of the nearest to the physical region
semi-sheets of the Riemann surface of the S-matrix. In fact, we construct a
4-sheeted model of the initial 8-sheeted Riemann surface that is in accordance with
our approach of a consistent account of the nearest singularities on all the relevant
sheets.
In the corresponding uniformizing variable, we have neglected the ππ-threshold
branch-point and taken into account the KK- and ηη-threshold branch-points and
the left-hand branch-point at s = 0:

w =

√
(s− s2)s3 +

√
(s− s3)s2√

s(s3 − s2)
(s2 = 4m2

K and s3 = 4m2
η).

In two following slides we show the representation of resonances of all types (a),
(b),..., (g) on the uniformization w-plane for the 3-channel-ππ-scattering S-matrix
element.

Yu.S. Surovtsev (BLTP JINR) Scalar mesons in multi-channel ππ scattering, decays... 18 / 38



Im w

Re w

II

V VI

I

IV

VII

-1 1

III

VIII
>

>

w
1

ππ

w
2

w
4

w
3

type a

b-b

b
-1

Im w

Re w

II

V VI

I

IV

VII

-1 1

III

VIII

>

>

i

ππ

type b

b-b -b
-1

b
-1

Im w

Re w

II

V VI

I

IV

VII

-1 1

III

VIII
>

>

i

ππ

type c

b-b

Im w

Re w

II

V VI

I

IV

VII

-1 1

III

VIII

>

>

i

ππ

type d

b-b b
-1

-b
-1

Figure : Uniformization w-plane for the 3-channel-ππ-scattering matrix element.
Representation of resonances of types (a), (b), (c) and (d) is shown.
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Figure : Representation of resonances of types (e), (f), and (g).
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On the w-plane, the Le Couteur–Newton relations are somewhat modified taking
account of the used model of initial 8-sheeted Riemann surface (note that on the
w-plane the points w0, −w−1

0 , −w0, and w
−1
0 correspond to the s-variable point

s0 on sheets I, IV, V, and VIII, respectively):

S11 =
d∗(−w∗)
d(w)

, S22 =
d(−w−1)

d(w)
, S33 =

d(w−1)

d(w)
,

S11S22 − S2
12 =

d∗(w∗−1)

d(w)
, S11S33 − S2

13 =
d∗(−w∗−1)

d(w)
,

S22S33 − S2
23 =

d(−w)
d(w)

.

Since the used model Riemann surface means only the consideration of the
semi-sheets of the initial Riemann surface nearest to the physical region, then in
this case there is no point in saying for the property of the real analyticity of the
amplitudes. The 3-channel unitarity requires the following relations to hold for
physical w-values:

|d(−w∗)| ≤ |d(w)|, |d(−w−1)| ≤ |d(w)|, |d(w−1)| ≤ |d(w)|,
|d(w∗−1)| = |d(−w∗−1)| = |d(−w)| = |d(w)|.
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The S-matrix elements in Le Couteur–Newton relations are taken as the
products S = SBSres; the main (model-independent) contribution of resonances,
given by the pole clusters, is included in the resonance part Sres; possible
remaining small (model-dependent) contributions of resonances and influence of
channels which are not taken explicitly into account in the uniformizing variable
are included in the background part SB. The d-function for the resonance part is

dres(w) = w−M
2

M∏
r=1

(w + w∗
r )

where M is the number of resonance zeros, for the background part is

dB = exp[−i
3∑

n=1

√
s− sn
2mn

(αn + iβn)],

αn = an1 + anσ
s− sσ
sσ

θ(s− sσ) + anv
s− sv
sv

θ(s− sv),

βn = bn1 + bnσ
s− sσ
sσ

θ(s− sσ) + bnv
s− sv
sv

θ(s− sv)

where sσ is the σσ threshold; sv is the combined threshold of the ηη′, ρρ, ωω
channels.
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Formalism for calculating di-meson mass distributions of the decays
J/ψ → φ(ππ,KK) and V ′ → V ππ (e.g., ψ(2S) → J/ψ(ππ) and
Υ(2S) → Υ(1S)ππ) can be found in Refs.(D.Morgan, M.R.Pennington, PR D48
(1993) 1185; PR D48 (1993) 5422). There is assumed that pairs of pseudo-scalar
mesons of final states have I = J = 0 and only they undergo strong interactions,
whereas a final vector meson (φ, V ) acts as a spectator. The amplitudes for decays
are related with the scattering amplitudes Tij (i, j = 1− ππ, 2−KK) as follows

F (J/ψ → φππ) =
√
2/3 [c1(s)T11 + c2(s)T21],

F (J/ψ → φKK) =
√
1/2 [c1(s)T12 + c2(s)T22],

F (V ′ → V ππ (V = ψ,Υ)) = [(d1, e1)T11 + (d2, e2)T21]

where c1 = γ10 + γ11s, c2 = α2/(s− β2) + γ20 + γ21s, and
(di, ei) = (δi0, ρi0) + (δi1, ρi1)s are functions of couplings of the J/ψ, ψ(2S) and
Υ(2S) to channel i; α2, β2, γi0, γi1, δi0, ρi0, δi1 and ρi1 are free parameters.
The pole term in c2 is an approximation of possible φK states, not forbidden by
OZI rules when considering quark diagrams of these processes. Obviously this pole
should be situated on the real s-axis below the ππ threshold.

The expressions N |F |2
√
(s− si)

(
m2
ψ − (

√
s−mφ)2

)(
m2
ψ − (

√
s+mφ)2

)

for J/ψ → φππ, φKK (and the analogues ones for V ′ → V ππ) give the di-meson
mass distributions. N (normalization to experiment) is 0.7512 for Mark III, 0.3705
for DM2, 5.699 for BES III, 1.015 for Mark II, 0.98 for Crystal Ball(80), 4.3439 for
Argus, 2.1776 for CLEO, 1.2011 for CUSB, and 0.0788 for Crystal Ball(85).
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The combined 3-channel analysis of data on isoscalar S-wave processes

ππ → ππ,KK, ηη and on J/ψ → φ(ππ,KK), ψ(2S) → J/ψ(ππ) and
Υ(2S) → Υ(1S)ππ

For the data on multi-channel ππ scattering we used the results of phase analyses
which are given for phase shifts of the amplitudes δαβ and for the modules of the
S-matrix elements ηαβ = |Sαβ | (α, β = 1, 2, 3):

Sαα = ηααe
2iδαα , Sαβ = iηαβe

iφαβ .

If below the third threshold there is the 2-channel unitarity then the relations

η11 = η22, η12 = (1 − η11
2)1/2, φ12 = δ11 + δ22

are fulfilled in this energy region.
For the ππ scattering, the data from the threshold to 1.89 GeV are taken from
J.R.Batley et al, EPJ C54 (2008) 411; Hyams et al., NP B64 (1973) 134; 100
(1975) 205 (1975); A.Zylbersztejn et al., PL B38 (1972) 457; P.Sonderegger,
P.Bonamy, in Proc. 5th Intern. Conf. on Elem. Part., Lund, 1969, paper 372;
J.R.Bensinger et al., PL B36 (1971) 134; J.P.Baton et al., PL B33 (1970) 525,
528; P.Baillon et al., PL B38 (1972) 555; L.Rosselet et al., PR D15 (1977) 574;
A.A.Kartamyshev et al., Pis’ma v ZhETF 25 (1977) 68; A.A.Bel’kov et al., Pis’ma
v ZhETF 29 (1979) 652.
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For ππ → KK, practically all the accessible data are used ( W.Wetzel et al., NP
B115 (1976) 208; V.A.Polychronakos et al., PR D19 (1979) 1317; P.Estabrooks,
PR D19 (1979) 2678 ; D.Cohen et al., PR D22 (1980) 2595; G.Costa et al., NP
B175 (1980) 402; A.Etkin et al., PR D25 (1982) 1786).
For ππ → ηη, we used data for |S13|2 from the threshold to 1.72 GeV (F.Binon et
al., NC A78 (1983) 313).
For decays J/ψ → φππ, φKK we have taken data from Mark III (W.Lockman,
Hadron’89, Proceedings, p.109), from DM2 (A.Falvard et al., PR D38 (1988)
2706) and from BES III (M.Ablikim et al., PL B607 (2005) 243);
for ψ(2S) → J/ψ(π+π−) from Mark II (G.Gidal et al., PL B107 (1981) 153) and
for ψ(2S) → J/ψ(π0π0) from Crystal Ball Collaborations (M.Oreglia et al., PRL
45 (1980) 959);
for Υ(2S) → Υ(1S)(π+π−, π0π0) from Argus (H.Albrecht et al., PL B134 (1984)
137), CLEO (D.Besson et al., PR D30 (1984) 1433), CUSB (V.Fonseca et al., NP
B242 (1984) 31), and Crystal Ball Collaborations (D.Gelphman et al., PR D32
(1985) 2893).

In this combined analyses of the coupled scattering processes and decays, it is
assumed that in the 1500-MeV region two states – the narrow f0(1500) and wide
f ′
0(1500) – exist.
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More preferable scenarios: the f0(600) is described by the cluster of type (a); the
f0(1370) and f0(1500), type (c) and f ′

0(1500), type (g); the f0(980) is
represented only by the pole on sheet II and shifted pole on sheet III. However, the
f0(1710) can be described by clusters either of type (b) or (c). For definiteness,
we have taken type (c). Parameters of resonances and background are changed
very insignificantly in comparison with our analysis (Yu.S. Surovtsev et al., arXiv:
1207.6937[hep-ph]) without consideration of decays ψ(2S) → J/ψ(ππ) and
Υ(2S) → Υ(1S)ππ confirming our previous results.
Parameters of the coupling functions of the decay particles (J/ψ, ψ(2S) and
Υ(2S)) to channel i, obtained in the analysis, are α2, β2 = 0.0843, 0.0385,
γ10, γ11, γ20, γ21 = 1.1826, 1.2798,−1.9393,−0.9808,
δ10, δ11, δ20, δ21 = −0.127, 16.621, 5.983,−57.653,
ρ10, ρ11, ρ20, ρ21 = 0.405, 47.0963, 1.3352,−21.4343.
There is retained the fact that the di-pion mass distribution of the J/ψ → φππ
decay of the BES III data from the threshold to about 850 MeV prefers surely the
solution with the wider f0(600) – B-solution. Therefore further we will discuss
mainly the B solution.
Satisfactory combined description of all analyzed processes is obtained with the
total χ2/NDF = 568.57/(481− 65) ≈ 1.37; for the ππ scattering,
χ2/NDF ≈ 1.15; for ππ → KK, χ2/NDF ≈ 1.65; for ππ → ηη, χ2/ndp ≈ 0.87;
for decays J/ψ → φ(ππ,KK), χ2/ndp ≈ 1.21; for ψ(2S) → J/ψ(ππ),
χ2/ndp ≈ 2.43; for Υ(2S) → Υ(1S)ππ, χ2/ndp ≈ 1.01.
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Figure : The J/ψ → φππ, φKK decays. The upper panel shows the fit to data of Mark III, the lower to DM2.
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Figure : The J/ψ → φππ decay; the data of BES III Collaboration.

Namely this di-pion mass distribution rejects dramatically the A solution with the
narrower f0(600). The corresponding curve lies considerably below the data from
the threshold to about 850 MeV .

Yu.S. Surovtsev (BLTP JINR) Scalar mesons in multi-channel ππ scattering, decays... 29 / 38



0.35 0.4 0.45 0.5 0.55
MΠΠ�GeV�

0

20

40

60

80

E
v
e
n
t
s

�1
0
M
e
V

Ψ�2S	�J�Ψ Π�Π


0.35 0.4 0.45 0.5 0.55
MΠΠ�GeV�

0

20

40

60

80

E
v
e
n
t
s

�1
0
M
e
V

Ψ�2S	 �J�Ψ Π0Π0

Figure : The ψ(2S) → J/ψππ decays. The left figure shows the fit to data of Mark II, the right to Crystal
Ball (80).
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Figure : The Υ(2S) → Υ(1S)ππ decays. The upper panel shows the fit to data of Argus (left) and CLEO
(right), the lower to CUSB (left) and Crystal Ball (85) (right).
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The obtained background parameters are: a11 = 0.0, a1σ = 0.0199, a1v = 0.0,
b11 = b1σ = 0.0, b1v = 0.0338, a21 = −2.4649, a2σ = −2.3222, a2v = −6.611,
b21 = b2σ = 0.0, b2v = 7.073, b31 = 0.6421, b3σ = 0.4851, b3v = 0;
sσ = 1.6338 GeV2, sv = 2.0857 GeV2.

The obtained very simple description of the ππ-scattering background confirms
well our assumption S = SBSres and also that representation of multi-channel
resonances by the pole clusters on the uniformization plane is good and quite
sufficient. Moreover, this shows that the consideration of the left-hand
branch-point at s = 0 in the uniformizing variable solves partly a problem of some
approaches (see, e.g., N.N.Achasov, G.N.Shestakov, PR D49 (1994) 5779) that
the wide-resonance parameters are strongly controlled by the non-resonant
background.
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Table : The pole clusters for resonances on the
√
s-plane.

√
sr =Er−iΓr/2 [MeV].

Sheet f0(600) f0(980) f0(1370) f0(1500) f ′
0(1500) f0(1710)

II Er 514.5 ± 12.4 1008.1 ± 3.1 1512.7 ± 4.9

Γr/2 465.6 ± 5.9 32.0 ± 1.5 285.8 ± 12.9

III Er 544.8 ± 17.7 976.2 ± 5.8 1387.6 ± 24.4 1506.2 ± 9.0

Γr/2 465.6 ± 5.9 53.0 ± 2.6 166.9 ± 41.8 127.9 ± 10.6

IV Er 1387.6±24.4 1512.7±4.9

Γr/2 178.5 ± 37.2 216.0 ± 17.6

V Er 1387.6±24.4 1493.9 ± 3.1 1498.9 ± 7.2 1732.8 ± 43.2

Γr/2 260.9 ± 73.7 72.8 ± 3.9 142.2 ± 6.0 114.8 ± 61.5

VI Er 566.5 ± 29.1 1387.6±24.4 1493.9 ± 5.6 1511.4 ± 4.3 1732.8±43.2

Γr/2 465.6 ± 5.9 249.3 ± 83.1 58.4 ± 2.8 179.1 ± 4.0 111.2 ± 8.8

VII Er 536.2 ± 25.5 1493.9 ± 5.0 1500.5 ± 9.3 1732.8±43.2

Γr/2 465.6 ± 5.9 47.8 ± 9.3 99.7 ± 18.0 55.2 ± 38.0

VIII Er 1493.9 ± 3.2 1512.7±4.9 1732.8±43.2

Γr/2 62.2 ± 9.2 299.6 ± 14.5 58.8 ± 16.4

Generally, wide multi-channel states are most adequately represented by pole
clusters, because the pole clusters give the main model-independent effect of
resonances. The pole positions are rather stable characteristics for various models,
whereas masses and widths are very model-dependent for wide resonances.
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However, mass values are needed in some cases, e.g., in mass relations for
multiplets. Therefore, we stress that such parameters of the wide multi-channel
states, as masses, total widths and coupling constants with channels, should be
calculated using the poles on sheets II, IV and VIII, because only on these sheets
the analytic continuations have the forms:

∝ 1/SI
11, ∝ 1/SI

22 and ∝ 1/SI
33,

respectively, i.e., the pole positions of resonances are at the same points of the
complex-energy plane, as the resonance zeros on the physical sheet, and are not
shifted due to the coupling of channels.
It appears that neglecting the above-indicated principle can cause
misunderstandings. This concerns especially the analyses which do not consider the
structure of the Riemann surface of the S-matrix. For example, in literature there
is a common opinion (delusion) that the resonance parameters should be calculated
using resonance poles nearest to the physical region. This is right only in the
one-channel case. In the multi-channel case this is not correct. It is obvious that,
e.g., the resonance pole on sheet III, which is situated above the second threshold,
is nearer to the physical region than the pole on sheet II from the pole cluster of
the same resonance since above the KK threshold the physical region (an upper
edge of the right-hand cut) is joined directly with sheet III. Therefore, the pole on
sheet III influences most strongly on the energy behaviour of the amplitude and
this pole will be found in the analyses, not taking into account the structure of the
Riemann surface and the representation of resonances by the pole clusters.
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E.g., if the resonance part of amplitude is taken as

T res =
√
s Γel/(m

2
res − s− i

√
s Γtot),

for the mass and total width, one obtains

mres =

√
E2
r + (Γr/2)

2 and Γtot = Γr,

where the pole position
√
sr=Er−iΓr/2 must be taken on sheets II, IV, VIII,

depending on the resonance classification.

Table : The masses and total widths of the f0 resonances.

f0(600) f0(980) f0(1370) f0(1500) f ′
0(1500) f0(1710)

mres[MeV] 693.9±10.0 1008.1±3.1 1399.0±24.7 1495.2±3.2 1539.5±5.4 1733.8±43.2

Γtot[MeV] 931.2±11.8 64.0±3.0 357.0±74.4 124.4±18.4 571.6±25.8 117.6±32.8
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Discussion and conclusions

In the combined analysis of data on isoscalar S-wave processes
ππ → ππ,KK, ηη and on decays J/ψ → φ(ππ,KK), ψ(2S) → J/ψ(ππ) and
Υ(2S) → Υ(1S)ππ from the Argus, Crystal Ball, CLEO, CUSB, DM2,
Mark II, Mark III, and BES III Collaborations, an additional confirmation of the
f0(600) with mass about 700 MeV and width 930 MeV is obtained. This mass
value accords with prediction (mσ ≈ mρ) on the basis of mended symmetry by
Weinberg (S.Weinberg, PRL 65 (1990) 1177) and with a refined analysis using
the large-Nc consistency conditions between the unitarization and resonance
saturation suggesting mρ −mσ = O(N−1

c ) (J.Nieves, E.Ruiz Arriola, PR D80
(2009) 045023).
Of course, such large width of this state is a problem. Maybe, we observe a
superposition of two states – narrower σ-meson and wider state as it is the
case in the 1500-MeV region.

Indication for f0(980) is obtained to be a non-qq̄ state, e.g., the bound ηη
state, because this state lies slightly above the KK threshold and is described
by the pole on sheet II and by the shifted pole on sheet III without the
corresponding poles on sheets VI and VII.
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The f0(1370) and f0(1710) have the dominant ss̄ component. Conclusion
about the f0(1370) quite agrees with the one of work of Crystal Barrel
Collaboration (C.Amsler et al., PL B355 (1995) 425) where the f0(1370) is
identified as ηη resonance in the π0ηη final state of the p̄p annihilation. This
explains also quite well why one did not find this state considering only the ππ
scattering (W.Ochs, arXiv:1001.4486v1 [hep-ph]; P.Minkowski, W.Ochs, EPJ
C9 (1999) 283; arXiv: hep-ph/0209223; hep-ph/0209225). Conclusion about
the f0(1710) is consistent with the experimental facts that this state is
observed in γγ → KSKS (S.Braccini, Frascati Phys. Series XV (1999) 53)
and not observed in γγ → π+π− (R.Barate et al., PL B472 (2000) 189).
In the 1500-MeV region, there are two states: the f0(1500)
(mres ≈ 1495 MeV, Γtot ≈ 124 MeV) and the f ′

0(1500) (mres ≈ 1539 MeV,
Γtot ≈ 574 MeV). The f ′

0(1500) is interpreted as a glueball taking into
account its biggest width among enclosing states (V.V.Anisovich et al., NP
Proc.Suppl. A56 (1997) 270).
We propose the following assignment of the scalar mesons to lower nonets,
excluding the f0(980) as the non-qq̄ state. The lowest nonet: the isovector
a0(980), the isodoublet K∗

0 (900), and f0(600) and f0(1370) as mixtures of the
8th component of octet and the SU(3) singlet. The Gell-Mann–Okubo
(GM-O) formula 3m2

f8
= 4m2

K∗
0
−m2

a0 gives mf8 = 870 MeV.

In relation for masses of nonet mσ +mf0(1370) = 2mK∗
0 (900)

the left-hand side is by about 14% bigger than the right-hand one.
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For the next nonet we find: the isovector a0(1450), the isodoublet K∗
0 (1450),

and two isoscalars f0(1500) and f0(1710). From the GM-O formula,
mf8 ≈ 1450 MeV. In formula

mf0(1500) +mf0(1710) = 2mK∗
0 (1450)

the left-hand side is by about 10% bigger than the right-hand one.

This assignment removes a number of questions, stood earlier, and does not
put any new. The mass formulas indicate to non-simple mixing scheme. The
breaking of 2nd mass relations tells us that the σ−f0(1370) and
f0(1500)−f0(1710) systems get additional contributions absent in the
K∗

0 (900) and K
∗
0 (1450), respectively. A search of the adequate mixing scheme

is complicated by the fact that here there is also a remaining chiral symmetry,
though, on the other hand, this permits one to predict correctly, e.g., the
σ-meson mass (S.Weinberg, PRL 65 (1990) 1177).
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APPENDIX
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By saying that our approach is ”model-independent”, we mean the following.
First, performing an uniformization procedure we obtain the S-matrix element with
no branch points. Therefore, there is no the dispersive integrals with all inherent
troubles. Second, by construction in any approach based on analyticity and
unitarity all quantities are renormalized and the poles of S-matrix correspond to
dressed particles. In addition a main model-independent part of the resonance
representation is given by the pole clusters. On other side, one can propose a
recipe how to extract the pole in other approaches. One can expand the amplitude
in vicinity of the pole to a Laurent series, then isolate this pole and the remainder
(the background), which is normally parameterized. However, let us stress that in
our approach we have no such problems.
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