

Higgs studies with the CMS detector at LHC

Guenakh Mitselmakher University of Florida HQP-13, Dubna, July 2013

Content

- My previous talk in Dubna
- Introduction: LHC and CMS
- SM rediscovery
- H→ZZ→4I
- Н→үү .
- H→WW
- Η→ττ
- H→bb
- Coupling constants (from all channels)
- Conclusion

CMS: Moriond 2012 Higgs significance Dubna talk, May 17, 2012

Moriond'12: Combined significance (right scale) – excess at 124 GeV close to SM Higgs expectation

Summary (Dubna talk, May 17, 2012)

- CMS reached SM Higgs <u>exclusion sensitivity</u> in the full mass range
- SM Higgs excluded by CMS at 95% CL for m_H = 127–600 GeV at 99% CL for m_H = 128–525 GeV ATLAS+CMS results leave only narrow window for SM Higgs: 122.5-127.5 GeV
- The excess at low masses remains.

It is consistent with SM Higgs, but it may well be bkgd fluctuation To ascertain the origin of the excess, more data are required.

 2012: with > 20 fb⁻¹ per experiment next year, we expect to reach discovery sensitivity in the full mass range

LHC performance

pp collisions in CMS 2011: ~6 fb⁻¹ @ 7 TeV 2012: ~23 fb⁻¹ @ 8 TeV

Guenakh Mitselmakher

The Compact Muon Solenoid

On a personal note: pictures of CMS Endcap Muon system. Performed beautifully (as did the rest of CMS)

Standard Model: cross sections

A challenge in LHC experiments: "pileup"

78 (!) reconstructed collision vertices Guenakh Mitselminhone banch crossing in CMS

Before the Higgs studies... Rediscovery of the Standard Model in CMS

Electroweak Measurements

Top Quark Cross Sections t-channel single top quark production Single top CMS σ [pb] CMS preliminary, 5.0 fb [dd] CMS: 1.17/1.56 fb 10² D0 54 fb 1 W 7 TeV CMS measurement (stat@syst) CDF, 7.5 fb 8 TeV CMS measurement (stat⊕syst) 7 10⁵ σ_{tot} 7 TeV Theory prediction 10 NLO QCD (5 flavour schen 8 TeV Theory prediction Production Cross Section, Campbell, Frederix, Maltoni, Tramontano, JHEP 10 (2009) 042 10 NLO+NNLL QCD 1 theory uncertainty (scale ⊕ PDE Kidonakis, Phys.Rev.D 83 (2011) 091503 Wγ 10³ Zγ 2 350 CMS Preliminary >3i ww 10^{2} CMS combined 7 TeV (1.1 fb¹) ₽**300** WZ CMS combined 8 TeV (2.8 fb¹ ZZ $E_{\tau}^{jet} > 30 \text{ GeV}$ 250 $E_{T}^{\gamma} > 10 \text{ GeV}$ 10 $|\eta^{jet}| < 2.4$ $\Delta R(\gamma, I) > 0.7$ 200 Top pair 150F 4.9 fb⁻¹ 4.9 fb⁻ NLO OCD 36, 19 pb⁻¹ 36 pb⁻¹ 1.1 fb 3.5 fb⁻¹ Approx. NNLO QCD 5.3 fb⁻¹ Scale uncertainty 100 Scale (S PDF uncertainty Langenfleid, Moch. Uwar, Phys. Rev. D80 (2003) 054008 MSTW 2008 (NMLD PDF, 90% C.L. unsertainer JHEP10(2011)132 CMS-PAS-EWK-11-010 (WZ) PLB701(2011)535 JHEP01(2012)010 CMS-PAS-SMP-12-005, 50[[] CMS-PAS-SMP-12-011 (W/Z 8 TeV) 6.5 007, 013, 014 (WW ZZ) 8.5 7.5(s (TeV)

→ Precise measurements of the SM processes necessary → Possible ONLY with excellent understanding of the detector -Gives good knowledge of the backgrounds to the Higgs analyses

Predicted Higgs production and decay

At Higgs mass ~125 Gev we have access to several decay modes, which allows for detailed studies Of couplings We are lucky!

Higgses produced at LHC in numbers (more estimates)

- Number of Higgs particles produced in CMS in 2011-2012 = 550,000 (total CS 22 pb) x (25 fb-1)
- Contribution of different production mechanisms (wrt the total CS)
- ggF = 87%
- VBF = 7%
- VH = 5%
- ttH = 0.6%
- Decay modes (I = e or mu)
- BR(bb) = 57%
- BR(tautau) = 6%
- BR(WW->2I2v) = 22% x (0.22)^2 = 1.1%
- BR(gamgam) = 0.23%
- BR(ZZ->4I) = $2.8\% \times (0.06)^2 = 0.013\%$
- BR(mumu) = 0.022%

Higgs Studies in CMS

Processes/decays studied:		Results released		In progress	
	untagged	VBF	VH	ttH	
H-> gamgam					
H-> ZZ					
H->WW					
H-> bb					
H-> tau tau					
H-> Zgamma					
H-> mumu					
H-> invisible					

Main decay channels characteristics:

+ more exotic channels

Channel	m _H range	Data used	mн
	(GeV/c ²)	7+8 TeV (fb ⁻¹)	resolution
<mark>Н -> үү</mark>	110-150	5.1+19.6	1-2%
<mark>H -> tautau</mark>	110-145	4.9+19.6	15%
H -> bb	110-135	5.0+19.0	10%
H -> WW -> Inulnu	110-600	4.9+19.5	20%
H -> ZZ -> 4I	110-1000	5.1+19.6	1-2%

$H \rightarrow ZZ \rightarrow 4I$

Analysis strategy:

- Four leptons
 - four-lepton mass is the key observable
 - split events into 4e, 4μ , $2e2\mu$ channels:
 - different mass resolutions
 - different S/B rates (for reducible bkgd with "fake" leptons)

CMS: add **ME-based discriminant K_D** (2nd observ.), more details about **K_D** later

- Backgrounds:
 - ZZ (dominant) from Monte Carlo (MC)
 - reducible (with non-isolated or "fake" leptons): from control region

Analysis features:

- high S/B-ratio (~2:1)
- but small event yield
- excellent mass resolution = 1-2%"
- "Standard candle" Z→4l decay peak nearby, natural validation of the discovered peak

4µ+γ computer event display

Higgs →4I : Signal/Background ratio ~ 2:1 observed: 25 events total (S+B)

For 121.5 < m4l < 130.5 GeV

	4e	4μ	2e2µ
H(126) expected	3.0	6.7	8.9
ZZ expected	1.2	2.7	3.5
Z+X & top expected	0.6	0.5	0.9
Total Bkg	1.8	3.2	4.4
Signal+Bkg expected	4.8	9.9	13.3
Observed	5	8	12

S/B improvement: Kinematic Discriminant

To further improve signal to background ratio, we use a discriminant based on kinematic 41 information

$$\mathrm{KD} = \frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\mathrm{sig}} + c \times \mathcal{P}_{\mathrm{bkg}}} = \left[1 + \frac{c \times \mathcal{P}_{\mathrm{bkg}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathrm{sig}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}\right]^{-1}$$

Expected significance : 7.2 σ Observed significance: 6.7 σ Includes kinematic discriminant weight, and per-event errors More than 5 σ in a single decay channel, Both for expected and observed!

New boson mass measurement from 4l channel

m_x = 125.8 ± 0.5 (stat) ±0.2 (syst) GeV

Statistics dominated! Can be significantly improved in the future

main sources of systematic uncertainties:

- electron energy scale: 0.3%
- muon energy scale: 0.1%

Individual 4I events including per-event mass errors

Spin and Parity J^P

- Use kinematic information to separate different spin-parity hypotheses J^P
- The following **J**^P considered (pure cases, no mixing):

J^P	production	description			
0^{+}	$gg \to X$	SM Higgs boson			
0^{-}	$gg \to X$	pseudoscalar			
0_h^+	$gg \to X$	BSM scalar with higher dim operators (decay amplitude)			
2^{+}_{mqq}	$gg \to X$	KK Graviton-like with minimal couplings			
$2^{+}_{mq\bar{q}}$	$q\bar{q} \to X$	KK Graviton-like with minimal couplings			
1-	$q\bar{q} \to X$	exotic vector			
1^{+}	$q\bar{q} \to X$	exotic pseudovector			

21

Kinematic Discriminants for **J**^P separation

- Build two discriminants based on the complete Leading-Order Matrix Elements
 - one discriminant to separate signal from background, combined with mass information $\rightarrow D_{bkg}$

$$D_{\rm BKG} = \left[1 + c_{\rm bkg} \cdot \frac{|\mathcal{M}_{\rm BKG}(\vec{p_i})|^2 \cdot pdf(m_{4\ell}|\rm BKG)}{|\mathcal{M}_{\rm Higgs}(\vec{p_i})|^2 \cdot pdf(m_{4\ell}|\rm Higgs)}\right]^{-1}$$

- another discriminant to separate the SM Higgs from alternative J^P hypothesis \rightarrow D_{JP}

$$D_{\mathrm{J}^{\mathrm{P}}} = \left[1 + c_{\mathrm{j}^{\mathrm{P}}} \cdot \frac{|\mathcal{M}_{\mathrm{J}^{\mathrm{P}}}(\vec{p_{i}})|^{2}}{|\mathcal{M}_{\mathrm{Higgs}}(\vec{p_{i}})|^{2}}\right]^{-1}$$

Example: comparison of o⁺ (Higgs) and o⁻ (with ZZ bckg included)

 Expected two dimensional distributions of (D_{JP}, D_{bkg}) for: a) the SM Higgs o⁺, b) pseudoscalar o⁻ and c) ZZ bkgd

D_{JP} distributions (with D_{bkg} > 0.5)

Confidence level (CL₅): "exotic" J^P vs scalar

CMIS preliminary iga = 7 TeV, L = 5.1 fb⁻¹ (ja = 8 TeV, L = 19.5 fb⁻¹

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

30

-20

Pseudoexperiments

2⁺mqq < 0.1 %

1 < 0.01 %

Spin-parity: results

	<u>Expected [σ]</u>		Observed (μ from data)			
	μ=1	μ from data	P(q > Obs alternative) [σ]	P(q > Obs SM Higgs) [σ]	CLs [%]	
$gg \rightarrow o^-$	2.8	2.5	3-3	-0.5	0.16	
$gg \rightarrow o_{h^{+}}$	1.8	1.7	1.7	+0.0	8.12	
$qq \rightarrow 1^+$	2.6	2.3	> 4.0	-1.7	< 0.01	
qq→1.	3.1	2.8	> 4.0	-1.4	< 0.01	
$gg \rightarrow 2m^+$	1.9	1.8	2.7	-0.8	1.46	
$qq \rightarrow 2m^+$	1.9	1.7	4.0	-1.8	0.09	

The studied pseudo-scalar, spin-1 and spin-2 models are excluded at 95% CL or higher Data is consistent with SM Higgs

Fit for CP-odd contribution

 Perform a fit for the fraction f_{a3} of a CP-odd contribution in the observed peak

$$f_{a3} = \frac{|A_3^2|}{|A_1^2| + |A_3^2|} \qquad A(X \to VV) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) = A_1 + A_2 + A_3$$

(A2 contribution assumed to be 0)

- decays of state 0_m^+ governed by the A1 amplitude
- decays of state 0⁻ governed by A3 amplitude
- Fit the data for the ratio SM Higgs (A1) and o- (A3) states
- Measurement of the f_{a3} fraction in data: f_{a3} = 0.00^{+0.23}_{-0.00}

Is X126 one particle?

What if X126 is two bosons with near degenerate masses?

- What can we infer from kinematics of decays?
 - From the previous fit for CP-odd contribution
 f(0⁻) < 0.58 at 95% CL
 - Non-zero *f*(0[–]) may be due to
 - a 0⁻ particle with a nearly the same mass;
 - a single particle X = H(0⁺) + A(0⁻) with mixed CP-even/odd states
 - No public results on other *f*(J^{CP}) fractions

Tagging Vector-Boson Fusion: separation of production diagrams

To have sensitivity to couplings of the new particle with vector bosons, as well as with fermions, we split events into two categories:

1) Di-jet tag (sensitive to coupling with vector bosons):
PT > 30 GeV, |n| < 4.7; Jet ID to reject fake jets from pileup

2) Untagged (majority of events, sensitive to couplings with fermions)

Signal strength, boson vs vector couplings

- Best fit signal strength in H→4I : μ=0.91+0.30-0.24 is compatible with the Standard Model (μ=1).
- Couplings with bosons and fermions in 4l also compatible with the SM
- Statistical precision needs to be improved (particularly of boson couplings, which are still compatible also with zero)

The Decay $H \rightarrow \gamma \gamma$

Analysis

- •Two high momentum photons
- Higgs is narrow (at low mass)
- •Two photon resolution is excellent
- •Large irreducible background from direct two photons
- •Smaller "reducible" fake photon background
 - Key analysis features
- •Energy resolution (calibration)
- Fake photon rejection
- Use of kinematics

The Decay $H \rightarrow \gamma \gamma$

• Two inclusive analyses:

PRIMARY

 MVA: photons selected with an MVA. Variable in the MVA: photon kinematics, photon ID MVA score (shower shape, isolation), di-photon mass resolution. 4 MVA categories with different S/B

CROSS-CHECK

- Cut-based: photons selected with cuts. 4 categories based on: γ in Barrel/Endcap, (un)converted γ. Each category has different mass resolution and S/B
- 3 VH channels (e, μ and MET tag) + VBF (2 dijet categories)

Output of the MVA validated using $Z \rightarrow ee$ (where e are reconstructed as γ) Data (19.6fb -1) 90000 DYJetsToLL MC 80000 MC with idmva±0.01 70000 60000 50000 40000 30000 20000 10000 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 di-photon BDT output

The Decay $H \rightarrow \gamma \gamma$

Multivariate (MVA) analysis

Mass measurement

 A narrow resonance is seen with high significance in the two excellent mass resolution channels, ZZ(4I) and γγ

ZZ(4I): $m_{\chi} = 125.8 \pm 0.5$ (stat) ± 0.2 (syst) GeV

main sources of systematic uncertainties:

- electron energy scale: 0.3%
- muon energy scale: 0.1%

γγ: m_x = 125.4 ± 0.5 (stat) ± 0.6 (syst) GeV

- main sources of systematic uncertainties:
 - electron-photon extrapolation
 - p_T scale extrapolation from $m_Z/2$ to $m_H/2$
- Results are consistent with one particle X → proceed with a combined mass measurement

Mass measurement

Assuming that we see one particle X, one can combine the mass measurements In two high resolution channels

• either assuming the SM Higgs-like relationship for relative production rates (top plot)

- or letting relative event yields float free in the almost-model-independent fit (bottom plot):
 - $m_{\chi} = 125.7 \pm 0.4 (0.3\%) \text{ GeV}$
 - = 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV

$H \rightarrow WW \rightarrow IvIv$

- Analysis strategy:
 - two prompt high-p_T leptons
 - MET
 - split events into ee, $\mu\mu$, $e\mu$ channels:
 - different S/B rates: Drell-Yan in ee/μμ
 - split events further into 0/1-jet:
 - different S/B rates: ttbar in 1-jet
 - Backgrounds (for low mass Higgs):
 - WW, tt, W+jets, DY+jets, Wγ: from control regions
 - ZW, ZZ: from MC (very small contribution)
- Analysis features:
 - OK S/B-ratio
 - fair signal event yield (200 events)
 - poor mass resolution ≈20%

Guenakh Mitselmakher Dubna, July 25, 2013

The Decay H \rightarrow WW \rightarrow 2l 2v

- Exclusion at 95% in the mass range 128-600 GeV
- Large excess in the low mass region
- •When including M_H=125 GeV as part of the background, no significant excess is seen over the entire mass range

The Decay H \rightarrow WW \rightarrow 2l 2v

A 4.0 σ (5.1 σ) observed (expected) significance at m_H ~ 125 GeV

 σ/σ_{SM} signal strength: 0.76 ± 0.21

$H \rightarrow \tau \tau$

CMS

CMS Experiment at LHC, CERN Data recorded: Sun Nov 25 00:15:46 2012 CEST Run/Event: 207898 / 97057018

Analysis strategy:

- di-tau candidates: eτ_h, μτ_h, eµ, μµ, τ_hτ_h
- MET
- **DiTau mass (including MET)**: key distribution
- split events into jet categories:
 - 2-jets (VBF-tag): best S/B-ratio
 - 1-jet (ggF, VH): acceptable S/B-ratio
 - untagged: control region (S/B≅0)
- split 1-jet events further high/low p_T tau
 - different S/B rates
- Backgrounds:
 - $Z \rightarrow \tau \tau$: $Z \rightarrow \mu \mu$ (data) with a simulated μ - τ swap
 - $Z\rightarrow$ ee, W+jets, ttbar: MC for shapes, data for normalization
 - QCD: from control regions

• Analysis features:

- low S/B-ratio
- small signal event yield
- Higgs is on falling slope of Z-decays
- poor mass resolution ≈15%

Guenakh Mitselmakher

Dubna, July 25, 2013

Points to note:

- broad access (poor mass resolution), consistent with SM Higgs rate
- close to reaching a 3σ-sensitivity
- despite poor mass resolution, the TauTau channel is not completely mass-blind

The Decay H→bb

Analysis

- •By far the largest number of Higgs decays
- •But lots of QCD background (jets)
- •Trigger based on leptons and missing E_{T}
- •b-jets identified through displaced tracks
- •Go to high $\boldsymbol{p}_{\! T}$ where Higgs is enhanced
- •Main background W/Z+jets and top

The Decay H→bb

M_{bb} for all categories and 7+8 TeV

The Decay H→bb

H→bb Channel Combination

Combine the results of the VBF and VH processes for $H \rightarrow bb$

- •95% CL limit observed (expected) at 125 GeV: 1.79 (0.89)
- •Significance observed (expected) at 125 GeV : 2.1σ (2.2 σ)
- •Signal strength at 125 GeV: μ = 0.97± 0.48

Significance of the excess near 125 GeV (also compared with ATLAS)

	ATI	LAS	CMS		
	expected observed		expected	observed	observed
H→ZZ	4.4	6.6	7.1	6.7	
Н→үү	4.1	7.4	3.9	3.2	
н→ww	3.8	3.8	5.3	3.9	
Η→ττ	1.6	1.1	2.6	2.8	2.4
H→bb	1.0	0	2.2	2.0	3.4
combined	7.3	10	stopped computing		

Higgs signal is > 5 sigma in expected (and observed) in single $ZZ \rightarrow 4I$ channel in CMS

Consistency of event yields in 5 main (most informative) Higgs decay channels

Is X126 the SM Higgs boson? (using event yields from different channels)

 In the following slides will check compatibility of event yields in different channels with the expectations for the SM Higgs boson by recasting the event yields into measurements of couplings in several ways.

Production × Decay parameterization

8 independent parameters to describe all currently relevant decays and production mechanisms:

WW

ZZ

bb

ττ

$$\sigma(xx \to H) \cdot BR(H \to yy) \propto \frac{1}{2}$$

VBF-tag

1

1

1

1

untagged

1

1

V

1

$$\frac{\Gamma_{xx} \cdot \Gamma_{yy}}{\Gamma_{\text{TOT}}}$$

VH-tag

1

1

1

1

ttH-tag

1

– Г _{ww}	
--------------------------	--

- Γ_{zz}
- Г_{ьь}
- Γ_{ττ}
- $\Gamma_{\gamma\gamma}$ (loop induced)
- $-\Gamma_{gg}^{(1)}$ (loop induced)
- Γ_{tt}
- Γ_{tt} (including H \rightarrow "invisible")

- $Z\gamma$ and $\mu\mu$ still have too little sensitivity to affect anything in the combination Introduce scaling factors κ w.r.t. the S/M Higgs couplings

Since statistics is small, will check compatibility with SM fitting smaller number than of couplings, making different assumptions

Two parameters: κ_v and κ_F

is reliably excluded

The previously seen global minimum of the likelihood in the (+; -) quadrant is gone, since the $\gamma\gamma$ -channel is no more enhanced

1. Look for new physics in loops: κ_{g} and κ_{v}

Two-parameter fit

- use all channels
- assume tree-level couplings = SM
- assume BR(BSM)=0
- Fit for: κ_{γ} , κ_{g}

Data are consistent with (κ_γ; κ_g)=(1; 1)

2. Look for new physics: BR(BSM), κ_g , κ_v

Three-parameter fit

- use all channels
- assume tree-level couplings = SM
- allow for BR(BSM) ≠ 0
- Fit for: BR("invisible"), κ_v, κ_g

CMS: BR(BSM) < 0.52 at 95% CL

3a. CMS: 5 parameter model

Fit 5 of 8 independent parameter describing all currently relevant decays and production mechanisms:

 Assume couplings to the 1st, 2nd, 3rd generations are modified the same way

3b. CMS: 5 parameter model

 Scale SM couplings by measured scale factors and plot modified couplings vs particle masses:

Note: the magnitude of couplings we try to assess range by a factor of 100! A test with 20+% accuracy is actually a very respectable test. Note that experimental information about 1st and 2nd generation is not accurate yet and not on the plot.

Guenakh Mitselmakher Dubna, July 25, 2013

4. CMS: 6 parameter model

8 independent parameters to describe all currently relevant decays and production mechanisms:

 $\rightarrow \kappa_{v}$

→ к,

 $\rightarrow \kappa_{\rm h}$

 $\rightarrow \kappa_{\nu}$

 $\rightarrow \kappa_{g}$

→ к,

- $-\Gamma_{\rm bb}$
- $-\Gamma_{\gamma\gamma}$ (loop induced)
- Γ_{gg} (loop induced)
- $-\Gamma_{\rm tt}$
- assume BR(BSM)=0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 parameter value

 Couplings to the 1st and 2nd generations are not measure accurately yet, so take from SM

Summary

- In a combined search for the SM Higgs boson in CMS,
 a significant excess of events near m_H=126 GeV persists
- The following decay channels contribute to the sensitivity: ΖΖ, γγ, WW, ττ, bb
- New boson's mass as measured by CMS is: 125.7 ± 0.4 GeV
- Is X126 the SM Higgs boson?
 - event yields in all individual channels are consistent with the SM Higgs boson
 - couplings agree with the SM Higgs boson with the current statistical accuracy
 - no significant modifications for loop-induced couplings (deviations < 2σ)
 - BR(H→BSM) < 0.5 (approx.) at 95%CL</p>
 - 100% pure $J^{CP} = 0^-$, 1^{\pm} , 2^{+}_{m} states are excluded at >99% CL
 - CP-odd fractional contribution: f(0⁻) < 0.58 at 95% CL
- Still a lot of room for deviation from the SM Higgs exists: the precision of the measurements is in many cases statistically dominated, and can be significantly improved in the future years

ZZ->4L J^{CP} analysis: discriminants

- Analysis considers alternative signal+background hypotheses, where signal X can be either $gg \rightarrow H$ or $xx \rightarrow J^{CP}$
 - Construct two ME-based discriminating observables:

where *ME* are complete LO matrix elements, and $m_X = m_{4\ell}$

- Extend KDs to include discriminating information from four-lepton mass:
- Without any loss of information, one can change "variables":
- And again without any loss of information, compress discriminants to be between 0 and 1

Full statistics in 4l channel color-filled: SM background

Per-event mass errors

- To improve precision of the mass measurement, we estimate per-event mass uncertainty and KD
- Per-event mass uncertainty validated using $Z \rightarrow II$ data
- Additional cross-check performed using the Z→4l decays:

Test statistics

Signal model parameters *a* (signal strength modifier μ can be one of them) are evaluated from a scan of the profile likelihood ratio q(a):

$$q(a) = -2 \ln \frac{\mathcal{L}(\operatorname{obs} | s(a) + b, \hat{\theta}_a)}{\mathcal{L}(\operatorname{obs} | s(\hat{a}) + b, \hat{\theta})},\tag{6}$$

Parameters \hat{a} and $\hat{\theta}$ that maximize the likelihood, $\mathcal{L}(\text{obs} | s(\hat{a}) + b, \hat{\theta}) = \mathcal{L}_{\text{max}}$, are called the best-fit set. The 68% (95%) CL on a given parameter of interest a_i is evaluated from $q(a_i) = 1$ (3.84) with all other unconstrained model parameters treated in the same way as the nuisance parameters. The 2D 68% (95%) CL contours for pairs of parameters are derived from $q(a_i, a_j) = 2.3$ (6). One should keep in mind that boundaries of 2D confidence regions projected on either parameter axis are not identical to the 1D confidence interval for that parameter.

Guenakh Mitselmakher Olubna, July 25, 2013

LHC schedule :)

References

Channel	Conference note	L	Dete
Spin Combination	ATLAS-CONF-2013-040	up to 25 fb-1	18/04/2013
Couplings Combination	ATLAS-CONF-2013-004	up to 25 fb-1	14/03/2013
Higgs to Diphoton spin	ATLAS-CONF-2013-029	21/6-1	13/03/2013
Higgs to WW(Mv) spin	ATLAS-CONF-2013-001	21 fb-1	11/03/2013
Higgs to WW(Mv)	ATLAS-CONF-2013-000	25 fb-1	11/03/2013
2HDM WW(Mk)	ATLAS-CONF-2013-027	13/6-1	11/03/2013
Combined of Mass	ATLAS-CONF-2013-014	up to 25 fb-1	05/03/2013
Higgs to Diphoton	ATLAS-CONF-2013-012	25 fb-1	05/03/2013
Higgs to 4 leptons	ATLAS-CONF-2013-013	25 fb-1	05/03/2013
ZH (invisible decays)	ATLAS-CONF-2013-011	18 fb-1	05/03/2013
Higgs to dimuon	ATLAS-CONF-2013-010	21/6-1	05/03/2013
Higgs to Zgamma	ATLAS-CONF-2013-009	25 fb-1	05/03/2013

May-2013	Full 8 TeV detaset: VBF H, H -> bb	TWIKI, PAS
May-2013	Full 8 TeV dataset: 194, H -> gamma gamma	TWIK, PAS
May-2013	Full 7+8 TeV dataset: VH, H -> bb	TWIK, PAS
May-2013	Full 8 TeV dataset: H -> WW -> InuJ	TWIKI, PAS
May-2013	Full 7+8 TeV dataset H -> ZZ -> 22nu	TWIK, PAS
Apr-2013	Moriond Higgs Combination	TWIKI, PAS
Mar-2013	Full 7+8 TeV dataset: H -> gamma gamma	TWIK, PAS
Mar-2013	Full 7+8 TeV dataset: H -> ZZ -> 4	TWIKI, PAS
Mar-2013	Full 7+8 TeV dataset: H -> WW -> 2/2nu	TWIK, PAS
Mar-2013	Full 7+8 TeV dataset: H -> tau tau	TWIK, PAS
Mar-2013	Full 7+8 TeV dataset: H -> Z gamma	TWIK, PAS
Mar-2013	Full 7+8 TeV dataset: H -> WWW -> 3Gnu	TWIK, PAS
Mar-2013	Full 7+8 TeV dataset: VH -> tau tau	TWIKI, PAS

LHC in 2015

Potential performance

	Number of bunches	lb LHC FT[1e11]	Collimator scenario	Emit LHC (SPS) [um]	Peak Lumi [cm-²s ⁻¹]	~Pile-up	Int. Lumi [fb ⁻¹]
25 ns	2760	1.15	S1	3.5 (2.8)	9.2e33	21	24
25 ns low emit	2320	1.15	S 4	1.9 (1.4)	1.6e34	43	42
50 ns	1380	1.6	51	2.3 (1.7)	1.7e34 level 0.9e34	76 level 40	~45*
50 ns low emit	1260	1.6	S4	1.6 (1.2)	2.2e34	108	
 6.5 TeV 1.1 ns bunch length 150 days proton physics, HF = 0.2 70 mb visible cross-section 					All numbers	approximate	
 * different operational model – caveat - unproven 					CP 2013		

LHC 10 yrs

