XYZ States Results from Experiments

Jens Sören Lange Justus-Liebig-Universität Gießen

Helmholtz International Summer School Physics of Heavy Quarks and Hadrons 07/15-28/2013 JINR, Dubna, Russia

arXiv:1208.6128[hep-ex] arXiv:1109.1699[hep-ex] arXiv:1010.2350[hep-ex] arXiv:1010.2331[hep-ex]

Outline

- Past and Present Experiments
 - How it all began, on a parking lot
 - B factories (Belle, BaBar)
 - BESIII
- Charmonium-like states
 - X(3872)
 - Y(4260) and family
 - Z+(4430) and family
 - D-wave state
- Bottomonium-like states
 - Yb(1088)
 - Zb
- Future experiments Panda, Belle-II

e+ e- Collisions at SLAC (1973)

SPEAR

√s = 3.1 GeV

Discovery of Charmonium (J/\psi)

- SLAC (Stanford) Mark I, Richter et al. $e+e- \rightarrow hadrons, e+e-, \mu+\mu-$
- BNL (Brookhaven) E598, Ting et al. $p + A \rightarrow [e+ e-] X$
- new, very narrow state: J/ψ m=3.1 GeV, Γ ~100 keV, interpreted as [cc] spin=1 (↑↑) ground state
- J^{PC} = 1⁻⁻

(experimental proof for existance of 4th quark)

MARK I group reacted quickly → it was feasible to modify the accelerator, so that the beam energies could be changed to ≤1 MeV every minute.

Discovery of ψ '

- first exited (n=2) state of J/ψ
- only 3 weeks after J/ψ
- beginning of charmonium <u>spectroscopy</u>
- Decay:

 $\Psi' \to J/\Psi \, \pi\text{+} \, \pi\text{-}$

Heavy Quarkonium

Static Quark-Antiquark Potential for Charmonium

V(r) [GeV]

0

-1

-3

0

0,5

r [fm]

Coulomb-Potential
 + Confinement-Term

 solve Schrödinger equation (quark mass heavy → non-relativistic)
 → states

$$\Psi(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$$
$$\left[-\frac{1}{m_q}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{m_q r^2} + V(r)\right)\right]R_{nl}(r) = E_{nl}R_{nl}(r)$$

k=0.5 GeV/fm

k=1.5 GeV/fm

 $-\frac{4}{3}\frac{\alpha_s}{r}$

V(r)

1.0

Quarkonium Excited States

exponential tail

Charmonium

Bottomonium

Discovery of $\eta_{\rm c}$

- spin=0 ($\uparrow\downarrow$) ground state can not decay $\rightarrow \gamma \rightarrow e+e-$
- SLAC (1979)
 Crystal Ball Detector
- radiative transistions, detect photon only

XYZ States (Experiment) HQP-13 | Dubna, July 2013

The agreement between prediction by the potential model and experimental observation is and was encouraging (level ~10⁻³, 2–3 MeV compared to mass of 3-10 GeV) and hadron physicists were living happily.

About 30 years passed.

And then the following things happened ...

B Factories

XYZ States (Experiment)

HQP-13 | Dubna, July 2013

Belle and KEKB, Japan

asymm. \rightarrow extend decay length symm. of B mesons Accelerator CESR KEKB PEP-II SuperKEKB Laboratory Cornell KEKSLAC KEK CLEO III Belle Belle II Detector BaBar (achieved) (achieved) (achieved) (planned) Circumference (km) 0.7683.02.23.0Energy e^-/e^+ (GeV) 5.3/5.38.0/3.59.0/3.17.0/4.0Lorentz boost $\beta\gamma$ 0.430.560.280 Beam current e^{-}/e^{+} (A) 0.5/0.5 $1.6/1.2^{\dagger}$ 3.2/2.13.6/2.6Number of bunches 45512017322500Crossing angle (mrad) ± 2.3 ± 11 0 83 Luminosity $(10^{33}/\text{cm}^2\text{s})$ 1.5521.0812.07800 7.2 - 8.9 $\sigma_x \ (\mu m)$ 103-116 120n.a. 36×10^{-3} $\sigma_y \ (\mu m)$ 0.944 n.a. $\sigma_z \ (\text{mm})$ 6 11 $\mathbf{5}$ n.a.

The BELLE Detector

Luminosity

(CM-energy 10.5759 GeV) HER beamsiz 239.5/ 4.2 242.3/ 3.9 um (x/y) life 229 min LER beamsiz 186.3/ 3.6 187.5/ 3.8 um (x/y) life -243 min HER vacuum 5.0/ 3.0 5.1/ 3.0 x1e-8 Pa (average/upstream) LER vacuum 6.6/ 4.6 6.6/ 4.6 x1e-8 Pa (average/upstream) LER cont. inj. ON (8.6 Hz 7934 times) inj.veto ON (0)

Luminosity:	ECL	EFC	KEKB
at start	155.80e32	140.07e32	108.39e32
at stop	156.55e32	139.11e32	109.06e32
peak/fill	157.78e32		

L>1 x 10³⁴ s⁻¹ cm⁻²

- 1 x 10³⁴ s⁻¹ cm⁻²
- $1 \text{ barn} = 10^{-24} \text{ cm}^2$

24 hours x 60 min x 60 seconds x 10¹⁰ barn⁻¹ = 86.400 x 10¹⁰ barn⁻¹

- ~ 10¹⁵ barn⁻¹
- = 1 inverse femtobarn per 1 day

Beam Energy

- adjusted to the Upsilon(4S) resonance (decays ~99% to BB mesons)
- ~10% of time \sqrt{s} =10.52 GeV in non-resonant continuum

Cross section $\sigma(e+e- \rightarrow Y(4S))$ ~1 nb

1 fb⁻¹ per 1 day

This means: ~1 Million *B* Meson pairs per 1 day

~1000 /fb

On-resonance samples: Y(4S): 711 /fb Y(5S): 121 /fb Y(3S): 3.0 /fb Y(2S): 24 /fb Y(1S): 5.7 /fb Off-resonance: 87 /fb

~553 /fb

On-resonance samples: Y(4S): 433 /fb Y(3S): 30 /fb Y(2S): 14 /fb Off-resonance: 54 /fb

Production of Charmonium

Decays of Charmonium States

Annihilation

Example Events with Charmonium

J/ψ→e⁺e⁻

 $J/\psi \rightarrow \mu^+\mu^-$

J/ψ Invariant Mass

 $\sqrt{s}=10.58$ GeV <u>on</u>-resonance J/ ψ from B decays

 $\sqrt{s}=10.52 \text{ GeV}$ <u>off</u>-resonance direct J/ ψ production

J/ψ Invariant Mass

Reconstruction of higher Charmonium States

A molecular state?

XYZ States (Experiment) HQP-13 | Dubna, July 2013

X(3872)

 observed in more than one decay channel

X(3872)	\rightarrow	$J/\psi \pi^+\pi^-$
X(3872)	\rightarrow	$J/\psi\gamma$
X(3872)	\rightarrow	$J/\psi \pi^+\pi^-\pi^0$
X(3872)	\rightarrow	$D^0 \overline{D}^0 \pi^0$
X(3872)	\rightarrow	$D^0 \overline{D}^0 \gamma$
X(3872)	\rightarrow	$\psi^{\prime}\gamma$

- very narrow width Γ<1.2 MeV (90% CL)
- mass very close to DD* threshold

Belle, Phys. Rev. Lett.91(2003)262001
CDF-II, Phys. Rev. Lett.93(2004)072001
D0, Phys. Rev. Lett.93(2004)162002
BaBar, Phys. Rev. D71(2005)071103
LHCb, Eur. Phys. J. C72(2012)1972
CMS, arXiv:1302.3968[hep-ex]

Reference Analysis: $B \rightarrow K\psi'$, $\psi' \rightarrow J/\psi \pi^+\pi^-$

3-dim fit in beam constrained mass, J/ $\psi \pi^+ \pi^-$ mass and ΔE at first, fit reference signal ψ'

 \rightarrow fix core Gaussian and tail Gaussian for resolution parameters

$\mathsf{B} \to \mathsf{K} \left[\mathsf{J} / \psi \, \pi_{_{1}} \, \pi_{_{2}} \, \right]$

px_Bc = jpsi_vector.x() + pcms[kaon].x() + pcms[pion1].x() + pcms[pion2].x(); py_Bc = jpsi_vector.y() + pcms[kaon].y() + pcms[pion1].y() + pcms[pion2].y(); pz_Bc = jpsi_vector.z() + pcms[kaon].z() + pcms[pion1].z() + pcms[pion2].z();

esum_Bc = jpsi_vector.e() + pcms[kaon].e() + pcms[pion1].e() + pcms[pion2].e();

deltaE = ECM/2 - esum_Bc;

mass_BC = sqrt(ECM*ECM/4. - (px_Bc*px_Bc + py_Bc*py_Bc + pz_Bc*pz_Bc));

ECM comes from accelerator measurement.

Analysis of X(3872) \rightarrow J/ ψ π + π -

Preliminary

3-dim fit

with fixed resolution parameters from ψ'

Mass MC/data shift +0.92±0.06 MeV, measured and fixed from ψ^{\prime} mass
Experiment	Mass of $X(3872)$
CDF2	$3871.61 \pm 0.16 \pm 0.19 \text{ MeV}$
BaBar (B^+)	$3871.4 \pm 0.6 \pm 0.1 \text{ MeV}$
BaBar (B^0)	$3868.7 \pm 1.5 \pm 0.4 \text{ MeV}$
D0	$3871.8 \pm 3.1 \pm 3.0 \text{ MeV}$
Belle	$3871.84{\pm}0.27{\pm}0.19~{ m MeV}$
LHCb	$3871.95 \pm 0.48 \pm 0.12 \text{ MeV}$
World Average	$3871.68 {\pm} 0.17 { m MeV}$

m(D^o)+m(D^{*o})=3871.84±0.28 MeV "binding energy" -0.16±0.33 MeV

reminder: binding energy of deuteron 2.2 MeV

Statistical Significance

Fit S+BGFit only BG $\chi^2=42.08$ $\chi^2=73.04$ Significance = $\sqrt{(-42.08 + 73.08)} = 5.6$ "sigma"if "likelihood fit", then $\chi^2 \rightarrow 2ln(likelihood)$ Upper limit (<3 σ), evidence (>3 σ), observation (>5 σ)

Measurement of width of X(3872)

- Previous best limit
 $\Gamma_{\chi_{(3872)}} < 2.3 \text{ MeV} (90\% \text{ CL})$
- 3-dim fits are sensitive to natural widths narrower than resolution $<\sigma>\sim4$ MeV because of constraints (m_{BC}, Δ E)
- Method validated with ψ width $\Gamma_{\psi} = 0.52 \pm 0.11 \text{ MeV}$ (PDG 0.304±0.009 MeV) \rightarrow bias 0.23±0.11 MeV
- procedure for upper limit: width in 3-dim fit fixed n_{signal} and $n_{peaking BG}$ floating \rightarrow calculate likelihood
- $\Gamma_{\chi_{(3872)}} < 0.95 \text{ MeV} + \text{bias}$ 1.2 MeV

One X or two XX ? X(3872) and x(3875)

Tetraquark interpretation, Maiani et al., hep-ph/0707.3354, Phys. Rev. Lett.99(2007)182003 [cu][cu] $\rightarrow \overline{D}^{0}D^{0}\pi^{0} = X(3875)$, [cd][cd] $\rightarrow J/\psi \pi^{+} \pi^{-} = X(3872)$

$\textbf{X(3872)} \rightarrow \textbf{\overline{D}}\textbf{D}^{\star}$

- Decay into DD* is dominant
 BR is factor ~10
 higher than for J/ψ π⁺ π⁻
 BR(B decay) × BR(X decay) ~10^-4
- BaBar, Phys. Rev. D77(2008)011102(R) m=3875.1^{+0.7} -0.5 HeV
 - binned maximum likelihood fit
 - 1-dim fit, M(D*D)
 - signal pdf from MC
 - exponential function background
- Belle, Phys. Rev. D81(2010)031103 m=3872.9^{+0.6}-0.4^{+0.4}-0.5
 MeV
 - <u>un</u>binned maximum likelihood fit
 - 2-dim fit
 - beam constraint mass Gaussian signal Argus function for background
 - M(DD*) Breit-Wigner signal square root for background

Radiative Decay X(3872) \rightarrow J/ $\psi \gamma$

- Rare Decay BR is factor ~6 smaller than BR(X \rightarrow J/ $\psi \pi^+ \pi^-$) BR(B decay) x BR(X decay) ~10^-6
- Evidence for X(3872) \rightarrow J/ $\psi \gamma$ by Belle 256/fb 13.6±4.4 events arXiv:hep-ex/0505037
- Confirmed by BaBar 424/fb 23.0±6.4 events Phys. Rev. D 74(2006)071101
- Re-analysed Belle 711 fb⁻¹ PRL 107(2011)091803 (2011)
- Proof for C=+1 (positive C parity)

C=+ states

- Cannot decay to $\gamma (\rightarrow e^+ e^-)$
- only decay to γγ or gluon gluon

$$\Gamma({}^{3}S_{1} \to \gamma) = \frac{65\pi}{9} \frac{\alpha_{em}}{m_{c}^{2}} |\psi(r=0)|^{2}$$

$$\Gamma({}^{3}P_{0} \to \gamma\gamma) = \frac{256}{3} \frac{\alpha_{em}^{2}}{m_{c}^{4}} |\frac{\partial\psi}{\partial r}(r=0)|^{2}$$

sensitive to derivative of wavefunction

Isospin Violation

- X(3872) \rightarrow J/ $\psi \pi^+ \pi^$ observation: $\pi^+\pi^-$ invariant mass peaks at ρ^0
- $X(3872) \rightarrow J/\psi\rho(l=1)$ violates isospin
- Reason?
 - u-d mass difference (in strong interactions)
 - u-d charge difference (in EM interactions)
- X(3872) can only decay into D
 [®]*D[®], [cu] not in D^{**}D⁻, [cd] (threshold is 8 MeV higher)
- or this decay is EM, not strong

Isospin violating Charmonium Transistions

Only two decays for charmonium measured in PDG.

Ψ	Decays into $J/\psi(1S)$ and anything		
$J/\psi(1S)$ anything	$(59.5\ \pm 0.8\)\ \%$		—
$J/\psi(1S)$ neutrals	$(24.5 \pm 0.4)\%$		—
$J/\psi(1S)\pi^+\pi^-$	$(33.6\ \pm 0.4\)\ \%$		477
$J/\psi(1S)\pi^0\pi^0$	$(17.73\pm0.34)\%$		481
$J/\psi(1S)\eta$	(3.28±0.07) %		199
$J/\psi(1S)\pi^0$	$(1.30\pm0.10) imes10^{-3}$	S=1.4	528

But branching fraction of X(3872) \rightarrow J/ $\psi \rho$ is order of ~10%

2nd decay is $\psi' \rightarrow h_c \pi^0$

Possible Charmonium Assignment of X(3872)

- Case $2\pi \rightarrow P=+$ 1++ $\chi_{c1}^{'} {}^{3}P_{1}$ predicted mass 70 MeV higher n=2
- Case $3\pi \rightarrow P=-2-+$ $\eta_{c2} {}^{1}D_{2}$ predicted mass 35 MeV lower n=1(would be a L=2 meson)

Mass predictions by Barnes, Godfrey, Swanson Phys. Rev. D72(2005)054026

J=2 in B decays ?

J=0 or J=1 preferred Parity + or parity – allowed J^P=1⁺ no problem (e.g. B⁺ \rightarrow K⁺ χ_{c1} seen with BR 4.6±0.4 x 10⁻⁴)

but J=2 very hard to be generated

Angular Analysis of X(3872)

• Assume $X(3872) \rightarrow J/\psi \rho$ in kinematic limit: both particles at rest in X(3872) rest frame $m_{\chi} = m_{\rho} + m_{J\psi}$ \rightarrow higher partial waves can be neglected $\frac{d\Gamma(1^{++})}{d\cos\chi d\cos\vartheta_{\mu}} \propto \sin^{2}\chi\sin^{2}\vartheta_{\mu}$

1++ 1 amplitude L=0, S=1

only normalization floating in fit

• 2-+ 2 amplitudes L=1, S=1 or S=2 $\alpha = \frac{B_{11}}{B_{11} + B_{12}} = \frac{1}{1 + \frac{B_{12}}{B_{11}}}$

normalization and α (complex) floating in the fit

J. Rosner PRD 70(2004)092023

Angular Variables

$$1^{++}: \frac{d\Gamma}{d\cos\vartheta_X} \propto flat$$

$$2^{-+}$$

$$\alpha = 1: \frac{d\Gamma}{d\cos\vartheta_X} \propto 1 + 3\cos^2\vartheta_X$$

$$\alpha = 0: \frac{d\Gamma}{d\cos\vartheta_X} \propto \sin^2\vartheta_X$$

LHCb

5-dim analysis (3 helicity angles, 2 angles of decay planes)

→ quantum numbers of X(3872) are 1++ (2-+ excluded by 8.2 sigma)

arXiv: 1302.6269, Phys. Rev. Lett. 110(2013)222001, 1.0/fb

Exercise:

$\begin{array}{rcl} B \rightarrow \ \mbox{K X}(3872) \\ 0- \rightarrow \ \ 0-1+ \\ \mbox{parity (-1)} \rightarrow \ \ \mbox{parity (-1) x (+1) x (-1)^{L}} \end{array}$

Exercise:

We need L=1 to create J=1, but this violates parity.

What is the X(3872)?

After 10 years we are still not sure.

XYZ States (Experiment) HQP-13 | Dubna, July 2013

Classification following E. Braaten, QWG'09

Y(4260) J^P=1⁻, but coupling to e⁺e⁻ small. (a hybrid state?)

Note: recent notation by PDG as X(4260)

Y(4260)

- initial state radiation events $e^+e^- \rightarrow \gamma J/\psi \pi + \pi -$ (undetected γ parallel to beam axis)
- mass >4 GeV far above DD(*) threshold
- width < 100 MeV quite narrow
- significance >10σ
- quantum numbers must be (based upon production mechanism)

J^{PC}=1⁻⁻

Y(4260) Parameters

	BaBar 1	CLEO-c 2	Belle 3	Belle 4	BaBar 5	BaBar 6
\mathcal{L}	$211 { m ~fb}^{-1}$	$13.3 \ {\rm fb}^{-1}$	$553 {\rm ~fb}^{-1}$	$548 \ {\rm fb}^{-1}$	$454 {\rm ~fb}^{-1}$	$454 {\rm ~fb}^{-1}$
N	125 ± 23	$14.1^{+5.2}_{-4.2}$	165 ± 24	$324{\pm}21$	344 ± 39	_
Significance	$\simeq 8\sigma$	$\simeq 4.9\sigma$	$\geq 7\sigma$	$\geq 15\sigma$	_	_
m / MeV	$4259 \pm 8^{+2}_{-6}$	$4283^{+17}_{-16}\pm4$	$4295 \pm 10^{+10}_{-3}$	$4247 \pm 12^{+17}_{-32}$	$4252\pm6^{+2}_{-3}$	$4244 \pm 5 \pm 4$
Γ / MeV	$88 \pm 23^{+6}_{-4}$	70_{-25}^{+40}	$133 \pm 26^{+13}_{-6}$	$108 \pm 19 \pm 10$	$105 \pm 18^{+4}_{-6}$	$114^{+16}_{-15} \pm 7$

[1] BaBar Collaboration, arXiv:hep-ex/0506081, Phys. Rev. Lett. 95(2005)142001.

- [2] CLEO-c Collaboration, arXiv:hep-ex/0611021, Phys. Rev. D74(2006)091104.
- [3] Belle Collaboration, arXiv:hep-ex/0612006.
- [4] Belle Collaboration, arXiv:0707.2541[hep-ex], Phys. Rev. Lett. 99(2007)182004.
- [5] BaBar Collaboration, arXiv:0808.1543[hep-ex].
- [6] BaBar Collaboration, arXiv:1204.2158[hep-ex], Phys. Rev. D86(2012)051162.

 $e^+e^- \rightarrow \gamma_{ISR} J/\psi (\psi') \pi^+\pi^-$: Y(4008,4260,4350,4660)

Ve M02/ st nev E

What is the tail around 4.7 GeV?

- Threshold m(D)+m(D**) = 4326 MeV Lineshape distorted? No.
- Non-corrected radiative effects? No. Radiative lower mass tail in J/ $\psi \rightarrow e_{+} e_{-}$ might generate higher mass tail in m(J/ ψ -with-wrong-mass $\pi^{+}\pi^{-}$).
- Fit funtion: Breit Wigner x Phasespace x Efficiency Efficiency a(m-m₀)+b with a=7.4±1.3 GeV⁻¹, b=9.31 § 0.07 (Belle) changes factor ~2 over peak

Belle, hep-ex/0612006

Overpopulation of 1⁻⁻ States

Belle Belle 25 20 15 10 4 4.5 5 5 5.5 6 6.5 7 $M(\pi^+\pi^-J/\psi)$ (GeV/c²)

All same quantum number

but apparently

- no mixing with other ψ states
- no mixing among them Y(4260) seems not decay to $\psi' \pi^+ \pi^-$ Y(4350) seems not decay to J/ $\psi \pi^+ \pi^-$

No more [J/ ψ π^+ π^-] state up to 7 GeV

Note: radiative transistions between the states forbidden by parity

Y(4260): Comparison Belle and BaBar

- BaBar collisions head-on, dipole magnet close to IR
- Belle: ±11 mrad
- slightly higher background at BaBar (also seen as MRad SVD radiation dose)
- backward acceptance for θ=180° limited

XYZ States (Experiment) HQP-13 | Dubna, July 2013

What is the Y(4260)?

A hybrid ? [QQ]₈g

Does the Y(4260) decay to e+e-?

- very small coupling to e+ e-(although J^P=1--) BR(J/ψ π⁺ π⁻) x Γ(e⁺ e⁻) = (7.5±0.9±0.8) eV BaBar, arXiv:0808.1543
- This is a partial width of the order "eV" of a state which is ~100 MeV total width !
 - \rightarrow factor 10⁸ suppressed

What is blocking these decays? (maybe the gluonic string ?)

X(4630)

$$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^- \gamma_{ISR}$$

 $\Lambda_c \rightarrow pK_s^0$, $pK^-\pi^+$, $\Lambda\pi^+$ Λ_c^- is tagged by anti-proton, (partial reconstruction)

The X(4630) is the first observed XYZ state which decays into **BARYONS** !

The X(4630) and the Y(4660) are both seen in ISR.

 \rightarrow they are both 1--

→ they could be the identical state (because it would be very very strange to have so many 1-- states so nearby)

Reminder: the QCD string is supposed to break at r>1.35 fm (according to Lattice QCD)

r=0.7 fm

r=1.0 fm

r=1.35 fm

G. Bali, hep-lat/9409005

Potential Model: Wronski-Determinant must be =0 at turning point

$$r_{\rm turning \ point} = \frac{E-2m}{2\sigma} + \sqrt{\frac{4m^2 - 4mE + E^2}{4\sigma^2} + \frac{4\alpha_s}{3\sigma}}$$

- at m=4.660 GeV, the turning point of the wave function is at r>2 fm!
- large fraction of wave function is in string breaking regime r>1.35 fm

Z(4430)+

A <u>charged</u> charmonium(-like) state.

Belle, arXiv:0708.1790[hep-ex], Phys. Rev. Lett. 100(2008)142001 Belle, arXiv:0806.4098[hep-ex], Phys. Rev. D78(2008)072004 Belle, arXiv:0905.2869[hep-ex], Phys. Rev. D80(2009)031104 BaBar, arXiv:0811.0564[hep-ex], Phys. Rev. D79(2009)112001

 $\begin{array}{c} \mathsf{B}^{\scriptscriptstyle 0} \to \;\mathsf{K}^{\scriptscriptstyle +} \;\psi^{\scriptscriptstyle +} \;\pi^{\scriptscriptstyle -} \\ \psi^{\prime} \to \mathsf{J}/\psi \;\pi^{\scriptscriptstyle +} \;\pi^{\scriptscriptstyle -} \end{array}$

 $M^{2}(K\pi)$ (GeV²)

K*(892) K*(1430)

A charged state can never be a charmonium state.

Z(4430)+

Belle and BaBar data look similar.

Enhancement in $Mass(\pi \psi')$ is seen in both data samples, only interpretation is different.

Is the Z+(4430) a kinematical effect?

- $\cos\theta_K$, the normalized dot-product between the $K\pi$ three-momentum vector in the parent-*B* rest frame and the kaon three-momentum vector after a Lorentz transformation from the *B* meson rest frame to the $K\pi$ rest frame
- $\cos\theta_{\psi}$, the normalized dot-product of the $\psi'\pi^{\mp}$ three-momentum vector in the parent *B* meson rest frame and the ψ' three-momentum vector in the $\psi'\pi^{\mp}$ rest frame.

 $\cos\theta_K$ is correlated with $m(K^{\pm}\pi^{\mp})$, $\cos\theta_{\psi}$ is correlated with $m(\psi\pi^{\mp})$, $\cos\theta_K$ is correlated with $\cos\theta_{\psi}$

TRUE !

Argument #1: MC with angular correlations can describe data well. No Z+ states in red line (MC) required ! BaBar, arXiv:1111.5919, Phys.Rev. D85(2012)052003 $\chi_{_{c1}} \pi^{\pm}$

Argument #2: significance is higher, if destructive interference is allowed in the fit (if not $\rightarrow \leq 2\sigma$)

IHEP Beijing, China

BEPC II Beam energy 1.0–2.3 GeV (→ √s=2.0–4.6 GeV) double ring collider (although same beam energy would allow single ring)

BESIII Experiment at BEPC II (symmetric !)

Superconducting solenoid B=1 T

no vertex detector, because only D mesons (no separation of B mesons and D mesons required) 40.000 readout channels

6 kHz trigger rate

design luminosity 1.0 x 10³³ cm⁻² s⁻¹ (@ 1.89 GeV beam energy)

 \rightarrow 10 billion J/psi per 1 year

	CLEO-c	BESIII
J/ψ	n.a.	$\geq 1.3 \times 10^7 \text{ decays}$
ψ'	27×10^6 decays	$\simeq 106 \times 10^6$ decays
$\psi(3770)$	572 pb^{-1}	$\simeq 2900 \text{ pb}^{-1}$
$\psi(4040)$	n.a.	$\simeq 470 \text{ pb}^{-1}$
$\psi(4140)$	314 pb^{-1}	_
Y(4260)	13 pb^{-1}	$\geq 500 \text{ pb}^{-1}$
Y(4350)	_	$\geq 500 \text{ pb}^{-1}$

У(4260)

Select $e^+e^- \rightarrow \pi^+\pi^- J/\Psi$, $J/\Psi \rightarrow I^+I^-$ events.

1477 events found.

Born cross section, (62.9 ± 1.9 ± 3.7) pb, consistent with production of Y(4260).

This is the Y(4260), not the ψ' !

Fred Harris 5/15/2013

Workshop on Tau-Charm at High Luminosity

 $Y(4260) \rightarrow [J/\psi\pi+]\pi-$

Beslll, Phys. Rev. Lett. 110 (2013)252001 Belle, Phys. Rev. Lett. 110(2013)252002

$Y(4260) \rightarrow [J/\psi \pi +] \pi -$

- is charged (cannot be charmonium!)
- must have isospin 1 (as the pion has isospin 1)
- 1– 0– and assume L=0 $\rightarrow J^P=1+$, similar to X(3872)

Zc+(3900)

no C parity ! (only for neutral states)
 G parity (-1)^(L+S+I)
 L=0, S=1, I=1 → G=+1

as G parity is conserved in strong decays, and $G(\pi+)=-1$ \rightarrow G parity of Y(4260) must be G=-1 this means: isospin of Y(4260) should be zero

Molecule?

D⁺ has mass 1869,62 MeV D*⁰ has mass 2010,28 MeV Sum is 3879,90 MeV. Measured BES3 3899 MeV, Belle 3894 MeV → higher mass !

→ no binding energy ("virtual state")

X(3820)

An L=2 Charmonium State ?

XYZ States (Experiment) HQP-13 | Dubna, July 2013

D-wave (L=2) state?

XYZ States (Experiment)HQP-13 | Dubna, July 2013

XYZ States (Experiment) HQP-13 | Dubna, July 2013

³D₁ is predicted much lower 3.7699 GeV, admixture in ψ(3770)

¹D₂ would require a spin-flip in the transition (suppressed)

```
^{3}D_{_{3}}(3 - -) can not decay radiatively to \chi_{_{c1}}(1++) would be \Delta J = 2
```

only candidate: ³D₂ is predicted narrow (300-400 keV), consistent with measured narrow width 4±7 MeV (above DD threshold, but 2-- → 0-+ 0-+ is forbidden by parity DD* and D*D* kinematically forbidden)

Bottomonium-like States

Y(5S) data taking

- 9.06.-30.06.2007
 KEK-B and Belle changed beam energy to Y(5S)
- 21.7 fb⁻¹ recorded
- investigate [vector \rightarrow vector $\pi \pi$] as an analogy to Y(4260) \rightarrow J/ $\psi \pi \pi$

$\Gamma[Y(5S) \rightarrow \pi\pi Y(nS)]$ is huge

XYZ States (Experiment) HQP-13 | Dubna, July 2013

Not only $Y(5S) \rightarrow Y(1S)\pi\pi$ is large, but also $Y(5S) \rightarrow Y(2S)\pi\pi$

Is there a non-expected state near the Y(5S) contributing to Y(nS) $\pi\pi$?

\rightarrow beam energy scan!

Beam Energy Scan, Dec 2007

Target Ecm [relative to $5S$]	KEKB Ecm*	$\mathcal{L} \; (\texttt{RunInfo})$
10800[-69] MeV	$10798.5 \ \mathrm{MeV}$	30.71/pb
10824[-45] MeV	$10824.0 { m MeV}$	
10829[-40] MeV	$10827.5 \ \mathrm{MeV}$	1615.22/pb
10844[-25] MeV	$10844.0 { m MeV}$	
10854[-15] MeV	$10852.5 \ \mathrm{MeV}$	30.70/pb
10844[-5] MeV	$10864.0 { m MeV}$	
10869 MeV	$10869.0 { m MeV}$	
10869 MeV	10871.0 MeV^\dagger	
10884[+15] MeV	$10882.5 \ \mathrm{MeV}$	1745.28/pb
10884[+15] MeV	$10884.0 \ \mathrm{MeV}$	
10891.5[+22.5] MeV	$10889.5 \ \mathrm{MeV}$	30.76/pb
10899[+30] MeV	$10897.5 \ \mathrm{MeV}$	1339.23/pb
10904[+35] MeV	$10904.0 { m MeV}$	
10929[+60] MeV	$10927.5 \ \mathrm{MeV}$	1074.67/pb
10959[+90] MeV	$10957.5 \ \mathrm{MeV}$	945.84/pb
10989[+120] MeV	$10987.5 \ \mathrm{MeV}$	30.53/pb
11019[+150] MeV	$11017.5 \ \mathrm{MeV}$	792.04/pb

 $Y(1S)\pi^{+}\pi^{-}$ $Y(2S)\pi^{+}\pi^{-}$ $Y(3S)\pi^{+}\pi^{-}$

√s=10.8275 GeV

√s=10.8825 GeV

√s=10.8975 GeV

√s=10.9275 GeV

√s=10.9575 GeV

√s=11.0175 GeV

Y_b(10889)

Υ (5S) → X $π^+π^-$ reconstruction

XYZ States (Experiment) HQP-13 | Dubna, July 2013

Y(5S) Decays

$\pi^+ \pi^-$ missing mass

First observation of $h_b(1P)$ and $h_b(2P)$

Belle, 121.4 fb⁻¹ Phys. Rev. Lett 108(2011)032001 arXiv:1103.3419

Prediction from potential model D. Ebert, R.N. Faustov, V.O. Galkin,

<u>arXiv:hep-ph/0210381, Phys. Rev. D67(200</u>3)014027

	Yield, 10^3	Mass, MeV/c^2	Significance	
$\Upsilon(1S)$	$105.0 \pm 5.8 \pm 3.0$	$9459.4 \pm 0.5 \pm 1.0$	18.1σ	
$h_b(1P)$	$50.0 \pm 7.8^{+4.5}_{-9.1}$	$9898.2^{+1.1}_{-1.0}^{+1.1}_{-1.1}$	6.1σ	9901 MeV
$3S \to 1S$	55 ± 19	9973.01	2.9σ	
$\Upsilon(2S)$	$143.8 \pm 8.7 \pm 6.8$	$10022.2 \pm 0.4 \pm 1.0$	17.1σ	
$\Upsilon(1D)$	22.4 ± 7.8	10166.1 ± 2.6	2.4σ	
$h_b(2P)$	$84.0 \pm 6.8^{+23.}_{-10.}$	$10259.8 \pm 0.6^{+1.4}_{-1.0}$	12.3σ (10261 MeV
$2S \to 1S$	$151.3 \pm 9.7^{+9.0}_{-20.}$	$10304.6 \pm 0.6 \pm 1.0$	15.7σ	
$\Upsilon(3S)$	$45.5 \pm 5.2 \pm 5.1$	$10356.7 \pm 0.9 \pm 1.1$	8.5σ	

Newly observed $h_{b}(1P)$ and $h_{b}(2)$

are nicely consistent with predictions by potential model.

Precision Test of Tensor Term in \overline{q}q Potential

$$m(h_c) \stackrel{?}{=} \frac{m(\chi_{c0}) + 3 \cdot m(\chi_{c1}) + 5 \cdot m(\chi_{c2})}{9}$$

and analogue for $h_{\scriptscriptstyle b}$

- Test of hyperfine splitting $\Delta m_{HF} = \langle m(n^{3}P_{J}) \rangle_{spin-averaged} - m(n^{1}P_{1})$
- For the 1st time possible in the bottomonium system
- For the 1st time possible for n=1 and n=2 as h_c(2P) not observed yet

qq Potential with fine structure and hyperfine structure

$$\begin{split} V(r) &= -\frac{4}{3}\frac{\alpha_s}{r} + kr \\ &+ \frac{32\pi\alpha_s}{9m_c^2}\delta_r \vec{S_c} \vec{S_c} \\ &+ \frac{1}{m_c^2} (\frac{2\alpha_s}{r^3} - \frac{k}{2r}) \vec{L} \vec{S} \\ &+ \frac{1}{m_c^2} \frac{4\alpha_s}{r^3} (\frac{3\vec{S_c} \vec{r} \cdot \vec{S_c} \vec{r}}{r^2} - \vec{S_c} \vec{S_c}) \end{split}$$
tensor term

Precision Test: Tensor Term in qq Potential

- treated as perturbation
- vanishes for
 S=0 (η_b, Y, ...)
 L=0 (¹D₂,...)
- sign of potential term is positive
 - \rightarrow masses should be shifted up
- Simplified view: wavefunction of h_c (h_b) at r=0 is not vanishing

State	$h_b(1P)$	$h_b(2P)$
$\Delta M_{ m HF}, { m MeV}$	1.7 ± 1.5	$+0.5^{+1.6}_{-1.2}$

compared to 0.00 ± 0.15 MeV for the $h_c(1P)$

Result:

One step further:

$$h_b \rightarrow \eta_b \gamma$$

- With 50k events of $h_b(1P)$ and 84k of $h_b(2P)$
- Reminder: $\eta_{b}(1S)$ only known for 3 years First observations by BaBar (2008, 2009) and CLEO (2010)
- In addition, search for $\eta_{b}(2S)$

η_{b} (1S) and evidence for η_{b} (2S)

Ebert, Faustov, Galkin, arXiv:hep-ph/0210381 Phys. Rev. D67(2003)014027

State	Mass, MeV	Width, MeV
$\eta_b(1S)$	$9402.4 \pm 1.5 \pm 1.8$	$10.8^{+4.0+4.5}_{-3.7-2.0}$
$\eta_b(2S)$	$9999.0 \pm 3.5^{+2.8}_{-1.9}$	< 24

9400 MeV

9993 MeV

Belle, arXiv:1205.6351 Phys.Rev.Lett. 109 (2012) 232002 133.4 fb⁻¹

What does it have to do with Confinement?

XYZ States (Experiment) HQP-13 | Dubna, July 2013

Precision Test: Flavour Independance of $\overline{q}q$ Potential Are the level spacings the same?

Excellent agreement for h states (S=0,L=1) Poor agreement for the ground states (S=0, L=0) Mixing η , η' , η_c ? Gluonic component?

Resonant structure of $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^+\pi^-$ (n=1,2,3)

Υ (5S) → Υ (nS) $\pi^+\pi^-$ Dalitz plots

 \rightarrow Signals of Z_b(10610) and Z_b(10650)

Results: Υ(**2S**)π⁺π⁻

Charged states decaying to Y(nS) $\pi\pm$ can never be bottomonium.

Summary of Z_b parameters Z_b(10610)

Average over 5 char	nels	$Y(1S)\pi^{+}\pi^{-}$		-		•	-	•	_	•
$\langle \mathbf{M}_1 \rangle = 10607.2 \pm$	2.0 MeV	Y(2S)π ⁺ π ⁻	-	-		-•-	-			•
$\langle \Gamma_1 \rangle = 18.4 \pm 2.$	4 MeV	Y(3S)π ⁺ π ⁻	-	-	-	-	-	-	-•-	
〈 M₂ 〉 = 10652.2±	:1.5 MeV	h _b (1Ρ)π⁺π⁻	-		-•-		-	•		
$\langle \Gamma_2 \rangle = 11.5 \pm 2$.2 MeV	h _b (2Ρ)π [⁺] π⁻			•-					•
		Average	•		-	•	•		•	-
			-10 0 ΔМ, М	10 eV	-10 ΔΓ,	0 10 MeV	-10 (ΔМ,	D 10 MeV	-10 0 ΔΓ, Ν) 10 MeV
Final state	$\Upsilon(1S)\pi^+\pi$	r^{-} $\Upsilon(2$	$\Upsilon(2S)\pi^+\pi^-$		$\Upsilon(3S)\pi^+\pi^-$		$h_b(1P)\pi^+\pi^-$		$h_b(2P)\pi^+\pi^-$	
$M[Z_b(10610)], {\rm MeV}/c^2$	$10611 \pm 4 =$	$\pm 3 1060$	$10609 \pm 2 \pm 3$		$10608 \pm 2 \pm 3$		$10605 \pm 2^{+3}_{-1}$		10599^{+6+5}_{-3-4}	
$\Gamma[Z_b(10610)], {\rm MeV}$	$22.3 \pm 7.7^+_{}$	$^{+3.0}_{-4.0}$ 24.2	$24.2 \pm 3.1^{+2.0}_{-3.0}$		$17.6 \pm 3.0 \pm 3.0$		$11.4^{+4.5+2.1}_{-3.9-1.2}$		13^{+10+9}_{-8-7}	
$M[Z_b(10650)], {\rm MeV}/c^2$	$10657 \pm 6 =$	± 3 1065	$10651\pm2\pm3$		$10652 \pm 1 \pm 2$		$10654 \pm 3 {}^{+1}_{-2}$		10651^{+2+3}_{-3-2}	
$\Gamma[Z_b(10650)], \text{ MeV}$	$16.3 \pm 9.8^+$	${}^{6.0}_{2.0}$ 13.3	$13.3 \pm 3.3^{+4.0}_{-3.0}$		$8.4 \pm 2.0 \pm 2.0$		$20.9^{+5.4+2.1}_{-4.7-5.7}$		$19\pm7{+11\atop -7}$	
Rel. normalization	$0.57 \pm 0.21^+_{}$	$^{+0.19}_{-0.04}$ 0.86 =	$0.86 \pm 0.11^{+0.04}_{-0.10}$		$0.96 \pm 0.14^{+0.08}_{-0.05}$		$1.39 \pm 0.37^{+0.05}_{-0.15}$		$1.6^{+0.6+0.4}_{-0.4-0.6}$	
Rel. phase, degrees	$58 \pm 43^{+}_{-}$	$\frac{4}{9}$ -13	$-13 \pm 13^{+17}_{-8}$		$-9 \pm 19^{+11}_{-26}$		187^{+44+3}_{-57-12}		$181^{+65+74}_{-105-109}$	

The two charged states are observed in 5 decays channels.

 $Z_{h}(10650)$

Future Experiments

measure the WIDTHS of new states in the sub-MeV regime

Widths provide knowledge about wave function

Width of η_c (1S) 32.0 ± 0.9 MeV (PDG)

Width of η_{c} (2S) 11.3+3.2-2.9 MeV (PDG)

$$\Gamma({}^{1}S_{0} \to gg) = \frac{32\pi}{3} \frac{\alpha_{S}^{2}}{m_{c}^{2}} |\psi(r=0)|^{2}$$

determine the width of the X(3872)

with a cooled anti-proton beam

by a resonance scan technique

FAIR (<u>Facility for Anti-Proton and Ion Research</u>) Helmholtz Center GSI Darmstadt (Germany)

(no parking lot !)

HESR (High Energy Storage Ring)

→ beam deflection for p_{beam}=15 GeV/c 4.2 cm @ z=6m (end of dipole)

The Panda Pellet Target

Anti-proton beam momentum p≤15 GeV/c → √s≤5.5 GeV access to states higher than 5 GeV ! not available in Belle II (B decays) neither at BesIII

p \overline{p} → 1++ direct formation possible ! (e+ e- → X(3872) not possible)

B=2 T (high!)

fixed target \rightarrow high p_z of tracks (boosted)

NO TRIGGER full reconstruction online with interaction rate 2 x 10⁷ /s

X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$ Event, PandaRoot Simulation

PandaRoot Framework Simulation X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$ TPC digitization, MVD Silicon Tracker digitization

XYZ coordinates / cm

$\psi' \rightarrow J/\psi \pi^+ \pi^-$ Mark II, 1973

How do we know cross sections @ PANDA? → Detailed Balance

Production @ Panda

X(3872) Resonance Scan

Resonance scan of X(3872) @ PANDA

Assumptions

```
50 nb signal cross section (p \overline{p} \rightarrow X(3872) \rightarrow J/\psi\pi+\pi-)
```

```
Width of X(3872) Γ=100 keV
```

HESR high resolution mode p = 6.992 GeV/c = 2 x 10⁻⁵ → E_m resolution 33.568 keV

```
0.864 pb<sup>-1</sup> / day
```

20 scan points, 2 days per 1 scan point

```
Background Dual Parton Model (DPM)
see V. V. Uzhinsky, A. S. Galoyan, hep-ph/0212369
for cross sections
```


Natural width of 100 keV can be reproduced! (within the error bars)

Belle II

≥2016 at KEK, Tsukuba, Japan

XYZ States (Experiment) HQP-13 | Dubna, July 2013

Belle Rollout, 09.12.2010

Belle Rollout, 09.12.2010

XYZ States (Experiment) HQP-13 | Dubna, July 2013

Planned improvement of B meson z vertex resolution by factor ~2 (∆z≥25 um for p=1 GeV/c)

XYZ States (Experiment) HQP-13 | Dubna, July 2013

IP Profile for Belle and Belle II ("nanobeam")

100 μ m(H) x 2 μ m(V) \rightarrow 10 μ m(H) x 59nm(V)

2

Magnet installation

field measurement

Installation of 100 new LER bending magnets done

move into tunnel

carry on an air-pallet

SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

carry over existing HER dipole

X(3872) Width Measurement at Belle

3-dim fit \rightarrow kinematical over-constraint provides access to observables smaller than detector resolution

upper limit on width $\Gamma_{X(3872)} < 1.2 \text{ MeV} (90\% \text{ C.L.})$

Belle II: width measurement in X(3872) \rightarrow J/ $\psi\gamma$ expected yield N \simeq 1750 monoenergetic photon provides additional constraint Γ < 1 MeV might be feasible

State	Production	J^{PC}	Width	Decay	Experiment	Interpretation
			(MeV)			
X(3872)	B decays, $p\overline{p}$	1^{++}	$<\!2.3$	$J/\psi\rho, J/\psi\omega, J/\psi\gamma, D^0\overline{D}^{0*}$	Belle, BaBar, CDF	$D^0 \overline{D}^{*0}$ molecule?
					D0, LHCb, CMS	
X(3940)	$e^+e^- \rightarrow c\overline{c}c\overline{c}$	$0^{?+}$	$\simeq 37$	$DD^* \text{ (not } DD, J/\psi\omega)$	Belle	shifted $\eta_c^{\prime\prime}$?
Y(3940)	B decays	$?^{?+}$	$\simeq 30$	$J/\psi\omega \ (\mathrm{not} \ DD^*)$	Belle, BaBar	?
Y(3990)	Y(4260) decays	1^{+}	≥ 10	$J/\psi \pi^{\pm}$	BESIII, Belle	4-quark ? $D^+\overline{D}^{*0}$ molecule ?
Y(4140)	B decays	$?^{?+}$	$\simeq 11$	$J/\psi\phi$	CDF	$c\overline{c}s\overline{s}$
X(4160)	$e^+e^- \rightarrow c\overline{c}c\overline{c}$	$0^{?+}$	$\simeq 140$	$D^*D^* $ (not DD, DD^*)	Belle	$\eta_c^{\prime\prime}?$
Y(4008)	ISR	$1^{}$	$\simeq 220$	$J/\psi \pi^+\pi^-$	Belle (not BaBar)	$c\overline{c}g$ hybrid?
Y(4260)	ISR	$1^{}$	$\simeq 80$	$J/\psi \pi^+\pi^-, J/\psi \pi^0\pi^0, J/\psi K^+K^-$	BaBar, CLEO, Belle	$c\overline{c}g$ hybrid?
X(4350)	$\gamma\gamma$	$?^{?+}$	$\simeq 13$	$J/\psi\phi$	Belle	ccss
Y(4350)	ISR	$1^{}$	$\simeq 75$	$\psi'\pi^+\pi^-$	BaBar, Belle	$c\overline{c}g$ hybrid?
Y(4660)	ISR	$1^{}$	$\simeq 50$	$\psi'\pi^+\pi^-$	Belle	$c\overline{c}g$ hybrid?
X(4630)	ISR	$1^{}$	$\simeq 90$	$\Lambda_c \overline{\Lambda_c}$	Belle	$\Lambda_c \overline{\Lambda_c}$ molecule?
$Z^{\pm}(4430)$	B decays	$?^{?}$	$\simeq 100$	$\psi' \pi^{\pm}$	Belle (not BaBar)	4-quark?
$Z^{\pm}(4050)$	B decays	$?^{?}$	$\simeq 80$	$\chi_{c1}\pi^{\pm}$	Belle	4-quark?
$Z^{\pm}(4250)$	B decays	$?^{?}$	$\simeq 180$	$\chi_{c1}\pi^{\pm}$	Belle	4-quark?
$Z_b^{\pm}(10610)$	$\Upsilon(5S)$ decays	1^{+}	8 - 25	$\Upsilon(1S)\pi^{\pm}$	Belle	4-quark? B^+B^* molecule?
				$\Upsilon(2S)\pi^{\pm}$		
				$\Upsilon(3S)\pi^{\pm}$		
				$h_b(1\mathrm{P})\pi^{\pm}$		
				$h_b(2\mathbf{P})\pi^{\pm}$		
$Z_b^{\pm}(10650)$	$\Upsilon(5S)$ decays	1^{+}	8 - 25	Υ(1S) [₩]	Belle	4-quark? $B^{+*}B^*$ molecule?
				$\Upsilon(2S)\pi^{\pm}$		
				$\Upsilon(3S)\pi^{\pm}$		
				$h_b(1\mathrm{P})\pi^{\pm}$		
				$h_b(2\mathrm{P})\pi^{\pm}$		
$Y_b(10889)$	e^+e^-	$1^{}$	30	$\Upsilon(1S)\pi^+\pi^-$	Belle	$b\overline{b}g$ hybrid?
				$\Upsilon(2S)\pi^+\pi^-$		
				$\Upsilon(3S)\pi^+\pi^-$		

Summary

большое спасибо

for my 3rd summer trip to Dubna and beautiful evening walks at the Wolga beach ...

Backup Slides

Mass of a Charmonium State (Potential Model)

$$M(n^{2S+1}l_j) = E_{nl} + 2m_q + \frac{2\alpha_s}{3m_q^2} \int d^3r \Psi^*(\vec{r}) \left(\frac{1}{r}\vec{\nabla}^2 + \frac{1}{r}\frac{\partial^2}{\partial r^2}\right) \Psi(\vec{r}) \\ + \frac{4\pi\alpha_s}{3m_q^2}|\Psi(0)|^2 + \frac{32\pi\alpha_s}{9m_q^2} \left(\frac{1}{2}S(S+1) - \frac{3}{4}\right)|\Psi(0)|^2 \\ + \alpha_s \frac{j(j+1) - l(l+1) - S(S+1)}{m_q^2} \left\langle\frac{1}{r^3}\right\rangle + \alpha_s \frac{S_{12}}{3m_q^2} \left\langle\frac{1}{r^3}\right\rangle \\ \text{spin-orbit} \qquad \text{tensor}$$

Luminosity prospect

Double charmonium production Recoil mass (direct production in continuum)

Any of the D^(*)D^(*) seems to indicate S-wave enhancement

Too high for molecular Hypothesis.

Constituents	J^{PC}	Mass [MeV]
$D\bar{D}^*$	0-+	≈ 3870
$D\bar{D}^*$	1^{++}	≈ 3870
$D^*\bar{D}^*$	0++	≈ 4015
$D^*\bar{D}^*$	0^{-+}	≈ 4015
$D^*\bar{D}^*$	1^{+-}	≈ 4015
$D^*\bar{D}^*$	2^{++}	≈ 4015

Predictions of molecular states one-pion exchange model Törnqvist Phys. Lett. B590(2004)209 Phys. Rev. Lett. 67(1991)556

```
missing mass^2 =
(Sum E_initial - Sum E_final)^2 - (Sum p_initial - Sum p_final)^2
```

recoil mass = (Sum E_initial - Sum E_final)^2 - (Sum p_final)^2