#### Applications of QCD Sum Rules to Heavy Quark Physics

Alexander Khodjamirian





<ロト <四ト <注入 <注下 <注下 <

3 lectures at Helmholtz International School "Physics of Heavy Quarks and Hadrons", Dubna, July 2013

### Lecture 2:

## Light-Cone Sum Rules for Heavy-Light Form Factors

Alexander Khodjamirian

Applications of QCD Sum Rules to Heavy Quark Physics

#### $B \rightarrow \pi I \nu_I$ and $|V_{ub}|$

• hadronic matrix element reduced to two form factors:

functions of the lepton pair invariant mass squared  $q^2 = (p_e + p_{\nu})^2$ 



 $+f_{B\pi}^{0}(q^{2})\frac{m_{B}}{q^{2}}\frac{m_{\pi}}{q^{2}}q_{\mu},$ 

$$\langle \pi^+(p)|ar{u}\gamma_\mu b|B(p+q)
angle = f^+_{B\pi}(q^2)\Big[2p_\mu + \big(1-rac{m_B^2-m_\pi^2}{q^2}\big)q_\mu + rac{m_\mu^2-m_\pi^2}{q^2}\Big]$$

- form factors have to be calculated in nonperturbative QCD a perturbative mechanism ("factorization") partially contributes
- an excellent source of |V<sub>ub</sub>| determination

$$\frac{d\Gamma(\bar{B}^0 \to \pi^+ l^- \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} p_\pi^3 |f_{B\pi}^+(q^2)|^2 + O(m_l^2)$$

 $0 < q^{2} < (m_{B} - m_{\pi})^{2} \sim 26 \text{ GeV}^{2},$   $Alexander Khodin Lattice QCD the <math>B \rightarrow_{ATT}$  form factors accessible at  $q^{2}$  as the even of the set of the s

#### The method of Light-Cone Sum Rules (LCSR)

- OPE in local operators with static condensates (e.g., three-point QCD sum rules) is not an adequate method for heavy-light form factors with "large recoil", i.e. at small  $q^2$
- the correlation function:



#### Diagrams



LO including soft, i.e. low-virtuality gluon





▶ NLO, perturbative  $O(\alpha_s)$  contributions

э

Operator Product Expansion near the light-cone

$$F(q,p) = i \int d^4x \, e^{iqx} \left\{ \left[ S_0(x^2, m_b^2, \mu) + \alpha_s S_1(x^2, m_b^2, \mu) \right] \\ \otimes \langle \pi(p) \mid \bar{u}(x) \Gamma d(0) \mid 0 \rangle |_{\mu} \right\}$$

$$+\int_0^1 dv \ \tilde{S}(x^2, m_b^2, \mu, \nu) \otimes \langle \pi(p) \mid \bar{u}(x) G(\nu x) \tilde{\Gamma} d(0) \} \mid 0 \rangle \mid_{\mu} \bigg\} + \dots$$

•  $S_{0,1}$ ,  $\tilde{S}$  - perturbative amplitudes, (*b*-quark propagators)

vacuum-pion matrix elements - expanded near x<sup>2</sup> = 0
 ⇒ universal distribution amplitudes of π :

$$\langle \pi(q) | \bar{u}(x)[x,0] \gamma_{\mu} \gamma_{5} d(0) | 0 \rangle_{x^{2}=0} = -iq_{\mu} f_{\pi} \int_{0}^{1} du \, e^{iuqx} \varphi_{\pi}(u) + O(x^{2}) \, .$$

- the expansion goes over twists  $(t \ge 2)$
- terms  $\sim \tilde{S}$  suppressed by powers of  $1/\sqrt{m_b\Lambda}$ ;

Alexander Khodjamirian

Applications of QCD Sum Rules to Heavy Quark Physics

#### The OPE result

$$F(q^{2},(p+q)^{2}) = \sum_{t=2,3,4,..} \int du \ T^{(t)}(q^{2},(p+q)^{2},m_{b}^{2},\alpha_{s},u,\mu) \varphi_{\pi}^{(t)}(u,\mu)$$

hard scattering amplitudes  $\otimes$  pion light-cone DA

- LO twist 2,3,4  $q\bar{q}$  and  $\bar{q}qG$  terms:

[V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]

 -NLO O(α<sub>s</sub>) twist 2, (collinear factorization) [A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);]
 -NLO O(α<sub>s</sub>) twist 3 (coll.factorization for asympt. DA)

[P. Ball, R. Zwicky (2001); G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007)]

Distribution amplitudes (DA's) of the pion

• twist 2 DA: normalized with  $f_{\pi}$ , expansion in Gegenbauer polynomials

$$\varphi_{\pi}(u,\mu) = 6u(1-u) \left[1 + \sum_{n=2,4,..} a_n^{\pi}(\mu) C_n^{3/2}(2u-1)\right],$$

$$a^{\pi}_{2n}(\mu) \sim [Log(\mu/\Lambda_{QCD})]^{-\gamma_{2n}} o 0 \quad ext{ at } \mu o \infty$$

[Efremov-Radyushkin-Brodsky-Lepage evolution]

Alexander Khodjamirian

Applications of QCD Sum Rules to Heavy Quark Physics

#### Gegenbauer moments at low scale

- essential parameters:  $a_{2,4}^{\pi}(\mu_0)$ , determined from:
  - matching exp. pion form factors to LCSR,
  - two-point QCD sum rules,
  - lattice QCD
- $a_2^{\pi} = 0.25 \pm 0.15$  (average. of recent determinations)

 $a_2^{\pi} + a_4^{\pi} = 0.1 \pm 0.1$  (pion-photon form factor)

• remaining tw 3,4 DA parameters: normalization constants and first moments, determined mainly from two-point sum rules [P. Ball, V.Braun, A.Lenz (2006)]

Alexander Khodjamirian

#### **Derivation of LCSR**



Alexander Khodjamirian

Applications of QCD Sum Rules to Heavy Quark Physics

#### Derivation of LCSR

• matching OPE with disp. relation and using quark-hadron duality

$$[F((p+q)^2,q^2)]_{OPE} = \frac{m_B^2 f_B f_{B\pi}^+(q^2)}{m_B^2 - (p+q)^2} + \int_{s_0^B}^{\infty} ds \frac{[\text{Im}F(s,q^2)]_{OPE}}{s - (p+q)^2}$$

• inputs: 
$$\overline{m}_b$$
,  $\alpha_s$ ,  $\varphi_{\pi}^{(t)}(u)$ , t=2,3,4;

f<sub>B</sub> - determined from two-point (SVZ) sum rule;

- uncertainties due to:
  - variation of (universal) input parameters,
  - quark-hadron duality

(suppressed with Borel transformation, controlled by the  $m_B$  calculation)

- LCSR contains *both* "soft" and "hard" contributions to  $f_{B\pi}(q^2)$
- the method is used at finite m<sub>b</sub>

#### Results for $B \rightarrow \pi$ form factors



Alexander Khodjamirian

#### Extraction of $|V_{ub}|$

$$\Delta\zeta(0, q_{max}^2 = 12 GeV^2) \equiv \frac{G_F^2}{24\pi^3} \int_{0}^{q_{max}^2} dq^2 p_{\pi}^3 |f_{B\pi}^+(q^2)|^2 = \frac{1}{|V_{ub}|^2 \tau_{B^0}} \int_{0}^{q_{max}^2} dq^2 \frac{d\mathcal{B}(B \to \pi \ell \nu_{\ell})}{dq^2}$$

TABLE XII: Values of the CKM matrix element  $|V_{ub}|$  based on rates of exclusive  $\hat{B} \rightarrow X_u \ell^- \bar{\nu}_\ell$ decays and theoretical predictions of form factors within various  $q^2$  ranges. The first uncertainty is statistical, the second is experimental systematic and the third is theoretical. The theoretical uncertainty for the ISGW2 model is not available.

| $X_u$   | Theory      | $q^2$           | $N^{\rm fit}$    | $N^{\mathrm{MC}}$ | $\Delta B$        | $\Delta \zeta$                  | $ V_{ub} $                                         |
|---------|-------------|-----------------|------------------|-------------------|-------------------|---------------------------------|----------------------------------------------------|
|         |             | ${\rm GeV}/c^2$ |                  |                   | $10^{-4}$         | $\rm ps^{-1}$                   | $10^{-3}$                                          |
|         | LCSR [33]   | < 12            | $119.6 \pm 16.2$ | 116.5             | $0.423 \pm 0.057$ | $4.59\substack{+1.00 \\ -0.85}$ | $3.35 \pm 0.23 \pm 0.09^{+0.36}_{-0.31}$           |
| $\pi^0$ | LCSR [34]   | < 16            | $168.2 \pm 18.9$ | 153.5             | $0.588 \pm 0.066$ | $5.44^{+1.43}_{-1.43}$          | $3.63 \pm 0.20 \pm 0.10 ^{+0.60}_{-0.40}$          |
|         | HPQCD [35]  | > 16            | $58.6 \pm 10.5$  | 57.6              | $0.196 \pm 0.035$ | $2.02\substack{+0.55\\-0.55}$   | $3.44 \pm 0.31 \pm 0.09 \substack{+0.59 \\ -0.39}$ |
|         | FNAL [36]   |                 |                  |                   |                   | $2.21\substack{+0.47 \\ -0.42}$ | $3.29 \pm 0.30 \pm 0.09 \substack{+0.37 \\ -0.30}$ |
|         | LCSR [33]   | < 12            | $247.2 \pm 18.9$ | 233.1             | $0.808 \pm 0.062$ | $4.59\substack{+1.00 \\ -0.85}$ | $3.40\pm0.13\pm0.09^{+0.37}_{-0.32}$               |
| -+      | LCSR [34]   | < 16            | $324.2\pm22.6$   | 305.1             | $1.057\pm0.074$   | $5.44^{+1.43}_{-1.43}$          | $3.58 \pm 0.12 \pm 0.09 \substack{+0.59 \\ -0.39}$ |
| м.      | HPQCD [35]  | > 16            | $141.3\pm16.0$   | 116.1             | $0.445 \pm 0.050$ | $2.02^{+0.55}_{-0.55}$          | $3.81\pm0.22\pm0.10^{+0.66}_{-0.43}$               |
|         | FNAL [36]   |                 |                  |                   |                   | $2.21\substack{+0.47\\-0.42}$   | $3.64 \pm 0.21 \pm 0.09^{+0.40}_{-0.33}$           |
|         | T CODE IN A |                 |                  | 100.0             |                   | 10 -13/                         | a Ka L a H L a aa±0.54                             |

Belle Collab 1306.2781 [hep-ex]

Alexander Khodjamirian

э

#### LCSR results on $D \rightarrow \pi$ , *K* form factors

[Ch. Klein, A.K., Th. Mannel, N. Offen (2009)]

- simply replacing b quark to c quark in the correlation function
- $c \rightarrow d$ , *s* flavour-changing transitions using CLEO collaboration results on  $D \rightarrow \pi(K)e\nu_e$  decays

 $|\textit{V}_{\textit{cd}}| = 0.219 \pm 0.005 \pm 0.004 \stackrel{+0.016}{_{-0.010}}, \ |\textit{V}_{\textit{cs}}| = 1.03 \pm 0.08 \stackrel{+0.08}{_{-0.06}},$ 



#### LCSR with B-meson distribution amplitudes



- on-shell *B* meson state and pion interpolating current [*A.K., T. Mannel, N.Offen,2005*]
- advantage: pseudoscalar,vector, ... light mesons are treated similarly via duality approximation
- a similar approach: LCSR for  $B \rightarrow \pi$  in SCET [F.De Fazio, Th. Feldmann and T. Hurth, (2005)]

< ロ > < 同 > < 回 > < 回 >

#### B-meson DA's

• defined in HQET;

[A.Grozin, M.Neubert (1997); M.Beneke, Th.Feldmann (2001)] key input parameter: the inverse moment

$$rac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty}d\omegarac{\phi_{+}^{B}(\omega,\mu)}{\omega}$$

- QCD sum rules in HQET:  $\lambda_B(1 \text{ GeV}) = 460 \pm 110 \text{ MeV}$ [V.Braun, D.Ivanov, G.Korchemsky,2004]
- all  $B \rightarrow \pi, K^{(*)}, \rho$  form factors calculated
- so far the uncertainties are larger than for original LCSR's

Alexander Khodjamirian

#### Form factors from LCSR with B-meson DA's

| form factor                | this work       | LCSR with light-meson DA's<br>[P.Ball and R.Zwicky(2004),(2005)]       |  |  |
|----------------------------|-----------------|------------------------------------------------------------------------|--|--|
| $f^+_{B\pi}(0)$            | 0.25±0.05       | 0.258±0.031<br>(0.28 ± 0.03)<br>[AK, T.Mannel,N.Offen,Y-M.Wang (2011)] |  |  |
| $f_{BK}^+(0)$              | 0.31±0.04       | $0.301{\pm}0.041{\pm}0.008$                                            |  |  |
| $f_{B\pi}^T(0)$            | 0.21±0.04       | 0.253±0.028                                                            |  |  |
| $f_{BK}^T(0)$              | 0.27±0.04       | $0.321 {\pm} 0.037 {\pm} 0.009$                                        |  |  |
| $V^{B ho}(0)$              | 0.32±0.10       | 0.323±0.029                                                            |  |  |
| <i>V<sup>BK*</sup></i> (0) | 0.39±0.11       | 0.411±0.033±0.031                                                      |  |  |
| $A_{1}^{B ho}(0)$          | 0.24±0.08       | 0.242±0.024                                                            |  |  |
| $A_{1}^{BK^{*}}(0)$        | $0.30{\pm}0.08$ | 0.292±0.028±0.023                                                      |  |  |
| $A_{2}^{B ho}(0)$          | 0.21±0.09       | 0.221±0.023                                                            |  |  |
| $A_{2}^{BK^{*}}(0)$        | 0.26±0.08       | $0.259 {\pm} 0.027 {\pm} 0.022$                                        |  |  |
| $T_{1}^{B ho}(0)$          | 0.28±0.09       | 0.267±0.021                                                            |  |  |
| $T_1^{BK^*}(0)$            | 0.33±0.10       | 0.333±0.028±0.024                                                      |  |  |
|                            |                 |                                                                        |  |  |

#### LCSR for $B \rightarrow D^{(*)}$ form factors

[S.Faller, A.K., Ch.Klein, Th.Mannel, [hepph]]



- virtual c quark in the correlator with B-meson DA
- $B \rightarrow D, B \rightarrow D^*$  form factors near maximal recoil

(not directly accessible in HQET)

#### $B \rightarrow D$ form factors

$$rac{\langle D(p)|ar{c}\gamma_\mu b|ar{B}(p+q)
angle}{\sqrt{m_Bm_D}} = (v+v')_\mu \, h_+(w) + (v-v')_\mu \, h_-(w) 
onumber \ w = v\cdot v' = rac{m_B^2+m_{D^{(*)}}^2-q^2}{2\,m_B\,m_{D^{(*)}}}\,,$$

$$\frac{d\Gamma(\bar{B}\to D l \bar{\nu}_l)}{dw} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2 \,.$$

the two form factors  $h_{\pm}$  are combined within a single function:

$$G(w) = h_+(w) - \frac{1-r}{1+r}h_-(w).$$

Alexander Khodjamirian

#### Result for $B \rightarrow D$ form factors



LCSR prediction at  $w \sim w_{max}$  compared with BaBar(2008) data fitted to Caprini-Lelloch-Neubert-parametrization

•  $B \rightarrow D^*$  form factors calculated in the same region

#### $\Lambda_b \rightarrow p$ form factors from LCSR

[A.K., Ch.Klein, Th.Mannel, Y.-M. Wang arXiV:1108.2971]



vacuum-to-nucleon correlation function:

 $\Pi_{\mu(5)}(\boldsymbol{P},\boldsymbol{q})=i\int d^{4}z\;e^{i\boldsymbol{q}\cdot\boldsymbol{z}}\langle\boldsymbol{0}|T\left\{\eta_{\Lambda_{b}}(\boldsymbol{0}),\bar{\boldsymbol{b}}(\boldsymbol{z})\gamma_{\mu}(\gamma_{5})\boldsymbol{u}(\boldsymbol{z})\right\}|\boldsymbol{N}(\boldsymbol{P})\rangle\,.$ 

• 
$$q^2 \ll m_b^2$$
 ,  $(P-q)^2 \ll m_b^2, \, P^2 = m_N^2$  ,

•  $\Lambda_b$  interpolating 3-quark current, we use

$$\eta_{\Lambda_b}^{(\mathcal{P})} = (u C \gamma_5 d) b, \quad \eta_{\Lambda_b}^{(\mathcal{A})} = (u C \gamma_5 \gamma_\lambda d) \gamma^\lambda b. \quad \text{and} \quad \text{applications of QCD Sum Rules to Heavy Quark Physics} \qquad 21/30$$

Alexander Khodjamirian

#### Nucleon Distribution Amplitudes (DA's)

[V.Braun, A.Lenz et al (2000-2009)],

• definition, schematically ( $z^2 \sim 0$ ):

$$egin{aligned} &\langle 0|\epsilon^{ijk}u^{i}_{lpha}(0)u^{j}_{eta}(z)d^{k}_{\gamma}(0)|\mathcal{N}(\mathcal{P})
angle &=\sum_{t}\mathcal{S}^{t}_{lphaeta\gamma}\ & imes\int dx_{1}dx_{2}dx_{3}\delta(1-\sum_{i=1}^{3}x_{i})e^{-ix_{2}\mathcal{P}\cdot z}\mathcal{F}_{t}(x_{i},\mu)\,, \end{aligned}$$

- twist expansion: 27 DA's of twist 3,4,5,6
- coefficients and normalization parameters determined from 2-point sum rules
- proton e.m. form factors were calculated from LCSR

#### Accessing the $\Lambda_b \rightarrow p$ form factors

• hadronic dispersion relation, schematically

$$egin{aligned} \Pi_{\mu(5)}(P,q) &= rac{\langle 0|\eta_{\Lambda_b}|\Lambda_b
angle \langle \Lambda_b|ar{b}\gamma_\mu(\gamma_5)u|N
angle}{m_{\Lambda_b}^2 - (P-q)^2} \ &+ rac{\langle 0|\eta_{\Lambda_b}|\Lambda_b^*
angle \langle \Lambda_b^*|ar{b}\gamma_\mu(\gamma_5)u|N
angle}{m_{\Lambda_b}^2 - (P-q)^2} + \int\limits_{s_h^0}^\infty ds\,rac{
ho_{\mu(5)}(s,q^2)}{s - (P-q)^2} \end{aligned}$$

• 6 form factors, standard definitions (cf nucleon β decay):

$$\langle \Lambda_b(P-q) | \bar{b} \gamma_\mu u | N(P) \rangle = \bar{u}_{\Lambda_b}(P-q) \Big\{ f_1(q^2) \gamma_\mu + i \frac{f_2(q^2)}{m_{\Lambda_b}} \sigma_{\mu\nu} q^\nu + \frac{f_3(q^2)}{m_{\Lambda_b}} q_\mu \Big\} u_N(P)$$

$$0\leq q^2\leq (m_{\Lambda_b}^2-m_N^2)\,,\quad \gamma_\mu o\gamma_\mu\gamma_5\,,\,f_i(q^2) o g_i(q^2)$$

decay constant of Λ<sub>b</sub> from two-point sum rules

Alexander Khodjamirian

#### LCSR in detail

• specific problems for baryon QCD sum rules

• the contributions of  $\Lambda_b^*$ , ( $J^P = 1/2^-$  state,  $m_{\Lambda_b^*} - m_{\Lambda_b} \sim 200 - 300 \text{ MeV}$ we used linear combinations of kinematical structures in the correlation function to eliminate  $\Lambda_b^*$ 

- baryon interpolating current: multiple choice we used pseudoscalar and axial currents
- replace b by c in LCSR ⇒ Λ<sub>c</sub> → N form factors (used to calculate strong couplings)
- inputs:

finite  $m_b$ , a few universal parameters of nucleon DA's, two-point sum rules for  $\eta_{\Lambda_b}$  currents:

$$\lambda_{\Lambda_b}^{(\mathcal{A})} = 1.27^{+0.35}_{-0.34} \times 10^{-2} \text{ GeV}^2 , \ \lambda_{\Lambda_b}^{(\mathcal{P})} = 1.09^{+0.31}_{-0.30} \times 10^{-2} \text{ GeV}^2 ,$$

Alexander Khodjamirian

イロト 不得 トイヨト イヨト 二日

#### Numerical results for the $\Lambda_b \rightarrow p$ vector form factors



- q<sup>2</sup> ≤ 11 GeV<sup>2</sup> direct calculation from LCSR, at larger q<sup>2</sup> z-parameterization and extrapolation
- reasonable agreement between sum rules with different baryon currents

# Numerical results for the axial-vector $\Lambda_b \rightarrow p$ form factors



Applications of QCD Sum Rules to Heavy Quark Physics

#### The width of $\Lambda_b \rightarrow p \ell \nu_\ell$ decay

• can be used to extract  $|V_{ub}|$ 

$$\frac{d\Gamma}{dq^2}(\Lambda_b \to p l \nu_l) = \frac{G_F^2 m_{\Lambda_b}^3}{192 \pi^3} |V_{ub}|^2 \Big\{ k_1(q^2, m_{\Lambda_b}, m_N) |f_1(q^2)|^2 + \dots \Big\}$$



Alexander Khodjamirian

Applications of QCD Sum Rules to Heavy Quark Physics

The width of  $\Lambda_b \rightarrow p \ell \nu_\ell$  decay

partially integrated width: pure prediction of LCSR

$$\begin{split} \Delta \zeta(0, q_{max}^2) &= \frac{1}{|V_{ub}|^2} \int_0^{q_{max}^2} dq^2 \, \frac{d\Gamma}{dq^2} (\Lambda_b \to p l \nu_l) \\ &= 5.5^{+2.5}_{-2.0} \; \mathrm{ps^{-1}} \; \Big( = 5.6^{+3.2}_{-2.9} \; \mathrm{ps^{-1}} \Big) \end{split}$$

for axial-vector (pseudoscalar) interpolating current of  $\Lambda_b$ 

 improvements in the future possible: nucleon DA parameters, α<sub>s</sub> corrections

#### How accurate are QCD sum rules

• two main sources of uncertainties:

(I) OPE truncated, inputs uncertain

• a reasonable accuracy achieved in 2-point correlators, due to progress in multiloop calculations,

•  $\alpha_s$ , quark masses, quark/gluon condensates, DA's: accuracy slowly improving

 in LCSR's: only NLO t ≤ 4 available, twist expansion demands additional studies, B meson DA's not sufficiently well studied yet

### (II) hadronic sum approximated with quark-hadron duality

- not easy to estimate the "systematic" error related with the effective threshold  $s_0$ : fixing  $s_0$  by adjusting the hadron mass
- a better solution: experimental information on excited states  $\Rightarrow$  the hadronic spectral function
- theoretical information on the spectrum (string-like hadronic models)

the accuracy of lattice QCD calculation already in the nearest future cannot be achieved by QCD sum rules
but: there are hadronic matrix elements where even a 30-40% accuracy would be sufficient, and they are not accessible on the lattice

#### stay tuned for the last lecture