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Covariant quark model of hadrons
» Main assumption: hadrons interact via quark exchange only
> Interaction Lagrangian

Lint = gn + H(X) « Ju(x)



Covariant quark model of hadrons
» Main assumption: hadrons interact via quark exchange only

> Interaction Lagrangian

Lint = gn + H(X) « Ju(x)
> Quark currents
Ju(x) = /dxl/dxz Fam(x; x1,x2) - @, (x1) Tm qf, (x2) Meson

Je(x) = /dx1 dx2 [dx3 Fg(x; X1, X2, X3) Baryon

x I q?ll (X1) [€a1aza3q;l;az (x2)C I q?;' (X3)]

Jr(x) = /dxl . /dX4 Fr(x; X1, .. .,Xa) Tetraquark

% [salachzal(xl) cr, q?; (xz)] . [€a3a4ca;l;a3 (x3) I2C (_1?: (xa)



Compositeness condition Zy = 0
Salam 1962; Weinberg 1963

» A composite field and its constituents are introduced as elementary
particles

» The transition of a composite field to its constituents is provided by
the interaction Lagrangian

» The renormalization constant Z!/? is the matrix element between a
physical state and the corresponding bare state. If there is a stable
bound state which we wish to represent by introducing a
quasi-particle H, then elementary particle must have renormalization
factor Z equal to zero

1/2
ZH/ =< HbarelHdressed >= 0

We use the compositeness condition to determine the hadron-quark
coupling constant, e.g. in the case of mesons

Zw=1—-fA'"(my) =0

where [1(p?) is the meson mass operator.



The vertex functions and quark propagators

» Translational invariance for the vertex function

FH(X+a,X1+a,X2+a)=FH(X5X17X2), Va.

» Our choice:

Folx ) = 60 (x— gwixi> o <Z(Xi _Xj)2>

i<j

where wi = m;/ > m;.

» The quark propagators
d4k e—ik(xl—x2)

Sba=e) = @m me- K



The matrix elements

» The matrix elements are described by a set of the Feynman diagrams
which are convolution of the quark propagators and vertex functions.

> Let Il be the matrix element corresponding to the Feynman diagram:

j external momenta;

n quark propagators;

£ loop integrations;

m vertices.

In the momentum space it will be represented as

N(p1, .., pj) = / [d*K]* H ®iin (—K1n) H Siy (kiy + Bi)

i1=1 iz=1

l1+rl Z(kg%ﬁn ~|(1Iz-2n)

ki are linear combinations of the loop momenta k;

pi  are linear combinations of the external momenta p;



Infrared confinement

v

Use the Schwinger representation of the propagator:

%/:2 = (m+ K) /da exp[—a(m® — k)]
0

» Choose a simple Gaissian form for the vertex function
®(— K?) = exp <K2/I\2>

where the parameter A characterizes the hadron size.

» We imply that the loop integration k proceed over Euclidean space:

K — e2ks=ike, k2= (k) —K>— —k2<0.

» We also put all external momenta p to Euclidean space:

P v e2pi=ips, p=(p")’—p>—> —p <0

so that the quadratic momentum form in the exponent becomes
negative-definite and the loop integrals are absolutely convergent.



Infrared confinement

» Convert the loop momemta in the numerator into derivatives over
external momenta:

' 20v,
> Move the derivatives outside of the loop integrals.
» Calculate the scalar loop integral:
n
H kARt 2kr H d4kiEe—kEAkE—2kErE _ 1 oAl
|7r2 1 72 |A|?

where a symmetric n X n real matrix A is positive-definite.

» Use the identity

10 —rA— 1y _ —rA— 1y 12 —1
P<§a>e =e P(zar A r)

to move the exponent to the left.



Infrared confinement

» Employ the commutator

7]
[BTW’ riv] = 6 guv
to make differentiation in
10 1
for any polynomial P. The necessary commutations of the differential

operators are done by a FORM program.

» One obtains

ﬂ:/d"aF(al,...,an),
0

where F stands for the whole structure of a given diagram.



Infrared confinement

The set of Schwinger parameters «; can be turned into a simplex by
introducing an additional t—integration via the identity

n

1=/dt6(t—Zai)
0

i=1

leading to

1
n= /dtt'ﬂ'_1 /d"a6<1 — ai> F(taa, ..., tan).
0 0 i



Infrared confinement

> Cut off the upper integration at 1/)\2

1/X2

f det1 f d"o 6(1 iai) F(tag,...,tay)

> The infrared cut-off has removed all possible thresholds in the quark
loop diagram.

» We take the cut-off parameter A to be the same in all physical
processes.

T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Koérner and V. E. Lyubovitskij,
Phys. Rev. D81, 034010 (2010)



Infrared confinement

» An example of a scalar one—loop two—point function:

d4kE e—skfE
M2 (p?) = /7
= ] i+ (e + ol + (ke — $pe)

2
where the numerator factor e “**e comes from the product of nonlocal
vertex form factors of Gaussian form. kg, pe are Euclidean momenta
2 2
(e = —p")-

> Doing the loop integration one obtains

oo 1
t st 1\2
My (p®) = dtm /da exp {—t[m2 —a(l—a)p’]+ sht (a—§> pZ}
0 0

A branch point at p? = 4m?.



Infrared confinement

» By introducing a cut-off in the t—integration one obtains

1/22 1
c t st 1\2
ns(p®) = /dtm /da exp {— t[m® — a(1 — a)p’] + P (a—§> pz}
0 0

where the one—loop two—point function I'I§(p2) no longer has a branch
point at p? = 4m?.

» The confinement scenario also allows to include all possible both
two-quark and multi-quark resonance states in our calculations.



Subtleties: gauging

In order to guarantee local invariance of the strong interaction Lagrangian
one multiplies each quark field q(x;) in nonlocal quark current Ji;(x) with a
gauge field exponential:

qi(xi) — e 'R () where 1(xi, x, P) = / dz, A" (z).

X

The path P connects the end-points of the path integral.
We use the path-independent definition of the derivative of I(x,y, P):

Mandelstam,1962, Terning,1991
. 2] .
lim dxuwl(xa y,P) = dxl"fgo[l(x + dx,y, PI) —I(x,y, P)]

where the path P’ is obtained from P by shifting the end-point x by dx.
The definition leads to the key rule

13)
wI(X,Y? P) = AH(X)

which in turn states that the derivative of the path integral I(x, y, P)
does not depend on the path P originally used in the definition.



Subtleties: gauging

Diagrams describing V. — ~ transition:

5
f_p+
gl v
(©) (d)
4
M (p) = /%m(—#)tr(wsw + 1p)y”S(k — %p))
1
g 4 3
M{“(p) = — / :ﬂ"z(i (2k + 1 p)“/datb(,( —a(k+1p)? —(1- a)k2>
0

X

tr(+"S(K))



Subtleties: gauging

If p = 0 then the second diagram maybe transfered to the first one by
using integration by parts

L o ¥)u(stn)} =

[ &% - aeon (- ulars)

+¢V( - kz)tr(fy“S(k)'y"S(k))} =0.




Model parameters

M. A. L., J. G. Korner, S. G. Kovalenko, P. Santorelli and G. G. Saidullaeva, Phys. Rev. D85, 034004 (2012)

Input values for the leptonic decay constants fy (in MeV) and our
least-squares fit values.

Fit Values = PDG/LAT This work  PDG/LAT
fr 128.7 130.4 £+ 0.2 fo 198.5 198 + 2
fk 156.1 156.1 £+ 0.8 || fy 228.2 227 £+ 2
fo 205.9 206.7 & 8.9 || fy, 415.0 415 + 7
fo, 257.5 257.5 £+ 6.1 || fi~ 213.7 217 £ 7
fs 191.1 192.8 £ 9.9 || fp- 243.3 245 + 20
fs 234.9 238.8 &+ 9.5 || fp; 272.0 272 + 26

S s

fe 489.0 489 £+ 5 fg= 196.0 196 + 44

c

f, 221.1 221 +1 fex 229.0 229 + 46




Model parameters

Input values for some basic electromagnetic decay widths and our
least-squares fit values (in keV).

Process Fit Values PDG
70—y 5.06 x 1073 (7.7 +£0.4) x 1073
e — YY 1.61 1.8 +0.8

pt — wty 76.0 67 £7

w — wly 672 703 4 25
K*t & Kty 55.1 50 + 5

K* — K% 116 116 + 10
D** — DT~ 1.22 1.5 + 0.5

b — mey 1.43 1.58 + 0.37




Model parameters

The results of the fit for the values of quark masses mg,, the infrared
cutoff parameter X\ and the size parameters Ay, (all in GeV).

my ms me mp A

0.235 0.424 2.16 5.09 0.181 GeV

/\ﬂ— I\K I\D I\Ds AB ABS ABC Ap

0.87 1.04 1.47 1.57 1.88 1.95 2.42 0.61

s

Ao Ny Ny Nk~ Ap~ Ap= Np~ g

0.47 0.88 1.48 0.72 1.16 1.17 1.72 1.71



The study of heavy flavor physics: motivation

v

To determine the Cabibbo-Kobayashi-Maskawa matrix elements.

» To provide insights into the origin of flavor and CP-violation.

v

To look for new physics beyond the standard model.

v

The subject to study are heavy hadrons containing a b— or a c—quark
and their weak decays.



The study of heavy flavor physics: motivation

» To determine the Cabibbo-Kobayashi-Maskawa matrix elements.
» To provide insights into the origin of flavor and CP-violation.
> To look for new physics beyond the standard model.

> The subject to study are heavy hadrons containing a b— or a c—quark
and their weak decays.

» The main idea in the theoretical studies of heavy-flavor decays is to
separate short-distance (perturbative) QCD dynamics from
long-distance (nonperturbative) hadronic effects.

> One uses the so-called naive factorization approach which is based on
the weak effective Hamiltonian describing quark and lepton transitions
in terms of local operators that are multiplied by Wilson coefficients.

» The Wilson coefficients characterize the short-distance dynamics and
may be reliably evaluated by perturbative methods.



The study of heavy flavor physics: motivation

» The calculation of the hadronic matrix elements of local operators
between initial and final states require nonperturbative methods. One
needs to know how hadrons are constructed from quarks.

» Technically, any matrix element of a local operator may be expressed
in terms of a set of scalar functions which are referred to as form
factors.

» A variety of theoretical approaches have been used to evaluate the
hadronic form factors:



The study of heavy flavor physics: motivation

» The calculation of the hadronic matrix elements of local operators
between initial and final states require nonperturbative methods. One
needs to know how hadrons are constructed from quarks.

» Technically, any matrix element of a local operator may be expressed
in terms of a set of scalar functions which are referred to as form
factors.

» A variety of theoretical approaches have been used to evaluate the
hadronic form factors:

> The light-cone sum rule (LCSR) approach
(Braun, Ball, Khodjamirian et al.)

v

Dyson-Schwinger equations in QCD (C.D. Roberts et al.)

v

A relativistic quark model (Faustov, Galkin et al.)

> The constituent quark model with dispersion relations (Melikhov et al.)

v

A QCD relativistic potential model (Ladisa, et al.)

v

A QCD sum rule analysis (P. Colangelo et al.)



Semileptonic B — D transition

O = it — yhnyS

k+p1 k+p2

(D*)(p2)

éB (— (k + wy p1) ) b D(D*) (— (k? + wy, p2) )

— My / My
Wu = My +Mmyp w



Semileptonic B — D transition

O = it — yhnyS

k+p1 k+p2

(D*)(p2)

éB (— (k + wy p1) ) b D(D*) (— (k? + wy, p2) )

— My / My
Wy = My +Mmp w

Heavy quark limit: my = mq + E, mq — oo; Ne = Np =



1
mi— K— pi

Isgur-Wise function

_1+)/i 1
2 kVi+E,

ERk-



Isgur-Wise function

1 oo 1+ v 1 p
m;— y— [fi 2 kv; + E’ m

f1(a*)(p1 + p2)* + f—(a’)(p1 — p2)*,

MEo (p1, p2)

Mc += M,

fi

The compositeness condition Zy = 0 provides the correct normalization

Ew=1)=1



Form factors for semileptonic, nonleptonic and rare B (Bs) meson decays

M. A. I, J. G. Korner, S. G. Kovalenko, P. Santorelli and G. G. Saidullaeva, Phys. Rev. D85, 034004 (2012)

J=V,P,T,...
Q1 k+pr k+p: Q2
B(Bs) P(V)
b1 D2
qs3 k q3

PB(B;) (— (k+ "’1)2) dp(V) (— (k+ 7"2)2)

mq3

r; = .
7 Mg, +mgs p;



The definition of the form factors

(Pfizan1(P2) | G2 0* a1 |Pigzq,1(P1)) Fi(@®)P" +F_(a*) q”

_ v i 2 2
(Plasent(P2) | (0 0) 1 Praya (1)) = o (P —a-Pa”) Fr(a?)

(V(p2; €2)[a3051 | G2 O Har Plasai1(P1)) =

el

T omim (—g‘“‘ P-qAi(a®) +P“P"A,(q’) +q" P"A_(q")

+ie" Po ag V(a’))
(V(P2; €2)gsan) | @2 (0" 4w (1 4+ %)) a1 | Ppgzqu(p1)) =
= €} (— (" —a"q”/q*) P -qao(q®) + (P* P —q"P“ P -q/q?) a+(q?)

+ie" P Py qa g(a?) )

P=pi+p2, q=p1—p2, € -p2=0.



Form factors

. 2,
BT F() B F(d)

Bt Fy(a) B-K: F(q)




Form factors

2,
Bog A, B-g V()

10
o (Gev)

Bow A B T,(q)




Form factors

B-1tform factor from loop and B*-monopole

5 : : : —

FE7(0)
FB‘I\' q2 — + X
VDM( ) sz* _ q2



Nonleptonic Bg decays

v

The modes B; — D; Df, D Df +D; D*, DI D' give the

largest contribution to Al's = 'L — 'y for the B; — B, system.

v

The mode B; — J/v ¢ is color—suppressed but it is interesting for the
search of possible CP-violating new physics effects in B; — B; mixing.

v

Nonleptonic B! — J/4n(n’) decays were observed by Belle Coll.:

J. Li et al. [Belle Collaboration], Phys. Rev. Lett. 108, 181808 (2012)

v

Their decay widths were calculated in our approach by

S. Dubnicka, A. Z. Dubnickova, M. A. lvanov and A. Liptaj Phys. Rev. D 87, 074201 (2013)



The effective Hamiltonian

Current-current diagrams

b c b g c b c b c
w w g w w g
S Cc S Cc S Cc S c

tree OCD one-loop
b s
w
u,c,t u,c,t
g
C C

OCD penguin



The effective Hamiltonian
» The effective Hamiltonian describing the B, nonleptonic decays:
Hesr = ——vc.,v Zc Qi
» Current-current diagrams:
Q1 = (Caybay)v—a(SayCa; Jv—a Q2 = (Cay ba;)v—a, (53, Cay)v—a

» QCD penguin diagram:

Q3 = (Sa;ba;)v—a(CayCay)v—n Qs = (5a;bay)Jv—a(CayCa; Jv—n
Qs = (Sayba;)v—a(CayCay)v+a Qs = (5a;ba,)v—a(TayCa; Jv4a
(Ga)v—a = (1 —~")q left—chiral current

(@avea = T*(1A+~%)q right—chiral current



Nonleptonic Bs decays

Annihilation diagram



Nonleptonic Bs decays

J/P




Nonleptonic Bs decays

Calculated branching ratios (%) of the B nonleptonic decays.

Process This work PDG

B; — D DY 1.65 1.04745%
B - D, D" + D D 2.40 2.8+1.0
B, —» D; Dt 3.18 31+1.4

Bs — J/v¢ 0.16 0.14 + 0.05




Nucleon as three-quark state: Lagrangian

T. Gutsche, M. A. L., J. G. K&rner, V. E. Lyubovitskij, P. Santorelli, Phys. Rev. D 86, 074013 (2012))

Lagrangian describing the interaction of proton (antiproton) with its
constituents:

LP.(x) = gnp(x) - Jp(x) + h.c.

The interpolating three-quark current:

J(x) = /dx1 dx2 [dx3 Fn(x; x1, X2, X3) Jg';)(xl, X2, X3)
I (x1,x25x3) = M°d™(x1) - [€7%2 u™(x2) C Fau®(x3)] .

There are two kinds of three-quark currents:

1
Mera= Y* ® Yo (vector) Mers= 2 c*® ® oap (tensor)

We consider a general linear superposition:
JN=XJE+(1—X)J\,6, N =p,n
with a mixing parameter x (0 < x < 1).



Electromagnetic vertex function of proton




Static properties of nucleons

Parameters:

» a superposition of the V- and T—currents of nucleons with x = 0.8

» the size parameter of the nucleon we take Ay = 0.5 GeV.

Quantity Our results PDG

pp (in n.m.) 2.96 2.793

pn (in n.m.) -1.83 -1.913
r2 (fm) 0.805 0.8768 + 0.0069

< rE >" (fm?) -0.121 -0.1161 + 0.0022
rhy (Fm) 0.688 0.777 4 0.013 + 0.010
r (fm) 0.685 0.862+%%%




Electromagnetic form factors

04

02

p .
G,/ H, (mixing)

04

02

p
G (mixing)
1
T
08—
\
06—
RN
04 N
02 Sel
I | | I
02 04 06 08
Q (G
2 2, 2 2
(am’,1¢)) (G e /1), q=- Q" (mixing)
4 T T
08—
06~ SN
04— S~
02 =
I | | |
02 04 06 08
Q (Gev)




Rare baryon decays A, — A¢T/~: motivation

» The decay A\, — A £T£~ is complement to the well-analyzed rare
meson decays B — K*) £t¢/~ etc. to study the short— and
long—distance dynamics of rare decays induced by the transition
b—sete.

» The experimental measurements:

B(N» — Aptp™) = (1.73 £ 0.42(stat) + 0.55(syst)) - 10~°

T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 107, 201802 (2011)

B(Ns — Apt ™) = (0.96+0.16(stat)+0.13(syst)£0.21(norm))-10~°
RAaij et al. [LHCb Collaboration], arXiv:1306.2577 [hep-ex].

> A number of theoretical papers use the SM (penguin) operators and
their non-Standard Model extensions to describe the short distance
dynamics.

» Nonperturbative approaches to calculate the transition matrix
element (A| O; [Ap).



Lagrangian and 3-quark currents

T. Gutsche, M. A. lvanov, J. G. Kérner, V. E. Lyubovitskij and P. Santorelli, Phys. Rev. D 87, 074031 (2013)

Line(®) = 8aA(x) - Ia(x) + ga In(x) - A(x)
Ih(x) = /dxl/dxz/dx_a, Fa(x; x1, X2, X3) Jg’;)(xl,xz,m)
D (xayx2,x3) = QU (x1) - €772 T2 (x0) €4 d (x3)
Q = s,cb

The vertex function is chosen in the form

3
Fa(x; x1,%2,x3) = 5(4)(X—Zwixi) ®p (Z(Xi_xj)2> w; = mi

m; +my 4+ m
Pt < 1+ m2 +m;



The rare baryon decays A, — A+ £7¢~ and Ay — A+~

» The effective Hamiltonian leads to the quark decay amplitudes
b—stte:

M(b — s€te™) G7 A {c;ff (50"b) (€+,.£) + C10 (S0"b) (€~,.st)
- %C?ff {mb (s ic” (14 ~°) b) + O(ms)} (Ev,.e )}

> and b — sv:

Ge e\t o _.
M(b > s7) = — 50 G [my (310 (1 +4°) b) + O(m)] €,

where A\, = V/ Vy,.

» The Wilson coefficient C§® effectively takes into account, first, the
contributions from the four-quark operators Qi(i = 1,--- ,6) and,
second, the nonperturbative effects (long—distance contributions)
coming from the cc-resonance contributions what are, as usual,
parametrized by a Breit-Wigner ansatz.



The rare baryon decays A, — A+ £7¢~ and Ay — A+~

The hadronic matrix elements are expanded in terms of dimensionless
form factors:

(B257*b[B1) = Ga(p2) | (") — B (7)o" + K (") |ur (1)

(B2157#7°b[B1) = a(p2) f1(a*)7" — £ (@”)ic ™ + £ (@)l | v ur (p1)

(B2|Sic"b [By) V(@) (v*at — af ) — ¥ (@)ic " i (p)

i2(p2) [f1

(B2 |5ic""+° b |B1) UZ(Pz)[f (@®)(v*ai — af* 1) — szA(qz)iUw}'VS“l(Pl)

where q = p; — p2 and q1 = q/M1.



The fit of the size parameters

» We use the same values of the quark masses and the infrared cut-off
as in meson sector.

» We determine the set of size parameters Ay, Ax. and A, by fitting
data on the magnetic moment of the A-hyperon and the branching
ratios of the semileptonic decays Ac — A¢tv, and Ay, — AN£™ 7, by a
one-parameter fit to these values.

» With the choice of dimensional parameters in GeV

Ar, =0.490 Ay =0.864  Ap, = 0.569
we get:

LA, —0.73 pr®Pt = —0.613 & 0.004

+0.39

KA.

pn, = —0.06



The fit of the size parameters

Branching ratios of semileptonic decays of heavy baryons in %.

Mode Our results Data
Ac — Netre 2.0 2.1+0.6
A — Auty, 2.0 2.0 0.7
Ao — Nee™ e 6.6 6.573%
N — A Dy 6.6
Ny — N7 D7 1.8

Asymmetry parameter « in the semileptonic decays of heavy baryons.

Mode Our results Data
Ao — NeTre 0.828 0.86 + 0.04
Ae — /\H+Vu 0.825
Ny — Nee™ e 0.831
No — Ay, 0.831
N — N1 0.731




The rare baryon decays A, — A+ £T¢~ and Ap, — A+

Our results:

B(A — Aptp~)=1.0-10"°

T. Gutsche, M. A. Ivanov, J. G. Kérner, V. E. Lyubovitskij and P. Santorelli, Phys. Rev. D 87 074031 (2013)

to be compared with the recent LHCb data:

B(N» — Aptp™) = (0.96 + 0.16(stat) + 0.13(syst) + 0.21(norm)) - 10~°

RAaij et al. [LHCb Collaboration], arXiv:1306.2577 [hep-ex].

BN — Ay) =04- 10~° (experimental upper bound < 130 - 10_5)



The angular decay distribution for the cascade decay A, — A(— pm~ )y

dr(Ay — AN(— p77)7)
d cos 6

Br(A — p77) % r(As — Ay)(1 + agP? cos 0g)

where ag is the asymmetry parameter in the decay A — p + 7w~ for
which we take the experimental value ag = 0.642 + 0.013.

M — Ay) = % (GF"ZE;T|2>:/|§C7€H')2 (M3 |\_/|§M§)3 {(Gv(o))Z N (szA(())>2}

The z—component of the polarization of the A is given by

L EYOENO)
P = ~26v(0)2 + (((0))?

One can show that f]Y(0) = f;*(0). Therefore, P} = —1 and finally

1 dr(As — A(— pm7)7)
Mot d cos Og

= Br(A — pr) 3 Br(As — Ay)(1—as cos 0s)



The angular decay distribution for the cascade decay A, — A(— pr~ )04~

Z..

Figure: Definition of angles 6, 05 and x in the cascade decay
Ao = N—= p™) + Jogg(— €7£7).



The differential rate of the cascade decay A, — A(— pr~ )04~

dr(Ae — N£Te7) _ f (ure e mez 3 TR Ry
dq? 2 q2 2

The total rate is obtained by g’—integration in the range

am; < ¢° < (M1 — M)’

The short notations:

mw _ 1 GE (|| 2lﬁz|q2vamf
T 2273\ 2n 2m

where \; = V:fS Vw = 0.041 and v = /1 — 4m?%/q? is the lepton velocity
in the (£7£7) CM frame.



Lepton—side decay distribution for the cascade decay A, — A(— pr~ )4~

dr(Ay — ANLTE7)
dq2d cos 6

2 (3 2 1 11422 3 .2, 1 142
v 8(1+cos 0) 2U + 2 Sin 7] 2L
2m? 3

3 12 11 11 22
v 4c059 P“ + < 4 {U +L"+S

One can define a lepton-side forward—backward asymmetry Af; by

Af; = (F — B)/(F + B) where F and B denote the rates in the forward
and backward hemispheres.

3 v P2
Afe(q?) = -5 o~ .
v2 . (U11+22 + |_11+22) + Tze . 3. (Ull + L1 + 522)

The integrated forward—backward asymmetry is defined as the ratio of the
integrals of the numerator and denominator over g’ in the full kinematical
region.



A—polarization and hadron—side decay distribution for the cascade decay
Np — /\(—) pﬂ7)£+€7

dr(A — N(— p)eTe7)
dq?d cos s

1dr(h, — AETLT)
2 dq?

X (1 + asP? cos 03>

= Br(A —pn)

Thez—component of the polarization of the daughter baryon A:
m2

v2. (P11+22 + L,1,l+22) + 2qu (Pn + L,l;.l + Slzaz)
2m

.3.
v2 . (U2 4 e2) 4 Tﬁ 3. (Ul 4 L1 4 52)
q

P} =

The forward—backward asymmetry is simply related to the polarization P
via

(87
Ats(a’) = =5 - PI(a”)



Asymmetries ALz and ALy with (without) long—distance contributions

Mode Akg Al

Ao — Aete™ | 3.2x 107 (1.2 x 107%) | —0.321 (—0.321)

Ay — Aptp~ | 1.7 x107* (8.0 x 107*) | —0.300 (—0.294)

5.9 x 10~* (9.6 x 10~%) | —0.265 (—0.259)

N — AT~




X(3872)-meson: short introduction

> A narrow charmonium-like state X(3872) was observed in the
exclusive decay process:

Bt — Ktnta—JA)

S. K. Choi et al. [Belle Collaboration] Phys. Rev. Lett. 91, 262001 (2003)

» X-mass is close to D’ — D*? mass threshold:

Mx 3871.68 + 0.17MeV,  PDG’12
Mpo + Mp-o = 3871.81 & 0.25 MeV

> Its width I'x < 1.2 MeV at 90% CL.



X(3872)-meson: short introduction

> A narrow charmonium-like state X(3872) was observed in the
exclusive decay process:

Bt — Ktnta—JA)

S. K. Choi et al. [Belle Collaboration] Phys. Rev. Lett. 91, 262001 (2003)

» X-mass is close to D’ — D*? mass threshold:

Mx 3871.68 4+ 0.17 MeV, PDG’12

Mpo + Mp-o = 3871.81 & 0.25 MeV

> Its width I'x < 1.2 MeV at 90% CL.

» The state was confirmed in B-decays by BaBar experiment
B. Aubert et al. Phys. Rev. Lett. 93, 041801 (2004)

and in pp production by Tevatron experiments CDF and D@.

D. E. Acosta et al. [CDF Collaboration] Phys. Rev. Lett. 93, 072001 (2004);
V. M. Abazov et al. [DO Collaboration] Phys. Rev. Lett. 93, 162002 (2004)



X(3872)-meson: short introduction

> From the observation of decays X(3872) — J/i)~ reported by both
Belle and BaBar collaborations and from the angular analysis
performed by CDF experiment it was shown that the only quantum

numbers J°¢ = 1** or 27 are compatible with data.
K. Abe et al., [Belle Collaboration], arXiv:hep-ex/0505037; hep-ex/0505038
B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 74, 071101 (2006)

A. Abulencia et al. [CDF Collaboration], Phys. Rev. Lett. 98, 132002 (2007)

» The observation of decays into DD’ #° by Belle and BaBar
collaborations allows one to e)ﬁ:&ude the choice 2~ " because the
near-threshold decay X — D’D = is expected to be strongly

suppressed for J = 2.
G. Gokhroo et al. [Belle Collaboration], Phys. Rev. Lett. 97, 162002 (2006)

B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 77, 011102 (2008).

» The quantum numbers of the X(3872) meson were determined from
the analysis of angular correlations in Bt — X(3872)K™ decays,
where X(3872) — wtn~J/v and J/¢p — ptpu.

RAaij et al. [LHCb Coll.], Phys. Rev. Lett. 110, 222001 (2013) [arXiv:1302.6269 [hep-ex]].
The quantum numbers of the X(3872) are



X(3872)-meson: short introduction

» Belle collaboration has reported evidence for the decay mode
X — wtn~ %)) dominated by the sub-threshold decay X — wJ/ip.

K. Abe et al., [Belle Collaboration], arXiv:hep-ex/0505037,hep-ex/0505038

» It was found that the branching ratio of this mode is almost the same
as of X — 7t~ JAp decay:

mtr— 70
Bl(;)((;_i/jﬁ/mh,—)) = 1.0 + 0.4 (stat) £ 0.3 (syst).

> It implies strong isospin violation because the three-pion decay
proceeds via intermediate w-meson with isospin 0 whereas the
two-pion decay proceeds via intermediate p-meson with isospin 1.



X(3872)-meson: short introduction

» The two-pion decay via intermediate p-meson is very difficult to
explain by using an interpretation of the X(3872) as simple cc
charmonium state with isospin 0.

> The possible candidate from tc-spectroscopy:
X, (2°P1) — state with JP¢ =17

BUT the value of its mass varies from 3925 up to 3953 MeV. Also
the decay width calculated in variuos models is too large.

» The X(3872) IS NOT the pure cc-state



X(3872)-meson: short introduction

» The two-pion decay via intermediate p-meson is very difficult to
explain by using an interpretation of the X(3872) as simple cc
charmonium state with isospin 0.

» The possible candidate from cc-spectroscopy:

X, (2°P1) — state with JP¢ =17

BUT the value of its mass varies from 3925 up to 3953 MeV. Also
the decay width calculated in variuos models is too large.

» The X(3872) IS NOT the pure cc-state

» a molecule bound state D’D*° with small binding energy

» a tetraquark state composed from a diquark and antidiquark
> threshold cusps

> hybrids and glueballs



X(3872)-meson: short introduction

> An intepretation of the X(3872) as a tetraquark was suggested in

L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71, 014028 (2005)

Xq = [ca]s=1[Ca]s=0 + [ca]s=o[cq]s=1, (9 =u,d)

> Isospin breaking: the state X, breaks isospin symmetry maximally:

X+Xd Xu — X4
+ .
vz )

1=0 =1

xo= L%t



X(3872)-meson: short introduction
» The physical states are the mixing of X, and X4
Xi=Xiow = X, cosO + Xq sin6,

Xh = Xnigh = —Xu sinf + X4 cos 6.

» The mixing angle 6 is supposed to be found from the known ratio of
the two-pion (via p) and three-pion (via w) decay widths.



X(3872)-meson: short introduction
» The physical states are the mixing of X, and X4

Xi=Xiow = X, cos0 + Xq sin6,
Xh = Xnigh = —Xu sinf + X4 cos 6.

» The mixing angle 6 is supposed to be found from the known ratio of
the two-pion (via p) and three-pion (via w) decay widths.

» We have performed independent analysis of the X(3872)-meson
considered as a tetraquark state in the framework of the covariant
quark model with infrared confinement.



X(3872)-meson as a tetraquark state: Lagrangian

S. Dubnicka, A. Z. Dubnickova, M. A. lvanov and J. G. Kdrner, Phys. Rev. D 81, 114007 (2010)

» An effective interaction Lagrangian

Line = gx Xqu(x) - J;(Lq(x)’ (9 = u,d).

» The nonlocal version of the four-quark interpolating current

i<j

I (x) = /dx1 e /dX4 S(x — éwixi) by (Z(xi — x,-)2> Jog(x15 -« 5 xa)

Yoo = 5 cave [Ga(xe) Cy b (x1)] aec [a(x3) 7" Ce(x2)] + (v° > ),
W oo oy Mo We o mg W
LT T T dmg+m) T 27 ST T d(mg+me) T 27



Compositeness condition

The coupling constant gx is determined from the compositeness condition

Zx =1—N§{(M3) =0

where Mx(p?) is the scalar part of the vector-meson mass operator.




Strong off-shell decays

"5@

Since the X(3872) lies nearly the respective thresholds in both cases,

mx — (my/y +my) = —0.90 + 0.41 MeV,
mx — (mpo + mp.«o) = —0.30 £ 0.34 MeV

the intermediate p(w) and D™ mesons should be taken off-shell.



The narrow width approximation

= - = |M(X J
dq? 8m§(7r 3| (X = Jap + V)|
rvu myo p*(qz) 0
X - (mao )+ r30 m30 Br(v. — nw),
dr (X, — b’°D°x?) 1 1 S0* 0y 12
= —5— = |M(X, DD
dq? 2mi 3I X = )l
y Mpxo mp«o  p*(g®) B(D*® — D°=°)
™ (mé*o —q?)? + r2D*0 m2D*0,



Strong decay widths

» Two new adjustable parameters: 6 and Ax.

» The ratio
rXy — Jap +37)

Fr(Xe — JAp + 27)
is very stable under variation of Ax.

~ 0.25

» Using this result and the central value of the experimental data

r(Xin — Jap + 3 )
Fr(Xin — Jap +2m)

~ 0.25. (1ita“9>2 ~1

1Ftané
gives 0 ~ +18.4° for X; (" + ") and X, (" — "), respectively.

» This is in agreement with the results obtained by both Maiani:
6 ~ £20° and Nielsen: 6 ~ £23.5°.



Strong decay widths

15

— (x> p’+D°+ no), MeV

— — (X ->J+nm), MeV

Ay (GeV)

r(Xx—D°D%7?)

TX=Wpntn—)

4.5 +0.2 theor
10.51+4.7 expt




Radiative X-decay

S. Dubnicka, A. Z. Dubnickova, M. A. lvanov, J. G. Koerner, P. Santorelli and G. G. Saidullaeva,
Phys. Rev. D 84, 014006 (2011)

I/

q

()

(d)



Radiative X-decay
The on-mass shell conditions

El)ktpu =0, Ejl/wal/ =0, EquP =0

leave us five Lorentz structures:

Tup(a1,92) = €auep(a1 - 92) W1 + qia,0p910 W2 + €qyap 0020 W3

+  Eqaurip Wa + €qypup(a1 - q2) Ws .

Using the gauge invariance condition
quMPV = (fh N q2)€q1q2,uu(w4 + WS) =0

one has W; = —W5 which reduces the set of independent covariants to
four. However, there are two nontrivial relations among the four
covariants which can be derived by noting that the tensor

Tu[uluzu3u4u5] = 8uv1Evprygus + CyCl.(l/1V21/3V4V5)

vanishes in four dimensions since it is totally antisymmetric in the five
indices (Vl, V2,V3, Vs, V5).



Radiative X-decay

The two conditions reduce the set of independent covariants to two. This
is the appropriate number of independent covariants since the photon
transition is described by two independent amplitudes as e.g. by the E1
and M2 transition amplitudes. One has

1 1
M= 7 6) = e ] (1 4+ ) = o B (18l + Awl)

where the helicity amplitudes H. and Ht are expressed in terms of the
Lorentz amplitudes as

my 2 mi/w
Ho = i g, [w1+w3— i w4],
My mx|G2|
m3/¢
Hr = —imx|q’2|2[W1 +W, — (1 + )w4] ,
mx |G|
|G2| = m?( - m}/w
a2l = 2mx )

The E1 and M2 multipole amplitudes are obtained via

Aeiym2 = (HL F Hr)/V2.



Radiative X-decay

\ — — T(X->Jy+2m), Mev

02 \\ — T(X > +y), MeV *

\
N
N
N
N
N
~
~
01 ~o i
~
~~_

7

25 3 35 4

A, (GeV)

If one takes Ax € (3,4) GeV with the central value Ax = 3.5 GeV then
our prediction for the ratio of widths reads

X — v+ Ja) .
F(X| — J/'lb + 27T) theor =0.1540.03

which fits very well the experimental data from the Belle Collaboration

r(x — ,7+J/¢) _ 0.14i0.05 Belle

F(X— Jp2m) | 0224006 BaBar



Summary and outlook

» We have presented a refined covariant quark model which includes
infrared confinement of quarks.

» We have calculated the transition form factors of the heavy B and B;
mesons to light pseudoscalar and vector mesons, which are needed as
ingredients for the calculation of the semileptonic, nonleptonic, and
rare decays of the B and B; mesons. Our form factor results hold in
the full kinematical range of momentum transfer.

> We have made use of the calculated form factors to calculate the
nonleptonic decays B; — D;Ds, ... and B; — J/ng), which have been
widely discussed recently in the context of B; — B;—mixing and CP
violation.

» We have applied our approach to baryon physics by using the same

values of the constituent quark masses and infrared cutoff as in
meson sector.

> We have calculated the nucleon magnetic moments and charge radii
and also electromagnetic form factors at low energies.



Summary and outlook

» We have explored the rare baryon decays A, — A + £7¢~ and
N — N+,

> We have studied the properties of the X(3872) as a tetraquark.
> We have calculated the strong decays X — J/ip + p(— 27),

X = JAp + w(— 37), X = D + D*(— D) and electromagnetic
decay X — v + J/p.

» The comparison with available experimental data allows one to
conclude that the X(3872) can be a tetraquark state.
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