New physics in $B \to D^{(*)} \tau \nu_{\tau}$ decay

Helmholtz International School "Physics of Heavy Quarks" July 15-28, 2013, JINR, Dubna, Russia

Lecture I

$$B
ightarrow D^{(*)} l \nu_l$$
 decay in SM

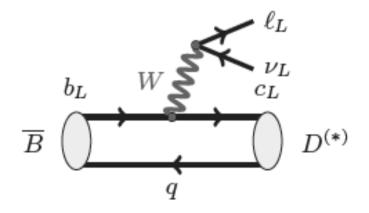
Lecture II

 $B \rightarrow D^{(*)} \tau \nu_{\tau}$ decay and New Physics

Outline

• Motivation;

- Exclusive decay modes $\bar{B} \to D l \nu_l$ and $\bar{B} \to D^* l \nu_l$
- Hadronic matrix elements (symmetries);
- Form factors and heavy-quark symmetry (Isgur-Wise function)
- •Helicity amplitudes;
- •Branching ratios in SM.



Motivation

We have to know CKM matrix elements as precise as possible!

HFAG: 1207.1158

$$\begin{aligned} |V_{cb}| &= (39.54 \pm 0.50_{\text{exp}} \pm 0.74_{\text{th}}) \times 10^{-3} & \text{B} \to D l \nu_l \\ |V_{cb}| &= (39.70 \pm 1.42_{\text{exp}} \pm 0.89_{\text{th}}) \times 10^{-3} & \text{B} \to D^* l \nu_l \end{aligned}$$

SM in
$$b
ightarrow c(u) au
u_{ au}$$

$$\mathcal{H}_{\text{eff}}^{b \to q} = \frac{G_F}{\sqrt{2}} \bigvee_{qb} \sum_{l=e,\mu,\tau} \left[(\bar{q}\gamma_{\mu}(1-\gamma_5)b)(\bar{l}\gamma^{\mu}(1-\gamma_5)\nu) \right]$$

Why important?

$$B \rightarrow \tau \nu_{\tau}$$

$$B \rightarrow X_c \tau \nu_{\tau}$$

$$B \rightarrow \pi(\rho) \tau \nu_{\tau}$$

$$B \rightarrow D(D^*) \tau \nu_{\tau}$$

i) Precise knowledge of V_{cb} and V_{ub} CKM

ii) learn about SM – decay constants& form-factors;

iii) form-factors which cannot be accessed in other semileptonic decays;

iv) NP at tree level;

v) possible tests of lepton universality.

Meson semileptonic decays



No information on the weak interactions without knowing QCD effects!

For semileptonic decays the main issue is how to determine hadronic matrix element

 $| < M | j_{\mu} | P >$

Methods:

> Symmetries (Lorentz symmetry, symmetries of strong interactions);

>Lattice gauge theories: simple hadronic matrix elements are calculable

- \succ or to use Effective theories:
 - different scales;
 - QCD effects on EW scales are calculable perturbatively;

QCD sum rules.

Parametrization of hadronic amplitudes

General decomposition using particles degrees of freedom

e.g. $\langle P_1(p_1)P_2(p_2)|V(p_V,\epsilon)\rangle = G_{P_1P_2V\epsilon} \cdot p_1$ $\epsilon \cdot p_V = 0$ $\langle 0| J_\mu |P(p)\rangle = if_P p_\mu,$ $\langle 0| J_\mu |V(p,\epsilon)\rangle = f_V m_V \epsilon_\mu$

For semileptonic decay of pseudoscalar meson P_i to P_f :

 $\langle P_f(p_f) | J_V^{\mu} | P_i(p_i) \rangle = F_+(s)(p_i + p_f)^{\mu} + F_-(s)(p_i - p_f)^{\mu}$

$$m_l^2 \le s \le (m_{Pi} - m_{Pf})^2$$

Let's start with:

 $\langle 0 | J_V^{\mu} | P_i(p_i) P_f(p_f) \rangle = F_+(t)(p_i - p_f)^{\mu} + F_-(t)(p_i + p_f)^{\mu}$ (crossing symmetry $p_f \to -p_f$) $t = (p_i + p_f)^2$

c.m. system of $P_i P_f$

$$|P_i(\mathbf{p_i})P_f(-\mathbf{p_i})\rangle = \sum_{L,m} Y_L^m(\mathbf{p}/|\mathbf{p}|) |P_iP_f(\mathbf{p},L,m)\rangle$$

p is a center of mass three momentum $J^P = 1^- \text{ or } 0^+$

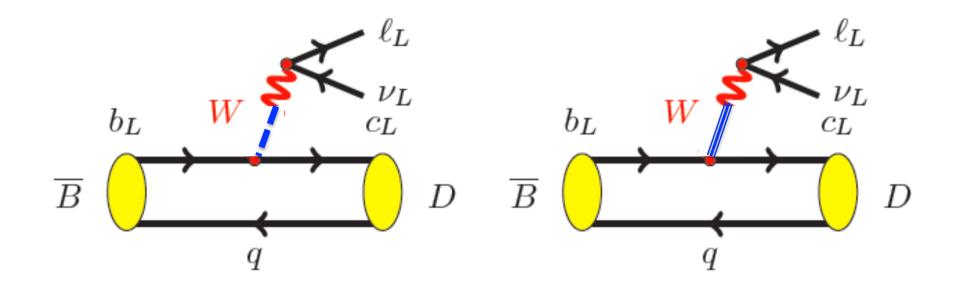
 $\langle 0| J_V^{\mu} |P_i(p_i)P_f(p_f)\rangle = \langle 0| J_V^{\mu} |P_iP_f(\mathbf{p}, 0, 0)\rangle + \sum_m \langle 0| J_V^{\mu} |P_iP_f(\mathbf{p}, 1, m)\rangle Y_1^m(\mathbf{p}/|\mathbf{p}|)$ nonvanishing for $\mu=0$ nonvanishing for $\mu=1,2,3$

$$t = (p_i^0 + p_f^0)^2 \qquad \qquad p_i^0 - p_f^0 = (m_{P_i}^2 - m_{P_f}^2)/\sqrt{t}$$

$$\begin{split} \mu &= 0 \qquad \text{Scalar form factor} \longrightarrow \text{spin 0 particles} \\ \langle 0| \ J_V^0 \ |P_i P_f(p,0,0) \rangle &= \sqrt{t} \left[\frac{m_{P_i}^2 - m_{P_f}^2}{t} F_+(t) + F_-(t) \right] = \sqrt{t} F_0(t) \\ \mu &= 1, \ 2, \ 3 \qquad \text{"Vector form factor} \longrightarrow \text{spin 1 particles} \\ \sum_m \langle 0| \ \mathbf{J}_V \ |P_i P_f(p,1,m) \rangle \ Y_1^m(\mathbf{p}/|\mathbf{p}|) &= 2\mathbf{p_i} F_+(t) \\ \langle P_f(p_f) | \ J_{V-A}^\mu \ |P_i(p_i) \rangle &= F_+(s) \left((p_i + p_f)^\mu - \frac{m_{P_i}^2 - m_{P_f}^2}{s} (p_i - p_f)^\mu \right) \\ &+ F_0(s) \frac{m_{P_i}^2 - m_{P_f}^2}{s} (p_i - p_f)^\mu, \end{split}$$

 $F_+(0) = F_0(0)$

Vector form factor, accounts spin 1 particles



F₀: scalar particle

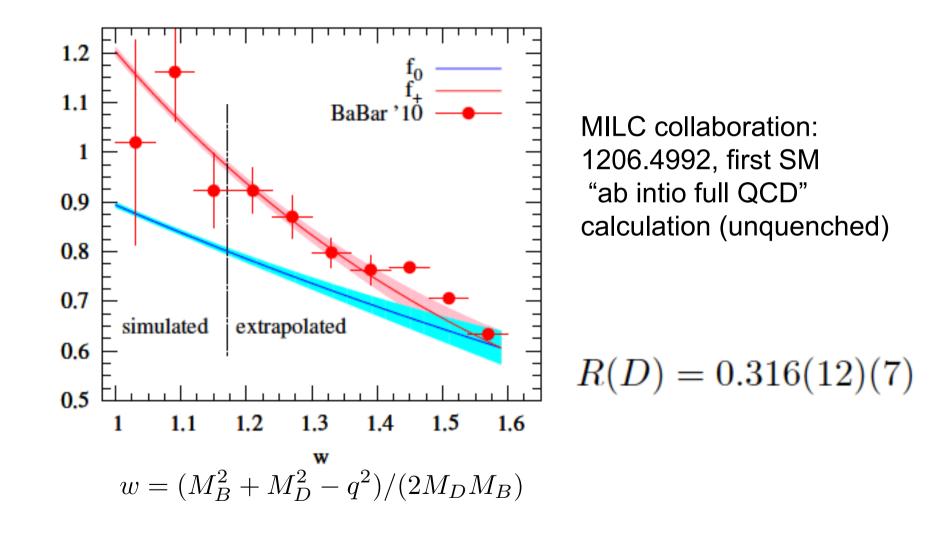
F₊: vector particle

The basic problem: knowledge of all for factors!

> In the case of $B \rightarrow D l \nu_l$ decay the lattice QCD has already found the form of form factors!

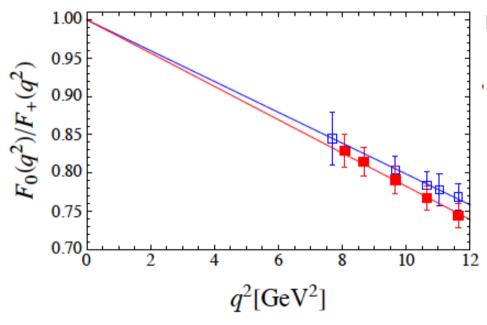
> in the case $B \rightarrow D^* l \nu_l$ one has to rely on other methods, e.g. use heavy quark symmetry!

Recent Lattice QCD results on $B \rightarrow D \tau U_{\tau}$



D. Becirevic Kosnik, Tayduganov, (1206.4977) proposal, using lattice data:

$$\frac{F_0(q^2)}{F_+(q^2)} = 1 - \alpha \ q^2$$



$$\alpha = 0.020(1) \text{ GeV}^{-2}$$

lattice result, in agreement with pole model, QCD sum rule study, etc

Proposal: experimenters should make cut at $q^2 \approx 8 \text{ GeV}^2$, then full shape of the vector form factor could be reconstructed from the rate

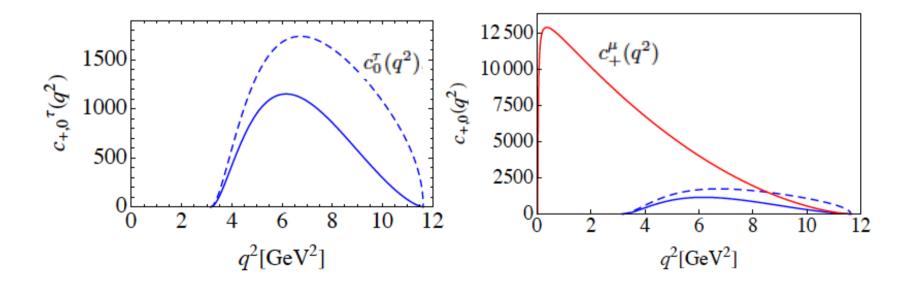
 $\frac{\mathcal{B}(\bar{B} \to D\tau \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\mu \bar{\nu}_{\mu})}\Big|_{q^2 \le 8 \text{ GeV}^2}$

Ratio. scalar and vector form factor known from lattice

$$\begin{aligned} \frac{d\mathcal{B}(\bar{B} \to D\ell\bar{\nu}_{\ell})}{dq^2} &= \tau_{B^0} \frac{G_F^2 |V_{cb}|^2}{192\pi^3 m_B^3} \bigg[c_+^{\ell}(q^2) |F_+(q^2)|^2 + c_0^{\ell}(q^2) |F_0(q^2)|^2 \bigg] \\ &= |V_{cb}|^2 \mathcal{B}_0 |F_+(q^2)|^2 \left[c_+^{\ell}(q^2) + c_0^{\ell}(q^2) \left| \frac{F_0(q^2)}{F_+(q^2)} \right|^2 \right], \end{aligned}$$

D.Becirevic et al, 1206.4977

The difference in phase space contributions for τ and μ leptonic pair



Parametrization of a weak current in $B \rightarrow D^* l \nu_l$:

1 vector form factor and 3 axial vectors

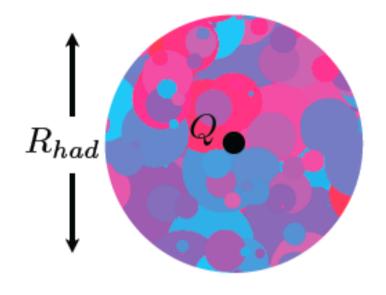
$$\begin{split} \langle \underline{D}(p',\epsilon) \mid \bar{c}\gamma^{\mu}(1-\gamma_{5})b \mid B(p) \rangle &= \frac{2i\epsilon^{\mu\nu\alpha\beta}}{m_{B}+m_{D}*}\epsilon_{\nu}^{*}p'_{\alpha}p_{\beta}V(q^{2}) \\ \mathbf{D}^{*} & -\left[(m_{B}+m_{D}*)\epsilon^{*\mu}A_{1}(q^{2}) - \frac{\epsilon^{*}\cdot q}{m_{B}+m_{D}^{*}}(p'+p)^{\mu}A_{2}(q^{2})\right] \\ &- 2m_{D^{*}}\frac{\epsilon^{*}\cdot q}{q^{2}}q^{\mu}A_{0}(q^{2}). \end{split}$$

 $A_3(0) = A_0(q^2)$ in order to cancel unphysical pole at $q^2 = 0$

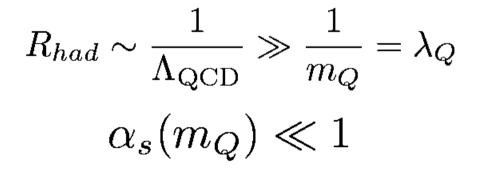
$$A_3(q^2) = \frac{m_B + m_D}{2m_{D^*}} A_1(q^2) - \frac{m_B - m_{D^*}}{2m_{D^*}} A_2(q^2)$$

For all form factors mostly used result based on Heavy quark symmetry

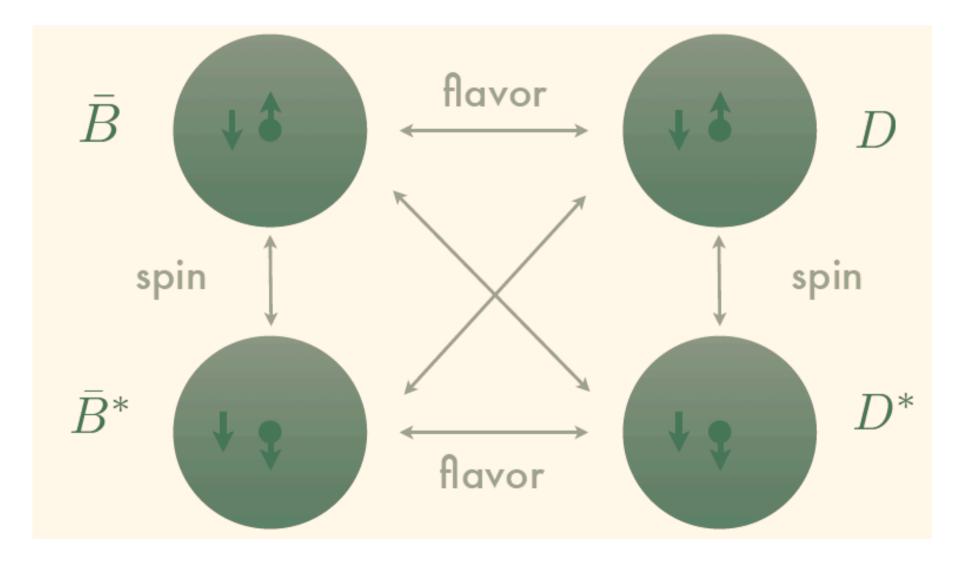
Heavy quark symmetry



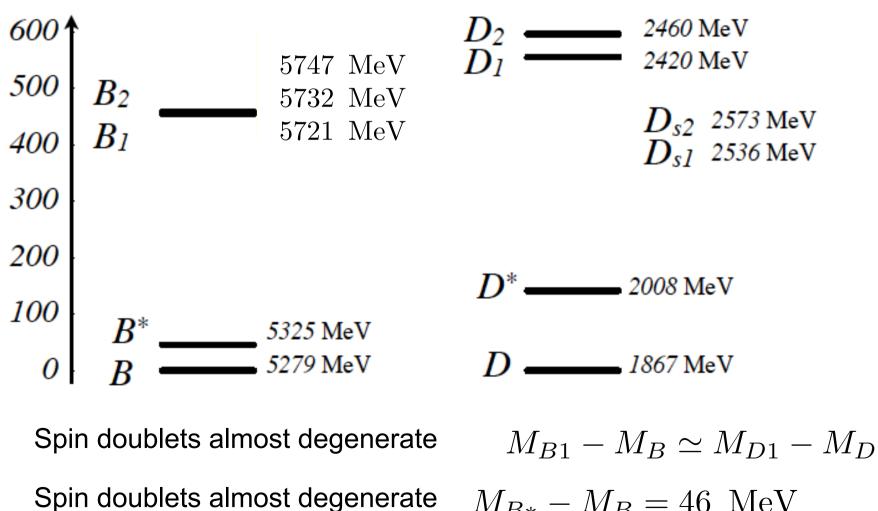
- Light quarks do not feel mass of the heavy quark $m_Q \rightarrow \infty$;
- Flavor symmetry;
- Spin symmetry (magnetic moments decouple $\mu \sim 1/m_Q$).



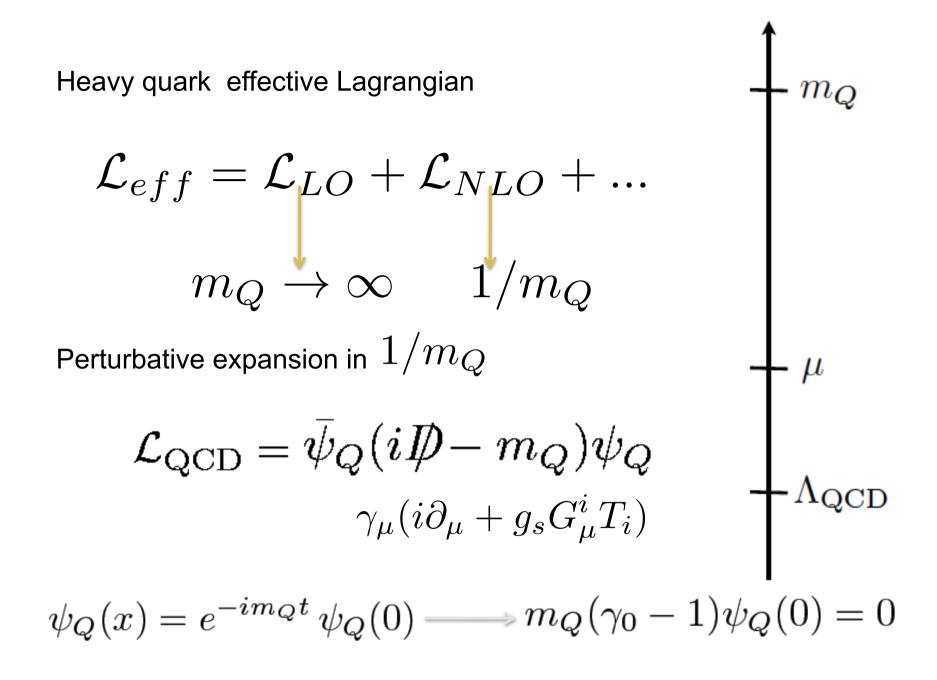
Spin-flavor symmetry



Heavy meson mass spectrum



 $M_{B*} - M_B = 46 \text{ MeV}$



In an arbitrary frame: \mathcal{O}_{μ} 4-vector of velocity, leads to projection operators

$$\begin{aligned} P_{+} &= \frac{1 + \psi}{2} \\ P_{-} &= \frac{1 - \psi}{2} \text{ for } v_{\mu} = (1,0,0,0) P_{+} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix} P_{-} = \begin{pmatrix} 0 & & \\ & 1 & \\ & & 1 \end{pmatrix} \\ (\psi \ \psi = v^{2} = 1) & P_{\pm}^{2} = P_{\pm} , \qquad P_{+} P_{-} = P_{-} P_{+} = 0 \\ \psi_{Q}(x) &= e^{-im_{Q} v \cdot x} \ \tilde{\psi}_{Q}(x)' \\ \text{Quark field} &= e^{-im_{Q} v \cdot x} \left[P_{+} \ \tilde{\psi}_{Q}(x) + P_{-} \ \tilde{\psi}_{Q}(x) \right] \\ &= e^{-im_{Q} v \cdot x} \left[h_{v}(x) + H_{v}(x) \right] \end{aligned}$$

Dirac equation becomes

$$\left\{ m_Q \psi + i \not \!\!\!D - m_Q \right\} \left[h_v(x) + H_v(x) \right] = 0$$

$$\leftrightarrow i \not \!\!\!D h_v(x) + (i \not \!\!\!D - 2m_Q) H_v(x) = 0$$

$$\not v h_v = h_v \,, \ \not v H_v = -H_v$$

Multiplying equations by $\,P_-(P_+)\,$ and with $a_\perp^{m\mu}=a^{m\mu}-v\cdot a\,v^{m\mu}\,$ using

$$P_{+} \not a = \not a_{\perp} P_{-} + v \cdot a P_{+}$$

$$P_{-} \not a = \not a_{\perp} P_{+} - v \cdot a P_{-}$$

$$iv \cdot D h_{v}(x) + i \not D_{\perp} H_{v} = 0$$

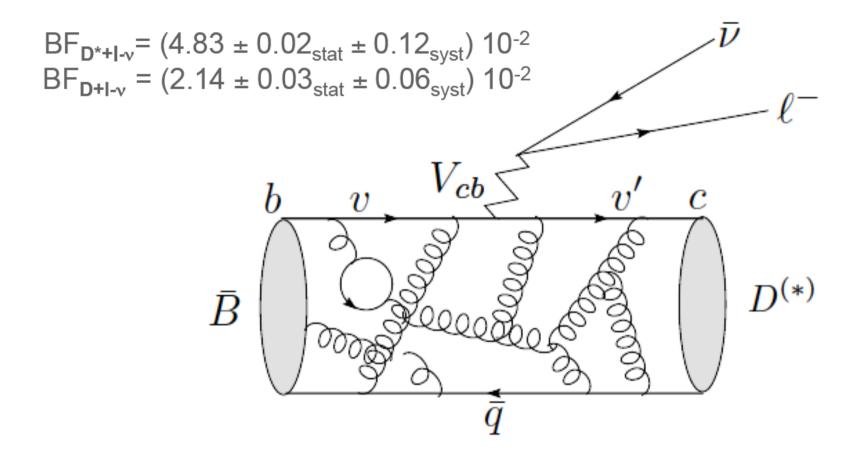
$$i \not D_{\perp} h_{v}(x) - (iv \cdot D + 2m_{Q}) H_{v}(x) = 0$$

$$H_{v}(x) \approx \frac{1}{2m_{Q}} i \not D_{\perp} h_{v}(x)$$

$$\begin{split} i \not \!\!\!\!D_{\perp} \, i \not \!\!\!\!D_{\perp} &= i D_{\perp}^{\mu} \, i D_{\perp}^{\nu} \left(\frac{1}{2} \{ \gamma_{\mu}, \gamma_{\nu} \} + \frac{1}{2} [\gamma_{\mu}, \gamma_{\nu}] \right) \\ &= i D_{\perp}^{\mu} \, i D_{\perp}^{\nu} \, \left(g_{\mu\nu} - i \sigma_{\mu\nu} \right) \\ &= (i D_{\perp})^2 + \frac{i}{2} [D_{\perp}^{\mu}, D_{\perp}^{\nu}] \sigma_{\mu\nu} \\ &= (i D_{\perp})^2 + \frac{g_s}{2} \sigma_{\mu\nu} G_{\perp}^{\mu\nu} \end{split}$$

$$\mathcal{L}_{\text{eff}} = \bar{h}_{v} \, iv \cdot D \, h_{v} + \frac{1}{2m_{Q}} \bar{h}_{v} (iD_{\perp})^{2} h_{v} + \frac{g_{s}}{4m_{Q}} \bar{h}_{v} \sigma_{\mu\nu} G_{\perp}^{\mu\nu} h_{v} + \mathcal{O}(\Lambda/m_{Q}^{2})$$
flavor and spin symmetric $1/m_{Q}$ corrections

 $B \rightarrow D^{(*)} l \nu_l$ and heavy quark symmetry



Heavy quark symmetry: for v=v' "zero recoil point", corresponds to maximum of lepton pair momentum transfer.

Why this result is interesting?

The goal precise determination of the V_{cb} CKM matrix element.

In the case of $B \rightarrow D^* l \nu_l$ Luke found that first order in $1/m_Q$ corrections vanish at zero-recoil point (Luke's theorem).

Procedure:

- measure branching rate as a function of w, and then extrapolate to the zero recoil point w=1;

- calculate second order power correction using lattice QCD;

- one single parameter ρ is sufficient to parametrize shape of the form-factor.

HQS

$$< \bar{B}(p')|\bar{b}\gamma_{\mu}b|\bar{B}(p) > = F(q^2)(p+p')_{\mu} \quad \text{QCD}$$

$$p' \simeq m_b v' \qquad p \simeq m_b v$$

normalization

$$<\bar{B}(p')|\bar{B}(p)>=2m_Bv^0(2\pi)^3\delta^3(\vec{p}-\vec{p'})$$

Heavy quark effective theory $\frac{1}{m_B} < \bar{B}(v') |\bar{b}\gamma_{\mu}b| \bar{B}(v) > = \xi(v \cdot v')(v + v')_{\mu} + \mathcal{O}(\frac{1}{m_B})$

$$F(q^2) = \xi(v \cdot v')$$
$$q^2 = -2m_B^2(v \cdot v' - 1)$$

$$F(0) = 1 \leftrightarrow \xi(1) = 1$$

This means nothing happens with heavy meson

$$\begin{split} w &= v \cdot v' = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}} \\ \text{For } B \to D^{(*)} e \bar{\nu}_e \text{ w is variable in the range} \\ & 1 < w \lesssim 1.6 \\ \frac{\langle D(p') | V^{\mu} | B(p) \rangle}{\sqrt{m_B m_D}} = h_+(w) (v + v')^{\mu} + h_-(w) (v - v')^{\mu} \\ \frac{\langle D^*(p', \varepsilon) | V^{\mu} | B(p) \rangle}{\sqrt{m_B m_D^*}} = i h_V(w) \varepsilon^{\mu\nu\alpha\beta} \varepsilon^*_{\nu} v'_{\alpha} v_{\beta} \\ \frac{\langle D^*(p', \varepsilon) | A^{\mu} | B(p) \rangle}{\sqrt{m_B m_D^*}} = h_{A_1}(w) (w + 1) \varepsilon^{*\mu} - h_{A_2} (\varepsilon^* \cdot v) v^{\mu} \\ - h_{A_3}(w) (\varepsilon^* \cdot v) v^{\mu}. \end{split}$$

heavy quark symmetry allows to replace b quark by c quark:

$$\frac{1}{m_B} < \bar{B}(v')|\bar{b}\gamma_\mu b|\bar{B}(v) > = \xi(v \cdot v')(v + v')_\mu$$

$$\frac{1}{\sqrt{m_B m_D}} < D(v')|\bar{b}\gamma_\mu b|\bar{B}(v) > = \xi(v \cdot v')(v + v')_\mu$$

Without heavy quark symmetry

$$< D(p')|\bar{b}\gamma_{\mu}b|\bar{B}(p) >= f_{+}(q^{2})(p+p')_{\mu} + f_{-}(q^{2})(p-p')_{\mu}$$

$$m_{B} \pm m_{D} + m_{D$$

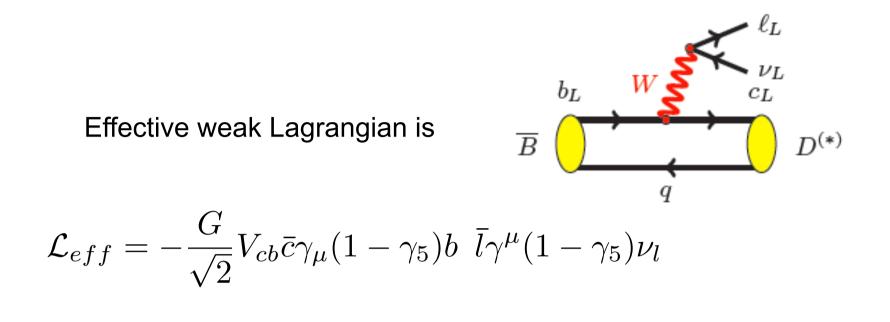
$$f_{\pm}(q^2) = \frac{m_B \pm m_D}{2\sqrt{m_B m_D}} \xi(v \cdot v')$$

It is obvious that in the limit

$$q^2 = m_B^2 + m_D^2 - 2m_B m_D v \cdot v'$$

$$m_B, m_D \to \infty$$

 $f_- \to 0$
and only f_+ survives



The amplitude is

$$\mathcal{M} = \frac{G}{\sqrt{2}} V_{cb} < D^{(*)}(v') |\bar{c}\gamma_{\mu}(1-\gamma_{5})b| B(v) > \bar{u}_{l}(p_{l})\gamma^{\mu}(1-\gamma_{5})v_{\nu_{l}}(p_{\nu})$$

To obtain branching ratio: square of the amplitude, sum over spins and integrate over phase space.

By neglecting corrections: $\alpha_s(m_{c,b})$ and $\Lambda_{QCD}/m_{c,b}$ one can match full theory to HQET

$$\bar{c}\gamma_{\mu}b = \bar{c}_{v'}\gamma_{\mu}b_{v}$$

$$\bar{c}\gamma_{\mu}\gamma_{5}b = \bar{c}_{v'}\gamma_{\mu}\gamma_{5}b_{v}$$

Covariant representation of fields

Meson consisting of heavy quark Q and light anti-quark q can be described by the object, which has all transformation properties of this structure

$$\begin{aligned} H_{v}^{(Q)} &= \frac{(1+\psi)}{2} [\gamma_{\mu} P_{v}^{*\mu(Q)} - \gamma_{5} P_{v}^{(Q)}] \\ \psi H_{v}^{(Q)} &= H_{v}^{(Q)} & v^{\mu} P_{\mu v}^{*(Q)} = 0. \\ H_{v}^{(Q)} &\to D(R)_{Q} H_{v}^{(Q)} \\ H_{v}^{(Q)} &\to D(R)_{Q} H_{v}^{(Q)} \end{aligned}$$

$$\begin{aligned} H_{v}^{(Q)} \psi &= -H_{v}^{(Q)} & \text{Dirac four component spinor response of the spinor$$

Dirac four component spinor representation

under parity
$$\gamma^0 D^{\dagger}(R)_Q \gamma^0 = D(R)_Q^{-1}$$

 $x_P = (x^0, -\mathbf{x}), \quad v_P = (v^0, -\mathbf{v})$

$$\bar{H}_{v}^{(Q)} = [\gamma^{\mu} P_{v\mu}^{*(Q)\dagger} + \gamma_{5} P_{v}^{(Q)\dagger}] \frac{(1+\not{v})}{2}$$
$$Tr\bar{H}_{v}^{(Q)} H_{v}^{(Q)} = -2P_{v}^{(Q)\dagger} P_{v}^{(Q)} + 2P_{v\mu}^{*(Q)\dagger} P_{v}^{*(Q)\mu}$$

Transformation properties of $\ ar{c}_{m{v}'}\Gamma b_{m{v}}$

We want that this operator transforms the same way as a quark operator

$$\bar{c}_{v'}\Gamma b_v = Tr\bar{H}_{v'}^{(c)}\Gamma H_v^{(b)}X_{t}$$

$$X = X_0 + X_1 \not\!\!/ + X_2 \not\!\!/ + X_3 \not\!\!/ \not\!\!/$$

$$\psi H_v^{(b)} = H_v^{(b)} \qquad \bar{H}_{v'}^{(c)} \psi' = -\bar{H}_{v'}^{(c)}$$

Due to these properties only one function remains:

$$X = -\xi(w)$$

Isgur-Wise function

$$h_+(w) = h_V(w) = h_{A_1}(w) = h_{A_3}(w) = \xi(w)$$

 $h_-(w) = h_{A_2}(w) = 0.$

Matrix elements of the vector and axial current with HQS

$$\frac{1}{\sqrt{m_B m_{D^*}}} \langle D^*(v',\varepsilon) | \bar{c}_{v'} \gamma^{\mu} b_v | \bar{B}(v) \rangle = i \epsilon^{\mu\nu\alpha\beta} \varepsilon_{\nu}^* v_{\alpha}' v_{\beta} \xi(v \cdot v'),$$

$$\frac{1}{\sqrt{m_B m_{D^*}}} \langle D^*(v',\varepsilon) | \bar{c}_{v'} \gamma^{\mu} \gamma_5 b_v | \bar{B}(v) \rangle = \left[\varepsilon^{*\mu} \left(v \cdot v' + 1 \right) - v'^{\mu} \varepsilon^* \cdot v \right] \xi(v \cdot v')$$

Heavy quark symmetry reduces 4 form factors to only one:

$$\frac{m_B + m_{D^*}}{2\sqrt{m_B m_{D^*}}} \xi(v \cdot v') = V(q^2) = A_0(q^2) = A_2(q^2)$$
$$= \left[1 - \frac{q^2}{(m_B + m_D)^2}\right]^{-1} A_1(q^2)$$
$$q^2 = m_B^2 + m_{D^*}^2 - 2m_B m_{D^*} v \cdot v'$$

$$\frac{\mathrm{d}\Gamma(\bar{B} \to D\,\ell\,\bar{\nu})}{\mathrm{d}w} = \frac{G_F^2}{48\pi^3} \,|V_{cb}|^2 \,(m_B + m_D)^2 \,m_D^3 \,(w^2 - 1)^{3/2} \,\xi^2(w)$$
$$\frac{\mathrm{d}\Gamma(\bar{B} \to D^*\ell\,\bar{\nu})}{\mathrm{d}w} = \frac{G_F^2}{48\pi^3} \,|V_{cb}|^2 \,(m_B - m_{D^*})^2 \,m_{D^*}^3 \,\sqrt{w^2 - 1} \,(w + 1)^2$$
$$\times \left[1 + \frac{4w}{w + 1} \,\frac{m_B^2 - 2w \,m_B m_{D^*} + m_{D^*}^2}{(m_B - m_{D^*})^2}\right] \xi^2(w).$$

In both rates there is only one form factor $\ \xi(w), \ w = v \cdot v'$ with normalization $\ \xi(1) = 1$

What are the corrections to this rates?

- QCD $\alpha_{s}(m_{Q})$ known 2 loops ;
- Λ/m_Q should come from lattice QCD.

Here lepton mass negligible!

For $B \to D^* l \nu$ there is no lattice calculations of the form factors yet!

Caprini, Lellouch and Neubert, NPB 530 (1998) 153: Dispersive bound on shape of $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ form factors

• Ingridents: heavy quark, spin symmetry short distance and $1/m_Q$ corrections provide relations between form factors near zero recoil.

• Dispersive bounds are derived using dispersion relations and complex analysis techniques combing QCD calculations of current-current correlation functions in the Euclidean domain with the spectral representation of these functions in terms of sums over intermediate hadronic states. The contributions of BD, BD*, B*D, B*D* states are considered in the unitarity sum, leading short distance contribution and 1/m_Q to the heavy quark Limit.

$$h_{A_1}(w) = A_1(q^2) \frac{1}{R_{D^*}} \frac{2}{w+1}$$
$$A_0(q^2) = \frac{R_0(w)}{R_{D^*}} h_{A_1}(w)$$
$$A_2(q^2) = \frac{R_2(w)}{R_{D^*}} h_{A_1}(w)$$
$$V(q^2) = \frac{R_1(w)}{R_{D^*}} h_{A_1}(w)$$

$$h_{A_1}(w) = h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right],$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2,$$

$$R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$$

$$R_0(w) = R_0(1) - 0.11(w - 1) + 0.01(w - 1)^2,$$

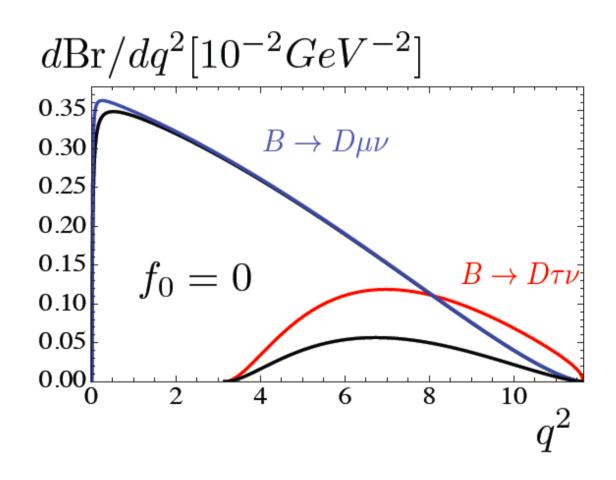
 $z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2}) \qquad R_{D^*} = 2\sqrt{m_B m_{D^*}}/(m_B + m_{D^*}).$

$$R_2(1) = 0.80$$
 $R_0(1) = 1.22$ Caprini et al,
 $R_3(1) \equiv \frac{R_2(1)(1-r) + r[R_0(1)(1+r) - 2]}{(1-r)^2} = 0.97$

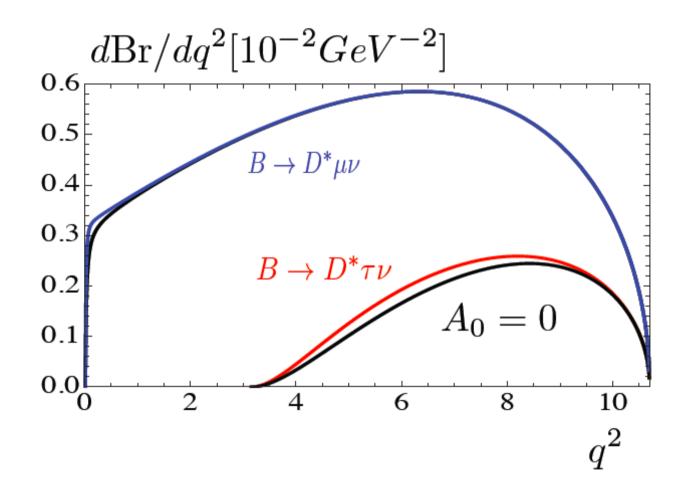
Improvement using Belle collaboration result, PRD 82 (2010) 112007

 $R_2(1) = 0.864(25)$ $R_0(1) = 1.14.$

Comparison of differential momentum transfer distribution $B \to D \mu \nu_{\mu}$ and $B \to D \tau \nu_{\tau}$



Comparison of differential momentum transfer distribution $B \to D^* \mu \nu_\mu$ and $B \to D^* \tau \nu_\tau$



Experimental approach

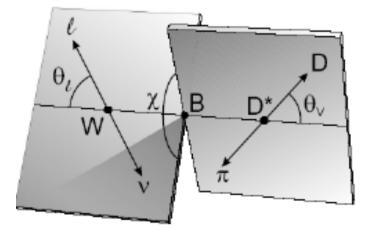
Extraction of form factors by fits to differential decay rates:

 $\bar{B} \to D l \nu_l$

Fit to one decay distribution G(w) Determination of $|V_{cb}|$ G(1) and slope ρ^2

 $\bar{B} \to D^{(*)} l \nu_l$

Fit to 4-dim. decay distribution $G(w,\theta_{\lambda},\theta_{v},\chi)$ determination of $|V_{cb}|$ F(1) and slope ρ^{2} , $R_1(w=1)$ and $R_2(w=1)$



Fit gives ρ and G/F and $|V_{cb}|$

Lattice QCD results give

$$G(1) = 1.074 \pm 0.018_{stat} \pm 0.016_{syst}$$

$$F(1) = 0.908 \pm 0.005_{stat} \pm 0.016_{syst}$$

NP Suppl. 140, 461 (2005) FNAL/MILC 2011

BaBar and Belle measurements give

D
$$\ell v$$
: $|V_{cb}| = (39.46 \pm 1.54_{exp} \pm 0.88_{LQCD}) \times 10^{-3}$
D* ℓv : $|V_{cb}| = (39.04 \pm 0.55_{exp} \pm 0.73_{LQCD}) \times 10^{-3}$

HQS based calculations

BaBar result

$$\frac{d\Gamma(B \to D\ell\nu)}{dw} = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 \mathcal{K}_D(w) \eta_{\rm EW}^2 \mathcal{G}^2(w)$$

$$B \to D^* \ell\nu$$

$$A_1(w) \text{ form factor dominate as} w \to 1$$

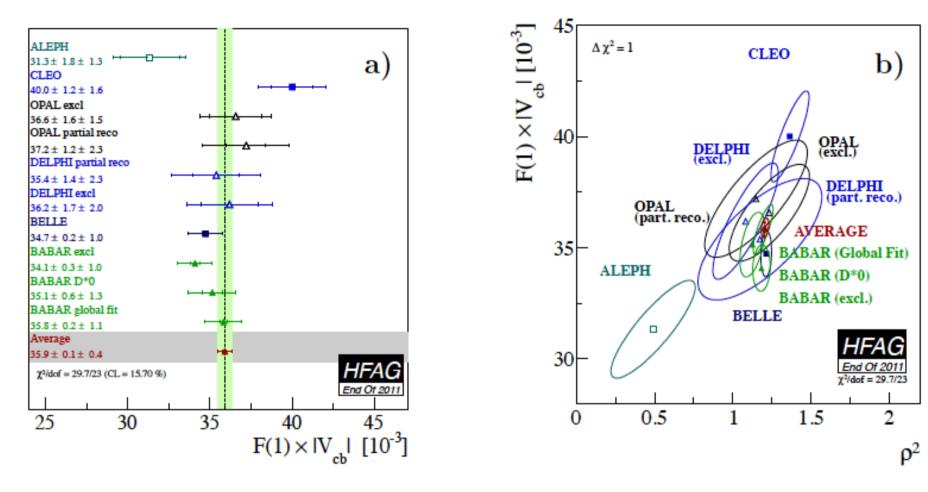
$$\eta_{EW} = 1.0066$$
(one-loop electroweak correction)
$$\eta_{EW} = 1.0066$$

$$\eta_{EW} = 1.0066$$

1.4 7-2012 8809A13

1.2

W



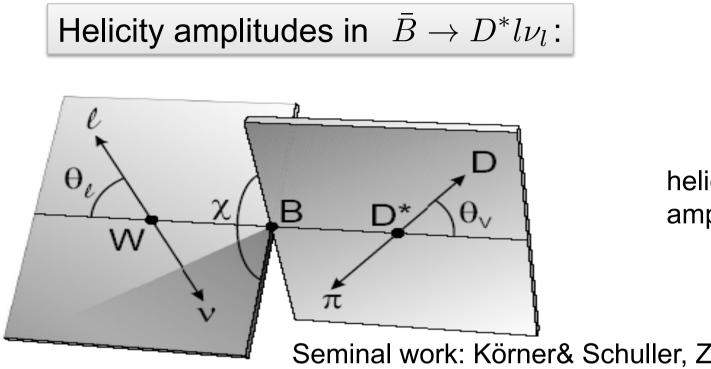
LQCD, arXive:1011.2166

$$|V_{cb}| = (39.70 \pm 1.42_{exp} \pm 0.89_{th}) \times 10^{-3}$$

 $|V_{cb}| = (39.54 \pm 0.50_{exp} \pm 0.74_{th}) \times 10^{-3}$

 $B \rightarrow D l \nu_l$

 $B \rightarrow D^* l \nu_l$



helicity amplitudes

Seminal work: Körner& Schuller, ZPC 38 (1988) 511; S.F., Nisanndzic, J.F.Kamenik, 1203.2654

$$\begin{split} \tilde{\varepsilon}_{\mu}(\pm) &= \frac{1}{\sqrt{2}} (0, \pm 1, -i, 0) \,, \\ \tilde{\varepsilon}_{\mu}(0) &= \frac{1}{\sqrt{q^2}} (|\mathbf{p}|, 0, 0, -q_0) \,, \\ \tilde{\varepsilon}_{\mu}(t) &= \frac{1}{\sqrt{q^2}} (q_0, 0, 0, -|\mathbf{p}|), \end{split}$$

W polarization in the B meson rest frame

$$q_0 = (m_B^2 - m_{D^*}^2 + q^2)/2m_B$$

$$|\mathbf{p}| = \frac{\lambda^{1/2}(m_B^2, m_{D^*}^2, q^2)}{2m_B} \qquad \lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + bc + ca)$$

 $\tilde{\varepsilon}^*_{\mu}(m)\tilde{\varepsilon}^{\mu}(m') = g_{mm'}, \quad \text{for} \quad (m,m'=t,\pm,0) \quad \sum_{m,m'}\tilde{\varepsilon}_{\mu}(m)\tilde{\varepsilon}^*_{\nu}(m')g_{mm'} = g_{\mu\nu}.$

$$\varepsilon_{\alpha}(\pm) = \mp \frac{1}{\sqrt{2}}(0, 1, \pm i, 0),$$

$$\varepsilon_{\alpha}(0) = \frac{1}{m_{D^*}}(|\mathbf{p}|, 0, 0, E_{D^*}),$$

polarizations of D*

$$\varepsilon^*_{\alpha}(m)\varepsilon^{\alpha}(m') = -\delta_{mm'}$$

$$\sum_{mm'} \varepsilon_{\alpha}(m) \varepsilon_{\beta}(m') \delta_{mm'} = -g_{\alpha\beta} + \frac{p_{D^*\alpha} p_{D^*\beta}}{m_{D^*}^2}$$

$$\begin{split} H_{mm}(q^2) &= \tilde{\varepsilon}(m)^{\mu*} H_{\mu}(m), \quad \text{for} \quad m = 0, \pm, \\ H_{0t}(q^2) &= \tilde{\varepsilon}(m = t)^{\mu*} H_{\mu}(n = 0). \quad \text{time-like component} \end{split}$$

$$\frac{d^2 \Gamma_{\ell}}{dq^2 d \cos \theta d\chi} = \frac{G_F^2 |V_{cb}|^2}{(2\pi)^4} \frac{|\mathbf{p}|}{2m_B^2} \left(1 - \frac{m_{\ell}^2}{q^2}\right) L_{\mu\nu} H^{\mu\nu}$$

$$L_{\mu\nu}H^{\mu\nu} = L_{\mu'\nu'}g^{\mu'\mu}g^{\nu'\nu}H_{\mu\nu} = \sum_{mm',nn'} \left(L_{\mu'\nu'}\tilde{\varepsilon}^{\mu'}(m)\tilde{\varepsilon}^{\nu'}(n)g_{mm'}g_{nn'} \right) \left(\tilde{\varepsilon}^{\mu*}(m')\tilde{\varepsilon}^{\nu}(n')H_{\mu\nu} \right)$$

$$\begin{split} L_{\mu\nu}H^{\mu\nu} &= \frac{1}{8} \sum_{\lambda_{\ell},\lambda_{D*},\lambda_{\ell\nu},\lambda_{\ell\nu}',J,J'} (-1)^{J+J'} |h_{(\lambda_{\ell},\lambda_{\nu})}|^2 \, \delta_{\lambda_{D*}\lambda_{\ell\nu}} \delta_{\lambda_{D*}\lambda_{\ell\nu}'} \\ &\times d^J_{\lambda_{\ell\nu},\lambda_{\ell}-1/2}(\theta) d^J_{\lambda_{\ell\nu}',\lambda_{\ell}-1/2}(\theta) H_{\lambda_{D*}\lambda_{\ell\nu}} H^*_{\lambda_{D*}\lambda_{\ell\nu}'} \,, \end{split}$$

$$\begin{aligned} H_{\pm\pm}^{\rm SM}(q^2) &= (m_B + m_{D^*})A_1(q^2) \mp \frac{2m_B}{m_B + m_{D^*}} |\mathbf{p}| V(q^2) \,, \\ H_{00}^{\rm SM}(q^2) &= \frac{1}{2m_{D^*}\sqrt{q^2}} \left[(m_B^2 - m_{D^*}^2 - q^2)(m_B + m_{D^*})A_1(q^2) - \frac{4m_B^2 |\mathbf{p}|^2}{m_B + m_{D^*}} A_2(q^2) \right] \,, \\ H_{0t}^{\rm SM}(q^2) &= \frac{2m_B |\mathbf{p}|}{\sqrt{q^2}} A_0(q^2) \,. \end{aligned}$$
$$\begin{aligned} h_{(\lambda_\ell,\lambda_\nu)} &= \frac{1}{2} \bar{u}_\ell(\lambda_\ell) \gamma^\mu (1 - \gamma^5) v_\nu(\lambda_\nu) \tilde{\epsilon}_\mu(\lambda_{\ell\nu}) \end{aligned}$$

right-handed anti-neutrino $\lambda_{
u} = 1/2$

$$\lambda_{\ell\nu} = \lambda_\ell - \lambda_\nu$$

$$|h_{-1/2,1/2}|^2 = 2(q^2 - m_\ell^2)$$
 $|h_{1/2,1/2}|^2 = 2\frac{m_\ell^2}{2q^2}(q^2 - m_\ell^2)$

Differential distribution for two leptonic polarizations

$$\begin{aligned} \frac{d^2 \Gamma_{\ell}}{dq^2 d \cos \theta} (\lambda_{\ell} &= -1/2) = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{256 \pi^3 m_B^2} \left(1 - \frac{m_{\ell}^2}{q^2} \right)^2 \times \\ & \left[(1 - \cos \theta)^2 H_{++}^2 + (1 + \cos \theta)^2 H_{--}^2 + 2\sin^2 \theta H_{00}^2 \right] \end{aligned}$$

$$\frac{d^2 \Gamma_{\ell}}{dq^2 d \cos \theta} (\lambda_{\ell} = 1/2) = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{256 \pi^3 m_B^2} \left(1 - \frac{m_{\ell}^2}{q^2} \right)^2 \frac{m_{\ell}^2}{q^2} \times \left[(\sin^2 \theta (H_{++}^2 + H_{--}^2) + 2(H_{0t} - H_{00} \cos \theta)^2 \right]$$

$$\frac{d^{2}\Gamma_{\tau}}{dq^{2}d\cos\theta} = \frac{G_{F}^{2}|V_{cb}|^{2}|\mathbf{p}|q^{2}}{256\pi^{3}m_{B}^{2}} \left(1 - \frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \times \left[(1 - \cos\theta)^{2}|H_{++}|^{2} + (1 + \cos\theta)^{2}|H_{--}|^{2} + 2\sin^{2}\theta|H_{00}|^{2} + \frac{m_{\tau}^{2}}{q^{2}}\left((\sin^{2}\theta(|H_{++}|^{2} + |H_{--}|^{2}) + 2|H_{0t} - H_{00}\cos\theta|^{2}\right)\right],$$

If instead of T is a light lepton then second part is negligible!

$$\begin{split} H_{\pm\pm}^{\rm SM}(q^2) &= (m_B + m_{D^*})A_1(q^2) \mp \frac{2m_B}{m_B + m_{D^*}} |\mathbf{p}| V(q^2) \,, \\ H_{00}^{\rm SM}(q^2) &= \frac{1}{2m_{D^*}\sqrt{q^2}} \left[(m_B^2 - m_{D^*}^2 - q^2)(m_B + m_{D^*})A_1(q^2) - \frac{4m_B^2 |\mathbf{p}|^2}{m_B + m_{D^*}} A_2(q^2) \right] \\ H_{0t}^{\rm SM}(q^2) &= \frac{2m_B |\mathbf{p}|}{\sqrt{q^2}} A_0(q^2) \,. \end{split}$$

Heavy Quark limit for b and c quarks \rightarrow only one form-factor!

$$A_{0}(q^{2}) = \frac{R_{0}(w)}{R_{D^{*}}} h_{A_{1}}(w)$$

$$A_{2}(q^{2}) = \frac{R_{2}(w)}{R_{D^{*}}} h_{A_{1}}(w)$$

$$V(q^{2}) = \frac{R_{1}(w)}{R_{D^{*}}} h_{A_{1}}(w)$$

$$w \equiv v_{B} \cdot v_{D^{*}} = \frac{m_{B}^{2} + m_{D^{*}}^{2} - q^{2}}{2m_{B}m_{D^{*}}}$$

Caprini et al., hep-ph/9712417

recent work form-factors: Gambino et al., 1206.2296

Conclusions

- HQS very useful tool in simplifying number of form factors;
- Lattice QCD progress in scalar and vector form factors for $B \to D l \nu_l$;
- Results of Lattice QCD for $B \to D^* l \nu_l$ would help in the analysis;
- More experimental data on the existing observable in both $B \to D^{(*)} l \nu_l$ and new ones will shed more light on the current problem.

Literature HQET

• A.J.Buras, Weak Hamiltonian, CP violation and rare decays", hep-ph/9806471;

• M.Neubert, "Heavy quark symmetry", Phys. Rept. 245, 259 (1994);

• A.V. Manohar and M.B. Wise, "Heavy quark physics", Camb. Part. Phys. 10, 1 (2000);

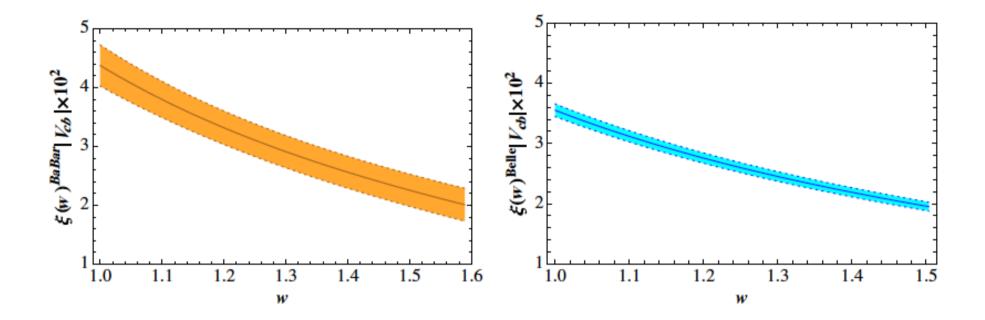
• M.B. Wise, Heavy quark physics", hep-ph/9805468.

Properties of axial current

$$P^{-1}AP = A,$$
$$P^{-1}A^0P = -A^0.$$

$$P|D(p)\rangle = -|D(p_P)\rangle$$
 $p_P = (p^0, -p)$

$$\begin{split} \langle D(p'_P) | A^{\mu} | B(p_P) \rangle &= h_{A_+}(w) (v_P + v'_P)^{\mu} + h_{A_-}(w) (v_P - v'_P)^{\mu} \\ &= \langle PD(p') | A^{\mu} | PB(p) \rangle = \langle D(p') | P^{-1} A^{\mu} P | B(p) \rangle. \end{split}$$



From Biancofiore, P. Colangelo, F. DeFazio et al. 1302.1042,

Reparametrization invariance

$$p_Q = m_Q v + k \qquad k \sim O(\Lambda_{QCD})$$

Λ_{QCD}/m_Q

If velocity is changed by Λ_{QCD}/m_Q then one can modify small momentum k by $v \rightarrow v + \epsilon/m_Q$,

$$\mathbf{k} \rightarrow k - \epsilon$$

Since $v^2 = 1$ then $v \cdot \epsilon = 0$

$$\label{eq:Qv} \phi Q_v = Q_v \qquad \left(\not\!\!\! \phi + \frac{\not\!\!\! \phi}{m_Q} \right) (Q_v + \delta Q_v) = Q_v + \delta Q_v$$

It means that any change in velocity implies that theory is invariant under

$$\begin{aligned} v &\to v + \varepsilon / m_Q \\ Q_v &\to e^{i\varepsilon \cdot x} \left(1 + \frac{\not \epsilon}{2m_Q} \right) Q_v \end{aligned}$$

$$\mathcal{L}_{0} = \bar{Q}_{v} iv \cdot DQ_{v}$$

$$\mathcal{L}_{0} \to \bar{Q}_{v} \left(1 + \frac{\notin}{2m_{Q}}\right) \left(iv \cdot D + \frac{i\varepsilon \cdot D}{m_{Q}}\right) \left(1 + \frac{\notin}{2m_{Q}}\right) Q_{v}$$

$$\delta \mathcal{L}_{0} = \frac{1}{m_{Q}} \bar{Q}_{v} (i\varepsilon \cdot D_{\perp}) Q_{v}$$

$$\delta \mathcal{L}_1 \to -\bar{Q}_v i 2 \frac{\varepsilon \cdot D_\perp}{2m_Q} Q_v = -\frac{1}{m_Q} \bar{Q}_v i \varepsilon \cdot D_\perp Q_v.$$

 $\mathcal{L}_0 + \mathcal{L}_1$ the theory is invariant under the small change in velocity