Higgs production and couplings with the ATLAS detector

Fernando Barreiro

Universidad Autónoma de Madrid

Helmholtz-JINR Summer School Dubna 2013

э

(B)

< 67 >

Outline

- Higgs is neccesary
- Cross-sections and branching ratios
- ATLAS detector and integrated luminosity
- Production and couplings

•
$$H \rightarrow \gamma \gamma$$

$$H \rightarrow ZZ \rightarrow 4I$$

- $H \to WW \to l \nu l \nu$
- Spin-parity determination
- Searches for ${\cal H} \rightarrow b \bar{b}, \tau^+ \tau^-, \mu^+ \mu^-$
- Search for $H^+ \rightarrow c\bar{s}$
- Summary and outlook

3

・ 同 ト ・ ヨ ト ・ ヨ ト

What makes the Higgs special...

Without a Higgs, the states W_L, Z_L spoil the nice calculability power of gauge theories

Unitarity is lost at high-energies

< 🗇 🕨 < 🖻 🕨

Loops are not finite!

Do not allow for precision calculations

With the Higgs **calculability** is recovered:

Back to the prediction era!

э

- ∢ ≣ →

____ ▶

- ∢ ⊒ →

To do this job, the Higgs couplings must take a particular value:

The couplings must be **exactly** these ones (at tree-level) to make the SM a **consistent** theory

Otherwise this is **NOT** a Higgs = "Impostor"

< 回 > < 三 > < 三 >

(100 GeV <mh<170 GeV)

< 17 ▶

(*) *) *) *)

э

Although consistent, we think (and hope) the SM is not the full story

э

- 4 同 6 - 4 三 6 - 4 三 6

Possibilities that theorists envisage to tackle this problem:

 Keep the Higgs elementary, but protect it by symmetries: Supersymmetry

2) The Higgs is not elementary: Composite Higgs

Both imply **changes** in the Higgs sector

伺 と く ヨ と く ヨ と

Supersymmetry = MSSM

For consistency, an **extra Higgs** (doublet) is needed, sharing the "duties" of the SM Higgs

æ

▲□ → ▲ 三 → ▲ 三 →

æ

◆聞♪ ◆注♪ ◆注♪

Cross section (pb)		Branching ratio	
at $\sqrt{s}=8$ (7) TeV		(relative uncertainty)	
ggF	19.52 (15.32)	$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$	0.01 (± 5%)
VBF	1.58 (1.22)	$H \rightarrow \gamma \gamma$	2.28×10 ⁻³ (± 5%)
WH	0.70 (0.57)	$H \to ZZ^* \to 4\ell$	1.25×10 ⁻⁴ (± 5%)
ZH	0.39 (0.31)		
tīH	0.13 (0.09)		
Total	22.32 (17.51)		

Ξ.

<ロ> <同> <同> < 回> < 回>

Integrated luminosity

2

・ロン ・回と ・ヨン ・ ヨン

Table 1: Main sources of experimental uncertainty, and of theoretical uncertainty on the signal yield, common to the three channels considered in this study. Theoretical uncertainties are given for a SM Higgs boson of mass $m_{\beta} = 125$ GeV and are taken from Refs. [14– 16]. "COD Seaf" indicates (here and throughout this paper) QCD renormalisation and factorisation scales and "PDFs" indicates parton distribution functions. The ranges for the experimental uncertainties cover the variations with p_{T} and p_{T} .

Source (experimental)	Uncertainty (%)
Luminosity	±1.8 (2011), ±3.6 (2012)
Electron efficiency	±2-5
Jet energy scale	±1-5
Jet energy resolution	±2-40
Source (theory)	Uncertainty (%)
QCD scale	±8 (ggF), ±1(VBF, VH), ⁺⁴ ₋₉ (ttH)
$PDFs + \alpha_s$	±8 (ggF, ttH), ±4 (VBF, VH)

Table 2: Event generators used to model the signal and the main background processes. "PYTHIA" indicates that PYTHIA6 [31] and PYTHIA8 [32] are used for the simulations of 7 TeV and 8 TeV data, respectively.

Process	Generator
ggF, VBF	POWHEG [33, 34]+PYTHIA
WH, ZH, tĩH	PYTHIA
$H \rightarrow ZZ^* \rightarrow 4\ell$ decay	PROPHECY4f [35, 36]
W+jets, Z/y*+jets	ALPGEN [37]+HERWIG [38],
	POWHEG+PYTHIA, SHERPA [39]
tt, tW, tb	MC@NLO [40]+HERWIG
tqb	AcerMC [41]+PYTHIA6
$q\bar{q} \rightarrow WW$	POWHEG+PYTHIA6
$gg \rightarrow WW$	gg2WW [42, 43]+HERWIG
$q\bar{q} \rightarrow ZZ^*$	POWHEG [44]+PYTHIA
$gg \rightarrow ZZ^*$	gg2ZZ [43, 45]+HERWIG
WZ	MadGraph [46, 47]+PYTHIA6, HERWIG
Wy+jets	ALPGEN+HERWIG
$W\gamma^*$	MadGraph [48]+PYTHIA6 for my < 7 GeV
	POWHEG+PYTHIA for $m_{\gamma} > 7$ GeV
$q\bar{q}/gg \rightarrow \gamma\gamma$	SHERPA

(日) (同) (三) (三)

3

 $Higgs
ightarrow \gamma\gamma$

Fernando Barreiro

문 문 문

Higgs $ightarrow \gamma\gamma$

This channel is particularly sensitive to physics BSM Di-photon trigger with E_T threshold above 20 GeV at 7 TeV $\rightarrow \epsilon > 99\%$ Event selection: two **high pt isolated photons** with $100 < m_{\gamma\gamma} < 160 \text{ GeV} \rightarrow$ event categories. Shows first evidence for VBF contribution Main background: $\gamma\gamma$ continuum, plus smaller $\gamma + jet$ and di-jet production

Category Untagged

									ATLAS
									Data 2011+2012 SM Higgs boson m = 128.8 GeV (iti) Bkg (4th order polymornial)
Category	No	Ne	Ns	ggF	VBF	WH	ZH	tīH	> 0000
Untagged	14248	13582	350	320	19	7.0	4.2	1.0	4000
Loose high-mass two-jet	41	28	5.0	2.3	2.7	< 0.1	< 0.1	< 0.1	The second se
Tight high-mass two-jet	23	13	7.7	1.8	5.9	< 0.1	< 0.1	< 0.1	s = 7 TeV Ldt = 4.8 fb
Low-mass two-jet	19	21	3.1	1.5	< 0.1	0.92	0.54	< 0.1	2000
E _T ^{miss} significance	8	4	1.2	< 0.1	< 0.1	0.43	0.57	0.14	Is = 8 leV Ldt = 20.7 tb
Lepton	20	12	2.7	< 0.1	< 0.1	1.7	0.41	0.50	
All categories (inclusive)	13931	13205	370	330	27	10	5.8	1.7	S
									∄ *∞E /A
									₫ 200Ē . / \
									<u>ш́ 100 110 120 130 140 150</u>

2 10000

$$m_H = 126.8 \pm 0.2(stat) \pm 0.7(syst) GeV$$
 (1)

<ロ> <同> <同> < 回> < 回>

m,, [GeV]

Significance of observed peak is 7.4 σ with 4.3 σ expected from SM

æ

Small branching ratio but large signal to background ratio \rightarrow coupling to Z bosons. Select **two pairs of same-flavour opposite-charge, isolated leptons** Main backgrounds: ZZ^* continuum, $t\bar{t}$ and $Z + b\bar{b}$ production Three categories: VBF, VH and ggF

	0. 1	774	7.1.5	01 1
	Signal	LL'	$Z + jets, \pi$	Observed
4μ	6.3±0.8	2.8±0.1	0.55±0.15	13
2e2µ/2µ2e	7.0±0.6	3.5±0.1	2.11±0.37	13
4e	2.6 ± 0.4	1.2 ± 0.1	1.11±0.28	6

(日) (同) (三) (三)

$$m_H = 124.3 \pm 0.6(stat) \pm 0.5(syst)GeV$$
 (2)

Significance of observed peak is 6.6σ with 4.4σ expected from SM

This decay mode is sensitive to Higgs coupling to W bosons. Large rate but no mass peak reconstruction is possible. Requires **two opposite-charge isolated leptons** + **missing** E_T . Dominant backgrounds are: WW, $t\bar{t}$, Wt, Drell-Yan. Events are classified according to associated jet multiplicity thus allowing background control and extraction of ggF and VBF strengths

	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
Observed	831	309	55
Signal	100 ± 21	41 ± 14	10.9 ± 1.4
Total background	739 ± 39	261 ± 28	36 ± 4
WW	551 ± 41	108 ± 40	4.1 ± 1.5
Other VV	58 ± 8	27 ± 6	1.9 ± 0.4
Top-quark	39 ± 5	95 ± 28	5.4 ± 2.1
Z+jets	30 ± 10	12 ± 6	22 ± 3
W+jets	61 ± 21	20 ± 5	0.7 ± 0.2

No precise mass determination is possible. Observed significance for $m_H = 125.5 \text{ GeV}$ is 3.8σ with 3.8σ expected in SM

A >

Hypothesis testing and confidence intervals based on the profile likelihood ratio $\Lambda(\alpha)$.

The latter depends on parameters of interest, α , such as : m_H , production strengths relative to SM μ , coupling strengths κ , ratios of coupling strengths λ , as well as on nuisance parameters denoted by θ .

$$\Lambda(\alpha) = \frac{L(\alpha, \hat{\hat{\theta}}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}$$
(3)

Likelihood functions are built using sums of signal and background probability density functions in the discriminating variables: $m_{\gamma\gamma}, m_{4l}, m_T$.

Single circumflex: unconditional maximum likelihood estimate of a parameter Double circumflex: conditional maximum likelihood estimate for given fixed values of the parameter of interest α

Systematic uncertainties and their correlations are modelled by introducing nuisance parameters

・ロト ・回ト ・ヨト ・ヨト 三日

Combined mass :
$$m_H = 125.5 \pm 0.2(stat) \pm 0.6(syst)GeV$$
 (4)

Production strength : $\mu = 1.33 \pm 0.14(stat) \pm 0.15(syst)GeV$ (5)

$$\frac{\mu_{VBF}}{\mu_{ggF+ttH}} = 1.4 \pm 0.4(stat) \pm 0.5(syst)GeV$$
(6)

э

(日) (同) (三) (三)

Assumptions:

- Signals observed in various channels originate from a single resonance
- Width of Higgs boson is narrow : $\sigma B(i \rightarrow H \rightarrow j) = \frac{\sigma_i \Gamma_f}{\Gamma_H}$
- Only modifications of coupling strengths are considered without changing SM Lagrangian

$$\kappa_F : [0.76, 1.18] \quad \kappa_V : [1.05, 1.22]$$
(7)

____ ▶

BSM scenarios predict new heavy particles with potential contributions to loop induced processes such as $gg \to H$ and $H \to \gamma\gamma$. Effective scale factors κ_g and κ_γ are fitted to be:

$$\kappa_g = 1.04 \pm 0.14$$
 $\kappa_\gamma = 1.20 \pm 0.15$ (8)

э

(日) (同) (三) (三)

Higgs is $J^P = 0^+$: $H \rightarrow \gamma \gamma$

Measure polar angle, θ^* , distribution of the photons in the resonance rest frame Large background whose distributions in $|cos\theta^*|$ lies between $J^P = 0^+$ and $J^P = 2^+$ from $gg \rightarrow \gamma\gamma$ Likelihood fits to $m_{\gamma\gamma}$ and $|cos\theta^*|$ with $105 < m_{\gamma\gamma} < 160 GeV$ SR: $122 < m_{\gamma\gamma} < 130 GeV$ with 14977 events see figure below CR: $105 < m_{\gamma\gamma} < 122 GeV$ and $130 < m_{\gamma\gamma} < 160 GeV$ with 14300 events

Expected SM Higgs boson signal: 370 events

Polar angle distribution in the signal region after background subtraction compared to $J^{P}=0^{+},2^{+}$

э

- ∢ ≣ →

 Select events with $115 GeV < m_{41} < 130 GeV$ and measure m_{12} , m_{34} and five angles as illustrated below: 43 events with expected background of 16. Variables are fed into a BDT algorithm designed to distinguish between $J^P = 0^+$ and $J^P = 0^-, 1^+, 1^-, 2^+, 2^-$.

< 17 ▶

3

▲ 同 ▶ → 三 ▶

- ∢ ≣ →

3

- 4 回 ト - 4 回 ト

 $J^P = 0^+$ vs $J^P = 0^-$: $H \rightarrow ZZ^* \rightarrow 4I$

$$J^P = 0^-$$
 excluded at 97.8% CL

Table 1: Summary of results for the 0⁺ versus 0⁻ test in the $H \rightarrow \mathbb{Z}Z^*$ channel. The expected p_0 -values for rejecting the 0⁺ mark of hypotheses (assuming the alternative hypothesis) are shown in the second and third columns. The fourth and fifth columns show the observed p_0 -values, while the CL, value for excluding the 0⁺ brochosis is siven in the last column.

Channel	0^- assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^p = 0^-)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^p = 0^-)$	$\operatorname{CL}_{\mathrm{s}}(J^P=0^-)$
$H \rightarrow ZZ^{*}$	1.5 · 10 ⁻³	$3.7 \cdot 10^{-3}$	0.31	0.015	0.022

<ロ> <同> <同> < 回> < 回>

æ

Select dilepton events with $m_{ll} < 80 GeV$, $p_T^{ll} > 20 GeV$ and $\Delta \Phi_{ll} < 2.8$ with no additional jets above $p_T = 30 GeV$: 3615 events with 170 (3300) expected from SM Higgs (resp. Background processes) These variables together with transverse mass, m_T , of the dilepton and the missing momentum system, are fed into a BDT algorithm to distinguish between $J^P = 0^+$ and alternative hypothesis.

- 4 同 2 4 日 2 4 日 2

BDT outputs after background subtraction

э

< 回 > < 三 > < 三 >

$J^{P} = 1^{\pm}$ excluded at 99.7% CL

Table 2: Summary of results for the $J^0 = 0^+$ versus 1⁺ test in the $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ channels, as well as their combination. The expected p-values for rejecting the $J^0 \rightarrow 0^+$ and 1⁺ hypotheses (assuming the alternative hypothesis) are shown in the second and third columns. The fourth and fitth columns show the observed p-values, while the C₁ values for excluding the 1⁺ hypothesis are given in the last column.

Channel	1^+ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^p = 1^+)$	$\operatorname{CL}_{\mathrm{s}}(J^P=1^+)$
$H \rightarrow ZZ^{\circ}$	$4.6 \cdot 10^{-3}$	1.6 - 10 ⁻³	0.55	$1.0 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$
$H \rightarrow WW^*$	0.11	0.08	0.70	0.02	0.08
Combination	$2.7 \cdot 10^{-3}$	$4.7 \cdot 10^{-4}$	0.62	$1.2 \cdot 10^{-4}$	$3.0 \cdot 10^{-4}$

Table 3: Summary of results for the $J^{\mu} = 0^+$ versus | - test in the $H \rightarrow ZZ^+$ and $H \rightarrow WW^-$ channels, as well as their combinations. The expected p₀-values for rejecting the $J^{\mu} = 0^+$ and | - hypotheses (assuming the alternative hypothesis) are shown in the second and third columns. The fourth and diffs columns show the observed p₀-values, while the CL_n values for exclusing the $| -1 \rangle$ space is the state of the state of

Channel	1^- assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^-)$	Obs. $p_0(J^P=0^+)$	Obs. $p_0(J^p = 1^-)$	$\operatorname{CL}_{\mathrm{s}}(J^{P}=1^{-})$
$H \rightarrow ZZ^{*}$	0.9 · 10 ⁻³	$3.8 \cdot 10^{-3}$	0.15	0.051	0.060
$H \rightarrow WW^*$	0.06	0.02	0.66	0.006	0.017
Combination	$1.4 \cdot 10^{-3}$	$3.6 \cdot 10^{-4}$	0.33	$1.8 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$

Fernando Barreiro SM Higgs with ATLAS

3

・ロン ・四 と ・ ヨ と ・ ヨ と …

 $J^{P} = 0^{+}$ vs $J^{P} = 2^{+}$: $H \rightarrow \gamma \gamma, 4l, WW$ and summary

$$J^P = 2^+$$
 excluded at above 95% CL

3

(日) (同) (三) (三)

With $V = Z \rightarrow \nu\nu$, *II* (0-lepton, 2-lepton mode) or $V = W \rightarrow l\nu$ 1-lepton mode

Signal strength fitted to be : $\mu = 0.2 \pm 0.5(stat.) \pm 0.4(syst.)$.

э

(日) (同) (三) (三)

э

イロン イボン イヨン イヨン

Higgs ightarrow au au

2

<ロ> <同> <同> < 回> < 回>

 $h, H, A
ightarrow bar{b}$

æ

- ∢ ≣ →

・ロト ・回ト ・ヨト

Charged Higgs searches

э

-∢ ⊒ →

▲ 同 → - ▲ 三

Charged Higgs searches

<ロ> <同> <同> < 回> < 回>

2

- Production and coupling strengths in agreement with SM expectations
- $J^P = 0^+$ favoured
- No signs of H⁺
- Looking forward to running at 13 TeV, $H \rightarrow \tau \tau, b \bar{b}$?

3