Recent CMS results on heavy quarks and hadrons

Alice Bean – Univ. of Kansas for the CMS Collaboration July 25, 2013

- * CMS at the Large Hadron Collider
- Cross section measurements
- * Search for state decaying to $\Upsilon(1S)\pi^+\pi^-$
- * $\Upsilon(nS),$ J/ Ψ and $\Psi(2S)$ Polarization measurements
- * A measurement of the Λ_b lifetime
- $B_{S} \rightarrow \mu^{+}\mu^{-}, B^{0} \rightarrow \mu^{+}\mu^{-}$

JCE

To study channels with b-quarks in them, CMS

* triggers on muons

* measures decay channels with muons well

LHC

230ub

n of B-hadron

Pythia

P_T of B-hadron * Good tracking implies $|\eta| < 2.4$ * 2010, collisions at 7 TeV 100ub • Single muon triggers $p_T > 5 \text{ GeV/c}$ ÷-----◆Lots of b-physics available *2011, collisions at 7 TeV ~ 5fb⁻¹ • Use dimuon triggers with raised p_T thresholds *2012, collisions at 8 TeV ~ 20 fb⁻¹ \bullet B-physics trigger bandwidth lowered (p_T threshold raised)

Early CMS measurements

Upsilon Cross Section

Ratios of Y cross sections

∘ Y**(1S)**

Y(2S)

△ Y(3S)

(a)

ly^Yl

2

1.5

2010 data: arXiv:1303.5900

CMS, vs = 7 TeV

 $L = 36 \text{ pb}^{-1}, p_{-}^{Y} < 50 \text{ GeV/c}$

stat. unc

 $d\sigma/dy \times B(\mu\mu)$ (nb)

CMS

- $\Upsilon(nS)/\Upsilon(1S)$ ratios are flat in rapidity (out to 2)
- They increase with p_T and then flatten out

Consistent picture between experiments

 $X(3872) \rightarrow J/\Psi \pi^+ \pi^-$

JHEP 04 (2013) 154

~12,000 candidates

Fraction of X(3872) from B-hadron decays 0.263±0.023±0.016

Cross sections assume no polarization, data are consistent with $\rho \rightarrow \pi \pi$

X_b→Υ(1S)π⁺π^{-,} Υ(1S)→μ⁺μ⁻ -Similar to X(3872), but for bottomonium Look for peaks in mass spectrum

95% C.L. Upper limits set on the ratio $\sigma(pp \rightarrow X_b \rightarrow \Upsilon(1S)\pi^+\pi^-)/\sigma(pp \times \Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-)$ from 0.008-0.046

July 25, 2013 Alice Bean - Univ. of Kansas

Ψ and Υ Polarization

NRQCD should describe. It is dominated by "color octet" production which predicts strong transverse polarizations

 Two options leading to strong polarizations (longitudinal and transverse, resp.) for the directly-produced S-states \rightarrow polarization measurements are fundamental

Angular distribution

* Look at μ^+ direction with respect to z-axis from either Ψ or $\Upsilon \rightarrow \mu^+ \mu^-$

$$W(\cos\vartheta, \varphi | \vec{\lambda}) \propto \frac{1}{(3 + \lambda_{\vartheta})} (1 + \lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\vartheta} \sin^2 \vartheta \cos^2 \varphi + \lambda_{\vartheta \varphi} \sin^2 \vartheta \cos 2\varphi + \lambda_{\vartheta \varphi} \sin^2 \vartheta \cos \varphi)$$

3 parameters measured in different polarization frames.
 Present results for center-of-mass of helicity frame (HX)

• Z axis coincides with direction of $\Psi(nS)$ or $\Upsilon(nS)$ momentum in the laboratory

 Polarization measured for prompt decays using proper time distribution

July 25, 2013 Alice Bean - Univ. of Kansas

$\Upsilon(nS)$ Polarizations

- * Previously measured $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ polarizations
 - ◆ PRL 110,0818022

No significant polarization!

No evidence
 for large
 transverse
 polarizations!
 Just submitted
 paper and
 arXiv

* Heavy quark expansion model of perturbative QCD predicts $\tau_{\Lambda_b^0} / \tau_{B^0} > 0.90$

Widespread values in previous measurements

* Look at similar channel $B^0 \rightarrow J/\Psi K_S^0 (\mu^+ \mu^- \pi^+ \pi^-)$

Hadron	$N_{\rm sig}$	$m \; (MeV)$	$\tau ~(\mathrm{ps})$
$\Lambda_{ m b}^0$	1013 ± 40	5619.7 ± 0.5	1.503 ± 0.052
B^{0}	6772 ± 87	5278.9 ± 0.2	1.526 ± 0.019

* Systematics

Source	Systematic uncertainty (ps)
Alignment	0.005
Efficiency	0.030
Event selection	0.005
Fit model	0.004
Total	0.031
July 25, 2013	Alice Bean - Univ. of Kansas

$\Lambda_{\rm b}$ lifetime

- * CMS measurement $\tau_{\Lambda_b^0} = 1.503 \pm 0.052 \text{ (stat)} \pm 0.031 \text{ (syst)}$
- ✤ Consistent with World average 1.425±0.032 ps
 - New LHCb result $\tau_{\Lambda_b^0} = 1.482 \pm 0.018 \pm 0.012$ ps (relative measurement)

 $B_S \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$

Standard Model expectations

ightarrow box diagram is suppressed by $m_W^2/m_t^2pprox 1/4$ with respect to Penguin

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.57 \pm 0.30) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$$

(Buras 2012)

Analysis Overview

Signal: $\mu^+\mu^-$ from one decay vertex

- secondary vertex mom. aligned with flight direction

- isolated from jets

Background

- two semileptonic (B) decays (gluon splitting)
- one semileptonic (B) decay and one misidentified hadron
- ▶ rare single *B* decays non-peaking, e.g. $B_s^0 \to K^- \mu^+ \nu$
 - peaking, e.g. $B_s^0 \to K^+ K^-$

Latest Results – today!

- * BPH-13-004 Submitted to PLB
- * Full dataset taken with di-muon trigger
 - ◆ 2011 7 TeV 4.9 fb⁻¹
 ◆ 2012 8 TeV 20.4 fb⁻¹
 𝔅 (B⁰_s → μ⁺μ⁻) = N_S/N^{B+}_{obs} f_s ε^{B+}_{tot} 𝔅 (B⁺)/ε_{tot}
- Data in signal region kept "blind" until all analysis is defined.
- * Normalization channel $B^+ \rightarrow J/\Psi K^+$, $J/\Psi \rightarrow \mu^+ \mu^-$

 $B_S \rightarrow \mu^+ \mu^-$ Analysis

Muons identified with Multi Variant Technique

- Tight criteria limit K and π fakes
- 10 variables including tracking and muon detector
- Use boosted decision tree with variables including those that isolate Primary vertex, B-vertex, and muons
 - Make cut with best $S/\sqrt{S+B}$

Alice Bean - Univ. of Kansas

Likelihood fit $B_S \rightarrow \mu^+ \mu^-$

Backgrounds divided into peaking and non-peaking Likelihood fit to obtain numbers of events

72200

800

CMS preliminary - 🕼 = 7 TeV - Barrel 2011

(N(B²) = 3.19 ***

BE(B²) = 4.63p-10

 $(N(B^3) = 1.86^{+0.87})$

Candidate invariant mass (GeV/c

Candidate invariant mass (GeV/c

CMS preliminary - 1/5 = 8 TeV - Barrel 2012

N(semi bkg) = 3.45 4.17 N(peak bkg) = 0.30 4.37

Vents / (0.04 GeV/c²

s / (0.04 GeV/c²

2011 barrel $4 B_{s}$ events observed

2012 endcap 4 B_s events observed

2011 endcap

 $4 B_{\rm S}$ events

observed

CMS preliminary - (5 = 7 TeV)

Nineak hko) = 0.01

Observation of $B_S \rightarrow \mu^+ \mu^-$

$$\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mu^{+}\mu^{-}) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$$

4.3 Standard deviations significance arXiv:1307.5025

$$\mathcal{B}(\mathrm{B}^0
ightarrow \mu^+\mu^-) < 1.1 imes 10^{-9}$$

at 95% Confidence Level

Consistent with Standard Model

CMS has results where decays include muons
New observation of B_S→μ⁺μ⁻
Measurement of Λ_b lifetime
Search for X_b→Υ(1S)π⁺π⁻
Ψ(2S),Υ(nS) polarizations
Υ(nS) and other cross sections