Rare B Decays in the SM \& Current Experiments

Ahmed Ali
DESY, Hamburg

Helmholtz Summer School: Physics of Heavy Quarks and Hadrons July 15-28, 2013

- Rare B Decays $\left(b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, \ldots\right)$ are Flavour-Changing-Neutral-Current (FCNC) processes $(|\Delta B|=1,|\Delta Q|=0)$; not allowed at the Tree level in the SM
- FCNC processes are governed by the GIM mechanism, which imparts them sensitivity to higher scales $\left(m_{t}, m_{W}\right)$ and the CKM matrix elements, in particular, $V_{t i} ; i=d, s, b$
- FCNC processes are sensitive to physics beyond the SM, such as supersymmetry, and the BSM amplitudes can be comparable to the $(t \boldsymbol{W})$-part of the GIM amplitudes
- Last, but not least, Rare \boldsymbol{B}-decays enjoy great interest in the ongoing and planned experimental programme in heavy quark physics (CLEO, BABAR, BELLE, CDF, D0, LHC, Super-B factory)

Content

- Standard Model, Quark Flavour Mixing \& the CKM Matrix
- Basic Formalism for QCD Effects in Weak decays
- Operator Product Expansion in Weak Decays
- The Standard Candle in Rare B-Decays: $\mathbf{B} \rightarrow X_{s} \gamma$
- Electroweak Penguins: $\mathbf{B} \rightarrow X_{s} \ell^{+} \ell^{-}$
- Exclusive Radiative Decays $\mathbf{B} \rightarrow K^{*} \gamma \& \mathbf{B} \rightarrow(\rho, \omega) \gamma$
- Exclusive Decays $\mathbf{B} \rightarrow\left(K, K^{*}, \pi\right) \ell^{+} \ell^{-}$
- Current Frontier of Rare B Decays: $\mathbf{B}_{s} \rightarrow \mu^{+} \mu^{-} \& \mathbf{B}_{d} \rightarrow \mu^{+} \mu^{-}$
- Outlook \& Summary

Standard Model Lagrangian

$\underline{\text { QCD [SU(3)] }}$

$$
\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\mathrm{GSW}}+\mathcal{L}_{\mathrm{QCD}}
$$

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \boldsymbol{F}_{\mu \nu}^{(a)} \boldsymbol{F}^{(a) \mu \nu}+i \sum_{q} \bar{\psi}_{q}^{\alpha} \gamma^{\mu}\left(\boldsymbol{D}_{\mu}\right)_{\alpha \beta} \psi_{q}^{\beta}
$$

with $F_{\mu \nu}^{(a)}=\partial_{\mu} A_{\nu}^{(a)}-\partial_{\nu} A_{\mu}^{(a)}-g_{s} f_{a b c} A_{\mu}^{(b)} A_{\nu}^{(c)} ; a, b, c=1, \ldots, 8$
and $\left(D_{\mu}\right)_{\alpha \beta}=\delta_{\alpha \beta} \partial_{\mu}+i g_{s} \sum_{a} \frac{1}{2} \lambda_{\alpha \beta}^{(a)} A_{\mu}^{(a)}$
$\underline{\text { Electroweak }\left[S U(2)_{I} \times U(1)_{Y}\right]}$

$$
\begin{gathered}
\mathcal{L}_{\mathrm{GSW}}=\mathcal{L}_{\text {gauge }}\left(\boldsymbol{W}_{i}, \boldsymbol{B}, \psi_{j}\right)+\mathcal{L}_{\mathrm{Higgs}}\left(\phi_{k}, W_{i}, B, \psi_{j}\right) \\
\mathcal{L}_{\text {gauge }}\left(\boldsymbol{W}_{i}, B, \psi_{j}\right)=-\frac{1}{4} \boldsymbol{F}_{\mu \nu}^{i} \boldsymbol{F}_{i}^{\mu \nu}-\frac{1}{4} \boldsymbol{B}_{\mu \nu} B^{\mu \nu}+\sum_{\psi_{L}} \overline{\psi_{L}} i D_{\mu} \gamma^{\mu} \psi_{L}+\sum_{\psi_{R}} \overline{\psi_{R}} i D_{\mu} \gamma^{\mu} \psi_{R} \\
\mathcal{L}_{\mathrm{Higgs}}\left(\phi_{k}, W_{i}, B, \psi_{j}\right)=\mathcal{L}_{\text {Higgs }}(\text { gauge })+\mathcal{L}_{\text {Higgs }}(\text { fermions }) \\
\mathcal{L}_{\text {Higgs }}(\text { gauge })=\left(D_{\mu} \Phi\right)^{*}\left(D^{\mu} \Phi\right)-V(\Phi)
\end{gathered}
$$

$$
\begin{aligned}
D_{\mu} \Phi= & \left(\mathrm{I}\left(\partial_{\mu}+i \frac{g_{1}}{2} B_{\mu}\right)+i g_{2} \frac{\tau}{2} \cdot \mathrm{~W}_{\mu}\right) \Phi ; V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \\
& \mathcal{L}_{\mathrm{Higgs}}(\text { fermions })=Y_{u}^{i j} \bar{Q}_{L, i} \tilde{\Phi} u_{R, j}+Y_{d}^{i j} \bar{Q}_{L, i} \Phi d_{R, j}+\text { h.c. }+\ldots
\end{aligned}
$$

- 3 Quark families: $Q_{L_{j}}=\left(u_{L}, d_{L}\right) ;\left(c_{L}, s_{L}\right) ;\left(t_{L} ; b_{L}\right) ; \bar{u}_{R}, \bar{d}_{R} ; \ldots$
- Flavour mixings in the SM reside in the Higgs-Yukawa sector of the theory
- Flavour symmetry broken by Yukawa interactions

$$
\begin{aligned}
& Q_{i} Y_{d}^{i j} d_{j} \phi \longrightarrow Q_{i} M_{d}^{i j} d_{j} \\
& Q_{i} Y_{u}^{i j} u_{j} \phi^{c} \longrightarrow Q_{i} M_{u}^{i j} u_{j} \\
& M_{d}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) ; \quad M_{u}^{\dagger}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) \times V_{\mathrm{CKM}}
\end{aligned}
$$

- $\underline{V_{\mathrm{CKM}}}$ a (3×3) unitary matrix is the only source of Flavour Violation, as all gauge interactions (involving $\gamma, Z^{0}, \boldsymbol{g}$) are Flavour diagonal
- All observed phenomena involving flavour changes in the hadrons are consistently described by the CKM framework; i.e., in terms of 10 fundamental parameters: 6 quark masses, 3 mixing angles and 1 phase

The Cabibbo-Kobayashi-Maskawa Matrix

$$
\boldsymbol{V}_{\mathrm{CKM}} \equiv\left(\begin{array}{lll}
\boldsymbol{V}_{u d} & \boldsymbol{V}_{u s} & \boldsymbol{V}_{u b} \\
\boldsymbol{V}_{c d} & \boldsymbol{V}_{c s} & \boldsymbol{V}_{c b} \\
\boldsymbol{V}_{t d} & \boldsymbol{V}_{t s} & \boldsymbol{V}_{t b}
\end{array}\right)
$$

- Customary to use the handy Wolfenstein parametrization

$$
V_{\mathrm{CKM}} \simeq\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda\left(1+i A^{2} \lambda^{4} \eta\right) & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2}\left(1+i \lambda^{2} \eta\right) & 1
\end{array}\right)
$$

- Four parameters: A, λ, ρ, η
- Perturbatively improved version of this parametrization

$$
\bar{\rho}=\rho\left(1-\lambda^{2} / 2\right), \quad \bar{\eta}=\eta\left(1-\lambda^{2} / 2\right)
$$

- The CKM-Unitarity triangle $\left[\phi_{1}=\beta ; \quad \phi_{2}=\alpha ; \quad \phi_{3}=\gamma\right]$

Phases and sides of the UT

$\alpha \equiv \arg \left(-\frac{\boldsymbol{V}_{t b}^{*} \boldsymbol{V}_{t d}}{\boldsymbol{V}_{u b}^{*} \boldsymbol{V}_{u d}}\right), \quad \beta \equiv \arg \left(-\frac{\boldsymbol{V}_{c b}^{*} \boldsymbol{V}_{c d}}{\boldsymbol{V}_{t b}^{*} \boldsymbol{V}_{t d}}\right), \quad \gamma \equiv \arg \left(-\frac{\boldsymbol{V}_{u b}^{*} \boldsymbol{V}_{u d}}{\boldsymbol{V}_{c b}^{*} \boldsymbol{V}_{c d}}\right)$

- $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ have simple interpretation

$$
V_{t d}=\left|V_{t d}\right| e^{-i \beta}, \quad V_{u b}=\left|V_{u b}\right| e^{-i \gamma}
$$

- α defined by the relation: $\alpha=\pi-\beta-\gamma$
- The Unitarity Triangle (UT) is defined by:

$$
\begin{gathered}
R_{b} \mathrm{e}^{i \gamma}+R_{t} \mathrm{e}^{-i \beta}=1 \\
R_{b} \equiv \frac{\left|V_{u b}^{*} V_{u d}\right|}{\left|V_{c b}^{*} V_{c d}\right|}=\sqrt{\bar{\rho}^{2}+\bar{\eta}^{2}}=\left(1-\frac{\lambda^{2}}{2}\right) \frac{1}{\lambda}\left|\frac{V_{u b}}{V_{c b}}\right| \\
R_{t} \equiv \frac{\left|V_{t b}^{*} V_{t d}\right|}{\left|V_{c b}^{*} V_{c d}\right|}=\sqrt{(1-\bar{\rho})^{2}+\bar{\eta}^{2}}=\frac{1}{\lambda}\left|\frac{V_{t d}}{V_{c b}}\right|
\end{gathered}
$$

Current Status of the CKM-Unitarity Triangle [CKMfitter]

- $\sin 2 \beta=0.820_{-0.028}^{+0.024}$ [Fit-value]
$(=0.691 \pm 0.020$ [Direct Measurement]
- $\alpha=\left[95.9_{-5.6}^{+2.2}\right]^{\circ}$ [Fit-value]
$\alpha=\left[88.7_{-4.2}^{+4.6}\right]^{\circ}$ [Direct Measurement]
- $\gamma=[67.1 \pm 4.3]^{\circ}[$ Fit-value $]$
$\gamma=[66 \pm 12]^{\circ}$ [Direct Measurement]
- Direct and indirect measurements of angles agree well; largest Pull is on $\sin 2 \beta(=2.6 \sigma)$

Current Status of the Squashed $U T_{s}$ Triangle [CKMfitter]

- $\bar{\rho}_{B_{s}}=-0.0078 \pm 0.0015$ [Fit-value]
- $\bar{\eta}_{B_{s}}=-0.01837_{-0.00082}^{+0.00080}$ [Fit-value]
- $\sin 2 \beta_{s}=0.0364 \pm 0.0016[$ Fit-value] where $\left.\beta_{s}=-\arg \left(-V_{c s} V_{c b}^{*} / V_{t s} V_{t b}^{*}\right)\right]$

Basic Formalism for including QCD Effects in Weak decays

- Recall the renormalization procedure in QCD

$$
\begin{array}{ll}
A_{0 \mu}^{a}=Z_{3}^{1 / 2} A_{\mu}^{a} & q_{0}=Z_{q}^{1 / 2} q \\
g_{0, s}=Z_{g} g_{s} \mu^{\varepsilon} & m_{0}=Z_{m} m
\end{array}
$$

- The index " 0 " indicates unrenormalized quantities. \boldsymbol{A}_{μ}^{a} and \boldsymbol{q} are renormalized fields, $\boldsymbol{g}_{\boldsymbol{s}}$ is the renormalized QCD coupling and \boldsymbol{m} the renormalized quark mass
- Dimensional Regularization is used in which Feynman diagrams are evaluated in $\overline{D=4-2 \varepsilon}$ space-time dimensions and the singularities are extracted as $1 / \varepsilon$ poles
- The simplest renormalization scheme is the Minimal Subtraction Scheme MS in which only divergences ($1 / \varepsilon$ poles) are subtracted

$$
Z_{i}=\frac{\alpha_{s}}{4 \pi} \frac{a_{1 i}}{\varepsilon}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(\frac{a_{2 i}}{\varepsilon^{2}}+\frac{b_{2 i}}{\varepsilon}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

$\boldsymbol{a}_{j i}$ and $\boldsymbol{b}_{j i}$ are $\boldsymbol{\mu}$-independent constants.

- Example: Quark Self-Energy Correction in the MS scheme:

$$
i \Sigma_{\alpha \beta}=i \not p C_{F} \delta_{\alpha \beta} \frac{\alpha_{s}}{4 \pi}\left[\frac{1}{\varepsilon}+\ln 4 \pi-\gamma_{E}+\ln \frac{\mu^{2}}{-p^{2}}+1\right]
$$

where $C_{F}=4 / 3$ and γ_{E} is the Euler constant $\gamma_{E}=0.5772 \ldots$

- The so-called $\overline{\mathrm{MS}}$-scheme is defined by: $\boldsymbol{\mu}_{\overline{M S}}=\mu_{e^{\gamma_{E} / 2}(4 \pi)^{-1 / 2}}$

$$
\left(i \Sigma_{\alpha \beta}\right)_{d i v}=i C_{F} \delta_{\alpha \beta} \frac{\alpha_{s}}{4 \pi}(\not p-4 m) \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- Adding the counter-term $i \delta_{\alpha \beta}\left[\left(Z_{q}-1\right) \not p-\left(Z_{q} Z_{m}-1\right) m\right]$ and requiring the final result to be zero yields the Renormalization constants

$$
\begin{aligned}
& Z_{q}=1-\frac{\alpha_{s}}{4 \pi} C_{F} \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& Z_{m}=1-\frac{\alpha_{s}}{4 \pi} 3 C_{F} \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

- Z_{3} and Z_{g} calculated likewise from the gluon propagator and the $g \bar{q} q$ vertex

$$
\begin{aligned}
& Z_{3}=1-\frac{\alpha_{s}}{4 \pi}\left[\frac{2}{3} f-\frac{5}{3} N\right] \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& Z_{g}=1-\frac{\alpha_{s}}{4 \pi}\left[\frac{11}{6} N-\frac{2}{6} f\right] \frac{1}{\varepsilon}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Basic RG Equations in QCD \& their Solutions

- Scale $(\boldsymbol{\mu})$-dependence of renormalized coupling $\boldsymbol{g}_{s}(\boldsymbol{\mu})\left(\boldsymbol{g} \equiv \boldsymbol{g}_{s}\right)$ and quark mass $\boldsymbol{m}(\mu)$:

$$
\begin{gathered}
\frac{d g(\mu)}{d \ln \mu}=\beta(g(\mu), \varepsilon) \\
\frac{d m(\mu)}{d \ln \mu}=-\gamma_{m}(g(\mu)) m(\mu)
\end{gathered}
$$

where

$$
\begin{gathered}
\beta(g, \varepsilon)=-\varepsilon g+\beta(g), \\
\beta(g)=-g \frac{1}{Z_{g}} \frac{d Z_{g}}{d \ln \mu}, \quad \gamma_{m}(g)=\frac{1}{Z_{m}} \frac{d Z_{m}}{d \ln \mu}
\end{gathered}
$$

- Series expansion in $1 / \varepsilon^{k}: Z_{i}=1+\sum_{k=1}^{\infty} \frac{1}{\varepsilon^{k}} Z_{i, k}(g)$ one finds

$$
\begin{aligned}
\beta(g) & =2 g^{3} \frac{d Z_{g, 1}(g)}{d g^{2}} \\
\gamma_{m}(g) & =-2 g^{2} \frac{d Z_{m, 1}(g)}{d g^{2}}
\end{aligned}
$$

- $\beta(g)$ and $\gamma_{m}(\boldsymbol{g})$ can be obtained from the $1 / \varepsilon$-pole parts of Z_{g} and Z_{m}

Compendium of Useful Results

- $\boldsymbol{\beta}(\boldsymbol{g}), \gamma\left(\boldsymbol{\alpha}_{s}\right)$ and $\boldsymbol{Z}_{q, 1}\left(\boldsymbol{\alpha}_{s}\right)$ up to two-loops are

$$
\begin{gathered}
\beta(g)=-\beta_{0} \frac{g^{3}}{16 \pi^{2}}-\beta_{1} \frac{g^{5}}{\left(16 \pi^{2}\right)^{2}} \\
\gamma_{m}\left(\alpha_{s}\right)=\gamma_{m}^{(0)} \frac{\alpha_{s}}{4 \pi}+\gamma_{m}^{(1)}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \\
Z_{q, 1}\left(\alpha_{s}\right)=a_{1} \frac{\alpha_{s}}{4 \pi}+a_{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}
\end{gathered}
$$

where

$$
\begin{gathered}
\beta_{0}=\frac{11 N-2 f}{3} \quad \beta_{1}=\frac{34}{3} N^{2}-\frac{10}{3} N f-2 C_{F} f \\
\gamma_{m}^{(0)}=6 C_{F} \quad \gamma_{m}^{(1)}=C_{F}\left(3 C_{F}+\frac{97}{3} N-\frac{10}{3} f\right) \\
a_{1}=-C_{F} \quad a_{2}=C_{F}\left(\frac{3}{4} C_{F}-\frac{17}{4} N+\frac{1}{2} f\right) \\
C_{F}=\frac{N^{2}-1}{2 N}
\end{gathered}
$$

Running Coupling Constant

- The RG equation for $\boldsymbol{g}(\boldsymbol{\mu})$ can be written as:

$$
\frac{d \alpha_{s}}{d \ln \mu}=-2 \beta_{0} \frac{\alpha_{s}^{2}}{4 \pi}-2 \beta_{1} \frac{\alpha_{s}^{3}}{(4 \pi)^{2}}
$$

- The solution is:

$$
\frac{\alpha_{s}(\mu)}{4 \pi}=\frac{1}{\beta_{0} \ln \left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}-\frac{\beta_{1}}{\beta_{0}^{3}} \frac{\ln \ln \left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}{\ln ^{2}\left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}
$$

- $\Lambda_{\overline{M S}}$ is a QCD scale characteristic for the $\overline{\mathrm{MS}}$ scheme.
- $\Lambda_{\overline{M S}}$ and $\boldsymbol{\alpha}_{s}(\boldsymbol{\mu})$ depend on \boldsymbol{f}, the number of "effective" flavours present in $\boldsymbol{\beta}_{0}$ and $\boldsymbol{\beta}_{1}$, and depends on the scale $\boldsymbol{\mu}$. As a working procedure $f=6$ for $\mu>\boldsymbol{m}_{\boldsymbol{t}}$, $f=5$ for $m_{b} \leq \mu \leq m_{t}$ etc.
- Denoting by $\boldsymbol{\alpha}_{s}^{(f)}(\boldsymbol{\mu})$ the effective coupling constant for a theory with f effective flavours, the current world average is

$$
\alpha_{s}^{(5)}\left(M_{Z}\right)=0.1184 \pm 0.0007
$$

Running Quark Masses

- The RG equation for $\boldsymbol{m}(\boldsymbol{\mu})$ can be written as:

$$
\frac{d m(\mu)}{d \ln \mu}=-\gamma_{m}(g) m(\mu)
$$

- With $d g / d \ln \mu=\beta(g)$ the solution is:

$$
m(\mu)=m\left(\mu_{0}\right) \exp \left[-\int_{g\left(\mu_{0}\right)}^{g(\mu)} d g^{\prime} \frac{\gamma_{m}\left(g^{\prime}\right)}{\beta\left(g^{\prime}\right)}\right]
$$

- $\boldsymbol{m}\left(\boldsymbol{\mu}_{\mathbf{0}}\right)$ is the value of the running quark mass at the scale $\boldsymbol{\mu}_{\mathbf{0}}$. Inserting the expansions for $\gamma_{m}(\boldsymbol{g})$ and $\boldsymbol{\beta}(\boldsymbol{g})$ and expanding in $\boldsymbol{\alpha}_{s}$ gives:

$$
m(\mu)=m\left(\mu_{0}\right)\left[\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right]^{\frac{\gamma_{m}^{(0)}}{2 \beta_{0}}}\left[1+\left(\frac{\gamma_{m}^{(1)}}{2 \beta_{0}}-\frac{\beta_{1} \gamma_{m}^{(0)}}{2 \beta_{0}^{2}}\right) \frac{\alpha_{s}(\mu)-\alpha_{s}\left(\mu_{0}\right)}{4 \pi}\right]
$$

- Since $\frac{\gamma_{m}^{(0)}}{2 \beta_{0}}$ is a positive number, quark masses $\boldsymbol{m}(\boldsymbol{\mu})$ decrease as $\boldsymbol{\mu}$ increases, and they require a scheme and a scale to be quantified much like $\alpha_{s}(\mu)$

Operator Product Expansion in Weak decays

Basic Idea

- Consider the quark level transition $c \rightarrow s u \bar{d}$

(a)

(b)
- The tree-level W-exchange amplitude is:

$$
\begin{aligned}
A & =-\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d} \frac{M_{W}^{2}}{k^{2}-M_{W}^{2}}(\bar{s} c)_{V-A}(\bar{u} d)_{V-A} \\
& =\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}(\bar{s} c)_{V-A}(\bar{u} d)_{V-A}+\mathcal{O}\left(\frac{k^{2}}{M_{W}^{2}}\right)
\end{aligned}
$$

where $(\bar{s} c)_{V-A} \equiv \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) c$

- Ignoring $\mathcal{O}\left(\boldsymbol{k}^{2} / \boldsymbol{M}_{W}^{2}\right)$ terms, the amplitude \boldsymbol{A} may also be obtained from

$$
\mathcal{H}_{e f f}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}(\bar{s} c)_{V-A}(\bar{u} d)_{V-A}+\text { High D Operators }
$$

- Basic idea of Operator Product Expansion (OPE): the product of two current operators is expanded into a series of local operators, weighted by the effective coupling constants, the Wilson Coefficients
OPE \& Short-distance QCD Effects
- Rewriting the $\boldsymbol{c} \rightarrow \boldsymbol{s u} \overline{\boldsymbol{d}}$ transition to make the quark color-indices explicit

$$
\mathcal{H}_{e f f}^{(0)}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} d_{\beta}\right)_{V-A}
$$

- With QCD effects $\mathcal{H}_{\text {eff }}^{(0)}$ is generalized to

$$
\mathcal{H}_{e f f}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(C_{1}(\mu) Q_{1}+C_{2}(\mu) Q_{2}\right)
$$

where

$$
\begin{aligned}
Q_{1} & =\left(\bar{s}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} d_{\alpha}\right)_{V-A} \\
Q_{2} & =\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} d_{\beta}\right)_{V-A}
\end{aligned}
$$

- In addition to the original operator Q_{2}, a new operator Q_{1} with the same flavour form but different colour structure is generated, as is evident from the colour structure

$$
T_{\alpha \beta}^{a} T_{\gamma \rho}^{a}=-\frac{1}{2 N} \delta_{\alpha \beta} \delta_{\gamma \delta}+\frac{1}{2} \delta_{\alpha \delta} \delta_{\gamma \beta}
$$

- The Wilson coefficients C_{1} and C_{2}, become calculable nontrivial functions of $\boldsymbol{\alpha}_{s}$, $\boldsymbol{M}_{\boldsymbol{W}}$ and the renormalization scale $\boldsymbol{\mu}$.

Calculation of Wilson Coefficients

- They are determined by the requirement that the amplitude $\boldsymbol{A}_{\text {full }}$ in the SM is reproduced by the amplitude in the effective theory $\boldsymbol{A}_{\text {eff }}$

$$
A_{f u l l}=A_{e f f}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(C_{1}\left\langle Q_{1}\right\rangle+C_{2}\left\langle Q_{2}\right\rangle\right)
$$

- There are three steps involved in this procedure, outlined below

Step 1: Calculation of $\boldsymbol{A}_{\text {full }}$

- In the SM, $\boldsymbol{A}_{\text {full }}$ to $\mathcal{O}\left(\alpha_{s}\right)\left(m_{i}=0, p^{2}<0\right)$:

$$
\begin{aligned}
A_{f u l l}= & \frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left[\left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right)\right) S_{2}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{-p^{2}} S_{2}\right. \\
& \left.-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{-p^{2}} S_{1}\right]
\end{aligned}
$$

Here $\boldsymbol{S}_{\mathbf{1}}$ and $\boldsymbol{S}_{\mathbf{2}}$ are the tree level matrix elements of $\boldsymbol{Q}_{\mathbf{1}}$ and $\boldsymbol{Q}_{\mathbf{2}}$

$$
\begin{aligned}
& S_{1} \equiv\left\langle Q_{1}\right\rangle_{t r e e}=\left(\bar{s}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} d_{\alpha}\right)_{V-A} \\
& S_{2} \equiv\left\langle Q_{2}\right\rangle_{t r e e}=\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} d_{\beta}\right)_{V-A}
\end{aligned}
$$

- The singularity $1 / \varepsilon$ can be removed by quark field renormalization

(a)

(b)

(c)

Step 2: Calculation of Matrix Elements $\left\langle\boldsymbol{Q}_{i}\right\rangle$

- The unrenormalized matrix elements of Q_{1} and Q_{2} are found at $\mathcal{O}\left(\alpha_{s}\right)$ by calculating the diagrams in the effective theory

$$
\begin{aligned}
\left\langle Q_{1}\right\rangle^{(0)}= & \left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right)\right) S_{1}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{1} \\
& -3 \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{2} \\
\left\langle Q_{2}\right\rangle^{(0)}= & \left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right)\right) S_{2}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{2} \\
& -3 \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{-p^{2}}\right) S_{1}
\end{aligned}
$$

- The divergence in the first terms can again be removed by quark field renormalization. However, the resulting expressions are still divergent. To remove them, Operator renormalization is necessary

$$
Q_{i}^{(0)}=Z_{i j} Q_{j}
$$

- The renormalization constant is a 2×2 matrix \hat{Z}. the relation between the unrenormalized $\left(\left\langle\boldsymbol{Q}_{i}\right\rangle^{(0)}\right.$) and the renormalized amputated Green functions $\left(\left\langle\boldsymbol{Q}_{i}\right\rangle\right)$ is:

$$
\left\langle Q_{i}\right\rangle^{(0)}=Z_{q}^{-2} Z_{i j}\left\langle Q_{j}\right\rangle
$$

- Z_{q}^{-2} removes the $1 / \varepsilon$ divergences in the first terms discussed above. $Z_{i j}$ remove the remaining divergences. In the $\overline{\mathrm{MS}}$-scheme:

$$
\hat{Z}=1+\frac{\alpha_{s}}{4 \pi} \frac{1}{\varepsilon}\left(\begin{array}{cc}
3 / N & -3 \\
-3 & 3 / N
\end{array}\right)
$$

- The renormalized matrix elements $\left\langle Q_{i}\right\rangle$ are given by

$$
\begin{aligned}
& \left\langle Q_{1}\right\rangle=\left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}}\right) S_{1}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{1}-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{2} \\
& \left\langle Q_{2}\right\rangle=\left(1+2 C_{F} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}}\right) S_{2}+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{2}-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{\mu^{2}}{-p^{2}} S_{1}
\end{aligned}
$$

Step 3: Extraction of C_{i}

- Inserting $\left\langle\boldsymbol{Q}_{\boldsymbol{i}}\right\rangle$ in $\boldsymbol{A}_{\text {eff }}$ and comparing with $\boldsymbol{A}_{\text {full }}$ yields the Wilson coefficients $\boldsymbol{C}_{\mathbf{1}}$ and C_{2}

$$
C_{1}(\mu)=-3 \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{\mu^{2}}, \quad C_{2}(\mu)=1+\frac{3}{N} \frac{\alpha_{s}}{4 \pi} \ln \frac{M_{W}^{2}}{\mu^{2}}
$$

The Standard Candle: $B \rightarrow X_{s} \gamma$
Interest in the rare decay $B \rightarrow X_{s} \gamma$ transcends B Physics!

- First measurements by CLEO (1995); well measured at the B-factories by Belle and BaBar; more precise measurements anticipated at SuperB-factories

Theoretical Interest:

- A monumental theoretical effort has gone in improving the perturbative precision; $\boldsymbol{B} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \boldsymbol{\gamma}$ in NNLO completed in 2006
- First estimate of $\boldsymbol{\mathcal { B }}\left(\boldsymbol{B} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \boldsymbol{\gamma}\right)$: M. Misiak et al., Phys. Rev. Lett. 98:022002 (2007)
- Analysis of $\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ at NNLO with a cut on the Photon energy, T. Becher and M. Neubert, Phys. Rev. Lett. 98:022003 (2007)
- Non-perturbative effects under control thanks to HQET
- Sensitivity to new physics; hence constrains parameters of the BSM models such as the 2HDMs and Supersymmetry
- A crucial input in a large number of precision tests of the SM in $b \rightarrow s$ processes, such as $B \rightarrow X_{s} \ell^{+} \ell^{-}$

Examples of the leading electroweak diagrams for $B \rightarrow X_{s} \gamma$

$$
\left|\frac{V_{u b} V_{u s}}{V_{c b}}\right| \simeq\left|\frac{V_{u b} V_{u s}}{V_{t s}}\right| \simeq 2 \%
$$

In the amplitude, after including LO QCD effects.

- QCD logarithms $\alpha_{s} \ln \frac{M_{W}^{2}}{m_{b}^{2}}$ enhance $\operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)$ more than twice
- Effective field theory (obtained by integrating out heavy fields) used for resummation of such large logarithms

QCD Penguin and Box Diagrams in SM for $b \rightarrow s g$ \& $b \rightarrow s q \bar{q}$

(a)

(b)

QED \& QCD Penguin Diagrams in the SM

(a)

(b)

(c)

Penguins and Box Diagrams in the SM

Some representative diagrams in $b \rightarrow s \ell^{+} \ell^{-}$

Diagrams in the full theory

(a)

(b)

Diagrams in the effective theory

The effective Lagrangian for $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$

$$
\begin{gathered}
\mathcal{L}=\underset{(q=u, d, s, c, b, l=e, \mu, \tau)}{\mathcal{L}_{Q C D \times Q E D}(q, l)}+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) O_{i} \\
O_{i}=\left\{\begin{array}{lll}
\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), & i=1,2, & \left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
\left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), & i=3,4,5,6, & \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, & i=7, & C_{7}\left(m_{b}\right) \sim-0.3 \\
\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, & i=8, & C_{8}\left(m_{b}\right) \sim-0.15 \\
\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right), & i=9,10 & \left|C_{i}\left(m_{b}\right)\right| \sim 4
\end{array}\right.
\end{gathered}
$$

Three steps of the calculation:
Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at $\mu_{0} \sim M_{W}$ by requiring equality of the SM and the effective theory Green functions
Mixing: Deriving the effective theory RGE and evolving $C_{i}(\mu)$ from μ_{0} to $\mu_{b} \sim m_{b}$
Matrix elements: Evaluating the on-shell amplitudes at $\mu_{b} \sim m_{b}$

Structure of the SM calculations for $\bar{B} \rightarrow X_{s} \gamma \& \bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$

$$
\mathcal{H}_{\mathrm{eff}} \sim \sum_{i=1}^{10} C_{i}(\mu) O_{i}
$$

- $\mathcal{H}_{\text {eff }}$ independent of the scale $\boldsymbol{\mu}$, while $\boldsymbol{C}_{i}(\boldsymbol{\mu})$ and $\boldsymbol{O}_{i}(\boldsymbol{\mu})$ depend on $\boldsymbol{\mu}$

$$
\mu \frac{d}{d \mu} C_{i}(\mu)=\gamma_{i j}^{\mathrm{T}} C_{j}(\mu)
$$

- $\gamma_{i j}$: anomalous dimension matrix
- Matching usually done at high scale ($\mu_{0} \sim M_{W}, m_{t}$)
- Full theory and the matrix elements of the effective operators have the same large logarithms
$\mu_{0} \sim O\left(M_{W}\right)$
\downarrow RGE
$\mu_{b} \sim O\left(m_{b}\right): \quad$ matrix elements of the operators at this scale don't have large logs; they are contained in the $C_{i}\left(\mu_{b}\right)$
- Evaluation of the on-shell amplitudes at $\mu_{b} \sim \boldsymbol{m}_{b}$

Renormalization Group Evolution for $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \boldsymbol{\gamma}$

- $C_{i}\left(\mu_{b}\right)$ are calculated by using

$$
\vec{C}\left(\mu_{b}\right)=\hat{U}_{5}\left(\mu_{b}, \mu_{W}\right) \vec{C}\left(\mu_{W}\right)
$$

$\hat{U}_{5}\left(\mu_{b}, \mu_{W}\right)$ is the 8×8 evolution matrix

- In LO: $\hat{\boldsymbol{U}}_{5}\left(\boldsymbol{\mu}_{b}, \mu_{W}\right)$ is to be replaced by $\hat{\boldsymbol{U}}_{5}^{(0)}\left(\boldsymbol{\mu}_{b}, \mu_{W}\right)$,

$$
\hat{U}^{(0)}\left(\mu, \mu_{W}\right)=\hat{V}\left(\left[\frac{\alpha_{s}\left(\mu_{W}\right)}{\alpha_{s}(\mu)}\right]^{\frac{\gamma^{(0)}}{2 \beta_{0}}}\right)_{D} \hat{V}^{-1}
$$

where \hat{V} diagonalizes $\hat{\gamma}^{(0) T}$

$$
\hat{\gamma}_{D}^{(0)}=\hat{V}^{-1} \gamma^{(0) T} \hat{V}
$$

and $\vec{\gamma}^{(0)}$ is the vector containing the diagonal elements of the diagonal matrix $\hat{\gamma}_{D}^{(0)}$,

- Initial conditions $\vec{C}^{(0)}\left(\mu_{W}\right)$ are (other coefficients are set to zero at $\left.\boldsymbol{\mu}=\boldsymbol{\mu}_{W}\right)$: :

$$
\begin{gathered}
C_{2}^{(0)}\left(\mu_{W}\right)=1 \\
C_{7 \gamma}^{(0)}\left(\mu_{W}\right)=\frac{3 x_{t}^{3}-2 x_{t}^{2}}{4\left(x_{t}-1\right)^{4}} \ln x_{t}+\frac{-8 x_{t}^{3}-5 x_{t}^{2}+7 x_{t}}{24\left(x_{t}-1\right)^{3}} \\
C_{8 G}^{(0)}\left(\mu_{W}\right)=\frac{-3 x_{t}^{2}}{4\left(x_{t}-1\right)^{4}} \ln x_{t}+\frac{-x_{t}^{3}+5 x_{t}^{2}+2 x_{t}}{8\left(x_{t}-1\right)^{3}}
\end{gathered}
$$

- Using RG, one obtains the following LO results for the Wilson coefficients

$$
\begin{aligned}
& C_{j}^{(0)}\left(\mu_{b}\right)=\sum_{i=1}^{8} k_{j i} \eta^{a_{i}} \quad(j=1, \ldots, 6) \\
& C_{7 \gamma}^{(0) e f f}\left(\mu_{b}\right)=\eta^{\frac{16}{23}} C_{7 \gamma}^{(0)}\left(\mu_{W}\right)+\frac{8}{3}\left(\eta^{\frac{14}{23}}-\eta^{\frac{16}{23}}\right) C_{8 G}^{(0)}\left(\mu_{W}\right)+C_{2}^{(0)}\left(\mu_{W}\right) \sum_{i=1}^{8} h_{i} \eta^{a_{i}}, \\
& C_{8 G}^{(0) e f f}\left(\mu_{b}\right)=\eta^{\frac{14}{23}} C_{8 G}^{(0)}\left(\mu_{W}\right)+C_{2}^{(0)}\left(\mu_{W}\right) \sum_{i=1}^{8} \bar{h}_{i} \eta^{a_{i}}, \\
& \text { with } \eta=\frac{\alpha_{s}\left(\mu_{W}\right)}{\alpha_{s}\left(\mu_{b}\right)}
\end{aligned}
$$

Table 1: Magic Numbers

\boldsymbol{i}	1	2	3	4	5	6	7	8
$\boldsymbol{a}_{\boldsymbol{i}}$	$\frac{14}{23}$	$\frac{16}{23}$	$\frac{6}{23}$	$-\frac{12}{23}$	0.4086	-0.4230	-0.8994	0.1456
\boldsymbol{h}_{i}	2.2996	-1.0880	$-\frac{3}{7}$	$-\frac{1}{14}$	-0.6494	-0.0380	-0.0185	-0.0057
\bar{h}_{i}	0.8623	0	0	0	-0.9135	0.0873	-0.0571	0.0209

For $\boldsymbol{m}_{\boldsymbol{t}}=170 \mathrm{GeV}, \mu_{b}=5 \mathrm{GeV}$ and $\alpha_{s}^{(5)}\left(M_{Z}\right)=0.118$ one obtains

$$
C_{7 \gamma}^{(0) \mathrm{eff}}\left(\mu_{b}\right)=-0.300 ; \quad C_{8 G}^{(0) \mathrm{eff}}\left(\mu_{b}\right)=-0.144
$$

Status of the SM calculations for $\bar{B} \rightarrow X_{s} \gamma$

Matching $\left(\mu_{0} \sim M_{W}, m_{t}\right)$:

$$
\begin{array}{cccc}
C_{i}\left(\mu_{0}\right)= & C_{i}^{(0)}\left(\mu_{0}\right)+\frac{\alpha_{s}\left(\mu_{0}\right)}{4 \pi} C_{i}^{(1)}\left(\mu_{0}\right) & +\left(\frac{\alpha_{s}\left(\mu_{0}\right)}{4 \pi}\right)^{2} & C_{i}^{(2)}\left(\mu_{0}\right) \\
i=1, \ldots, 6: & \text { tree } & \text { 1-loop } & \text { 2-loop }
\end{array} \text { [Bobeth, Misiak, Urban, } \begin{array}{cc}
\text { NPB 574 (2000) 291] } \\
i=7,8: & \text { 1-loop }
\end{array} \text { 2-loop } \quad \text { 3-loop } \quad \text { [Steinhauser, Misiak, }
$$

The 3-loop matching has less than 2% effect on $\operatorname{BR}\left(\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \gamma\right)$
Mixing:

$$
\hat{\gamma}=\frac{\alpha_{s}}{4 \pi}\left(\begin{array}{cc}
1 \mathrm{~L} & 2 \mathrm{~L} \\
0 & 1 \mathrm{~L}
\end{array}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(\begin{array}{cc}
2 \mathrm{~L} & 3 \mathrm{~L} \\
0 & 2 \mathrm{~L}
\end{array}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left(\begin{array}{cc}
3 \mathrm{~L} & 4 \mathrm{~L} \\
0 & 3 \mathrm{~L}
\end{array}\right)
$$

Haisch, Gorbahn, Gambino, Schröder, Czakon

Matrix elements $\left(\mu_{b} \sim m_{b}\right)$:

$$
\begin{array}{cccc}
\left\langle O_{i}\right\rangle\left(\mu_{b}\right)= & \left\langle O_{i}\right\rangle^{(0)}\left(\mu_{b}\right) & +\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\left\langle O_{i}\right\rangle^{(1)}\left(\mu_{b}\right) & +\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\right)^{2}\left\langle O_{i}\right\rangle^{(2)}\left(\mu_{b}\right) \\
i=1, \ldots, \text { 6: } & \text { 1-loop } & \text { 2-loop } & \text { 3-loop } \quad \text { [Bieri, Greub, Steinhauser, } \\
& & \text { hep-ph/0302051]] } \\
i=7,8: & \text { tree } & \text { 1-loop } & \mathcal{O}\left(\alpha_{s}^{2} n_{f}\right), \text { Steinhauser, Misiak } \\
& & \text { 2-loop }
\end{array}
$$

Examples of SM diagrams for the matching of $C_{7}\left(\mu_{0}\right)$:

LO:
[Inami, Lim, 1981]

NLO:
[Adel, Yao, 1993]

NNLO:
[Steinhauser, Misiak, 2004]

s

The $b \rightarrow s \gamma$ matrix elements

Perturbative on-shell amplitudes

LO

NLO

NNLO
[Ali, Greub, 1991]

in progress: Asatrian, Greub, Hurth
[Bieri et al, 2003] ($\left.\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)\right)$ in progress: Steinhauser, Misiak
(extrapolation in m_{c})

Wilson Coefficients in the SM
Wilson Coefficients of Four-Quark Operators

	$C_{1}\left(\mu_{b}\right)$	$C_{2}\left(\mu_{b}\right)$	$C_{3}\left(\mu_{b}\right)$	$C_{4}\left(\mu_{b}\right)$	$C_{5}\left(\mu_{b}\right)$	$C_{6}\left(\mu_{b}\right)$
LL	-0.257	1.112	0.012	-0.026	0.008	-0.033
NLL	-0.151	1.059	0.012	-0.034	0.010	-0.040

Wilson Coefficients of Other Operators

	$C_{7}^{\text {eff }}\left(\mu_{b}\right)$	$C_{8}^{\text {eff }}\left(\mu_{b}\right)$	$C_{9}\left(\mu_{b}\right)$	$C_{10}\left(\mu_{b}\right)$
LL	-0.314	-0.149	2.007	0
NLL	-0.308	-0.169	4.154	-4.261
NNLL	-0.290		4.214	-4.312

- Obtained for the following input:

$$
\begin{array}{r}
\mu_{b}=4.6 \mathrm{GeV} \quad \bar{m}_{t}\left(\bar{m}_{t}\right)=167 \mathrm{GeV} \\
M_{W}=80.4 \mathrm{GeV} \quad \sin ^{2} \theta_{W}=0.23
\end{array}
$$

- Three-loop running is used for α_{s} coupling with $\Lambda \frac{(5)}{\mathrm{MS}}=220 \mathrm{MeV}$

C Non-perturbative effects in $\bar{B} \rightarrow X_{s} \gamma$

We need to sum the matrix elements of the effective Hamiltonian:

$$
\left.\Sigma_{X_{s}}\left|C_{7}\left\langle X_{s} \gamma\right| O_{7}\right| \bar{B}\right\rangle+C_{2}\left\langle X_{s} \gamma\right| O_{2}|\bar{B}\rangle+\left.\ldots\right|^{2}
$$

- The " 77 " term in the above sum can be related via optical theorem to the imaginary part of the elastic forward scattering amplitude; HQET gives us a double expansion $\Sigma_{X_{s}} \operatorname{BR}\left(\bar{B} \rightarrow X_{s} \gamma\right)=\left[a_{00}+a_{02}\left(\frac{\Lambda}{m_{B}}\right)^{2}+\ldots\right]+\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\left[a_{10}+a_{12}\left(\frac{\Lambda}{m_{B}}\right)^{2}+\ldots\right]$
$+\mathcal{O}\left[\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2}\right]+[$ Contributions other than the "77" term]
- $\frac{\Delta \Gamma_{B \rightarrow X_{s}}^{O_{7}, O_{7}}}{\Gamma_{b \rightarrow s \gamma}^{\mathrm{LL}}}=1+\frac{\delta_{\mathrm{rad}}^{\mathrm{NP}}}{m_{b}^{2}} ; \quad \delta_{\text {rad }}^{\mathrm{NP}}=\frac{1}{2} \lambda_{1}-\frac{9}{2} \lambda_{2}$
- Contributions from Operators containing the charm quark at the leading order in α_{s} :

- $\frac{\Delta \Gamma_{B \rightarrow X_{s}}^{O_{2}, O_{7}}}{\Gamma_{b \rightarrow s \gamma}^{L L}}=\frac{1}{9} \frac{C_{2}}{C_{7}} \frac{\lambda_{2}}{m_{c}^{2}} \simeq+0.03$

E_{γ}-Spectrum in $B \rightarrow X_{s} \gamma$ in $O\left(\alpha_{s}^{2}\right)$

Melnikov and Mitov; hep-ph/0505097

- Assuming that the decay is dominated by \mathcal{O}_{7}; calculate normalized E_{γ}-spectrum in $O\left(\alpha_{s}^{2}\right)\left[z=2 E_{\gamma} / m_{b}\right]$

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d z}=\delta(1-z)+\left(\frac{\alpha_{s}}{\pi}\right) C_{F} F^{(1)}(z)+\left(\frac{\alpha_{s}}{\pi}\right)^{2} C_{F} F^{(2)}(z)
$$

- Normalization $\int_{0}^{1} \frac{1}{\Gamma} \frac{d \Gamma}{d z} d z=1$ allows to fix the $\delta(1-z)$ term
- $\boldsymbol{O}\left(\boldsymbol{\alpha}_{\boldsymbol{s}}\right)$ contribution [Greub, AA; Z. Phys. C49 ('91) 431]

$$
F^{(1)}(z)=-\frac{31}{12} \delta(1-z)-\left[\frac{\ln (1-z)}{1-z}\right]_{+}-\frac{7}{4}\left[\frac{1}{1-z}\right]_{+}-\frac{z+1}{2} \ln (1-z)+\frac{7+z-2 z^{2}}{4}
$$

- BLM [Brodsky-Lepage-Mackenzie] corrections to $\boldsymbol{O}\left(\boldsymbol{\alpha}_{s}\right)^{\mathbf{2}} \boldsymbol{\beta}_{0}$ obtained by calculating the $O\left(\alpha_{s}\right)^{2} n_{f}$ piece and making the identification $-2 n_{f} / 3 \rightarrow \beta_{0}$ [Ligeti, Luke, Manohar, Wise; hep-ph/9903305]
- BLM corrections summed to all orders in $\boldsymbol{\alpha}_{\boldsymbol{s}}$ [Benson, Bigi, Uraltsev; hep-ph/0410080]

E_{γ}-Spectrum in $B \rightarrow X_{s} \gamma$ in $O\left(\alpha_{s}^{2}\right)$ (Contd.)

Melnikov and Mitov; hep-ph/0505097

- E_{γ}-spectrum in $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ (solid), BLM (dots) and $\mathcal{O}\left(\boldsymbol{\alpha}_{s}\right)$ (dashed)

- Effect of the non-BLM terms is about 1% for $\mu=m_{b}$

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right):$ Experiment vs. SM \& 2HDM

- Expt. [ICHEP 2012]: $\left(\boldsymbol{E}_{\gamma}>1.6 \mathrm{GeV}\right): \mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)=(3.37 \pm 0.23) \times 10^{-4}$
- NNLO SM: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=(3.15 \pm 0.23) \times 10^{-4}$
- Ratio=Expt. $/ \mathrm{SM}=1.07 \pm 0.10$, Limits most NP models
- In $2 \mathrm{HDM}, \mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$ bounds $M_{H^{+}}$

Photon Energy Spectrum from Sum of Exclusive Final States

BABAR Collaboration, PR D72:052004 (2005)

- Theory: Shape function [Kagan, Neubert; Neubert et al.]

Kinetic quark mass scheme: [Benson, Bigi, Uraltsev]

- $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=\left(3.35 \pm 0.19_{-0.41-0.09}^{+0.56+0.04}\right) \times 10^{-4}$
- Isospin-asymmetry:

$$
\Delta_{0-}=\frac{\Gamma\left(\bar{B}^{0} \rightarrow X_{s \bar{d}} \gamma\right)-\Gamma\left(B^{-} \rightarrow X_{s \bar{u}} \gamma\right)}{\Gamma\left(\bar{B}^{0} \rightarrow X_{s \bar{d}} \gamma\right)+\Gamma\left(B^{-} \rightarrow X_{s \bar{u}} \gamma\right)}=-0.01 \pm 0.066
$$

- Consistent with SM, where $\boldsymbol{\Delta}_{\mathbf{0}}$ - $\operatorname{power}\left(\boldsymbol{\Lambda} / \boldsymbol{m}_{\boldsymbol{b}}\right)$ suppressed; typically a few $\%$

$B \rightarrow X_{s} \gamma$ in 2HDM

- NNLO in 2HDM calculated recently [Hermann, Misiak, Steinhauser; arxiv:1208.2788]

$$
\mathcal{L}_{H^{+}}=\left(2 \sqrt{2} G_{F}\right)^{1 / 2} \Sigma_{i, j=1}^{3} \bar{u}_{i}\left(A_{u} m_{u_{i}} V_{i j} P_{L}-A_{d} m_{d_{j}} V_{i j} P_{R}\right) d_{j} H^{*}+\text { h.c. }
$$

with $P_{L / R}=\left(1 \mp \gamma_{5}\right) / 2$

- 2 HDM contributions to the Wilson coefficients are proportional to $\boldsymbol{A}_{i} \boldsymbol{A}_{j}^{*}$
- 2 HDM of type-I: $\boldsymbol{A}_{u}=\boldsymbol{A}_{d}=\frac{1}{\tan \beta}$
- 2 HDM of type-II: $\boldsymbol{A}_{u}=-1 / \boldsymbol{A}_{\boldsymbol{d}}=\frac{1}{\tan \beta}$
(a)

(b)

(c)

(d)

(e)

(f)

$\bar{B} \rightarrow \boldsymbol{X}_{s} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$
- The NNLO calculation of $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$corresponds to the NLO calculation of $\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma$, as far as the number of loops in the diagrams is concerned.
- Wilson Coefficients of the two additional operators

$$
O_{i}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right), \quad i=9,10
$$

have the following perturbative expansion:

$$
\begin{aligned}
& C_{9}(\mu)=\frac{4 \pi}{\alpha_{s}(\mu)} C_{9}^{(-1)}(\mu)+C_{9}^{(0)}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{9}^{(1)}(\mu)+\ldots \\
& C_{10}= \\
& C_{10}^{(0)}+\frac{\alpha_{s}\left(M_{W}\right)}{4 \pi} C_{10}^{(1)}+\ldots
\end{aligned}
$$

- After an expansion in α_{s}, the term $C_{9}^{(-1)}(\mu)$ reproduces (the dominant part of) the electroweak logarithm that originates from photonic penguins with charm quark loops:

$$
\begin{gathered}
\frac{4 \pi}{\alpha_{s}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right)=\frac{4}{9} \ln \frac{M_{W}^{2}}{m_{b}^{2}}+\mathcal{O}\left(\alpha_{s}\right) \\
C_{9}^{(-1)}\left(m_{b}\right) \simeq 0.033 \ll 1 \Rightarrow \frac{4 \pi}{\alpha_{s}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right) \simeq 2
\end{gathered}
$$

On the other hand: $\quad C_{9}^{(0)}\left(\boldsymbol{m}_{\boldsymbol{b}}\right) \simeq 2.2$; need to calculate NNLO

Some representative diagrams in $b \rightarrow s \ell^{+} \ell^{-}$

Diagrams in the full theory

(a)

(b)

Diagrams in the effective theory

NNLO Calculations of $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)$

- Two-loop matching, three-loop mixing and two-loop matrix elements have been completed
- Matching: [Bobeth, Misiak, Urban]
- Mixing: [Gambino, Gorbahn, Haisch]
- Matrix elements:
[Asatryan, Asatrian, Greub, Walker;
Asatrian, Bieri, Greub, Hovhannissyan;
Ghinculov, Hurth, Isidori, Yao;
Bobeth, Gambino, Gorbahn, Haisch]
- Power corrections in $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$decays
- $1 / m_{b}$ corrections [A. Falk et al.; AA, Handoko, Morozumi,Hiller; Buchalla, Isidori]
- $1 / m_{c}$ corrections [Buchalla, Isidori, Rey]
- NNLO Phenomenological analysis of $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$decays
[AA, Greub, Hiller, Lunghi]
$-\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; q^{2}>4 m_{\mu}^{2}=(4.2 \pm 1.0) \times 10^{-6}$
- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right)=(6.9 \pm 0.7) \times 10^{-6}$

Inclusive $B \rightarrow X_{s} \ell^{+} \ell^{-}$in NNLO in SM

Dilepton Invariant Mass

$$
\begin{aligned}
& \begin{aligned}
d \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) \\
d \hat{s}
\end{aligned}=\left(\frac{\alpha_{e m}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, p o l e}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \\
& \times\left((1+2 \hat{s})\left(\left|\tilde{C}_{9}^{\mathrm{eff}}\right|^{2}+\left|\tilde{C}_{10}^{\mathrm{eff}}\right|^{2}\right)+4(1+2 / \hat{s})\left|\tilde{C}_{7}^{\mathrm{eff}}\right|^{2}+12 \operatorname{Re}\left(\widetilde{C}_{7}^{\mathrm{eff}} \tilde{C}_{9}^{\mathrm{eff}} \mathrm{~F}_{*}\right)\right) \\
& \widetilde{C}_{7}^{\mathrm{eff}}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{7}(\hat{s})\right) A_{7} \\
&-\frac{\alpha_{s}(\mu)}{4 \pi}\left(C_{1}^{(0)} F_{1}^{(7)}(\hat{s})+C_{2}^{(0)} F_{2}^{(7)}(\hat{s})+A_{8}^{(0)} F_{8}^{(7)}(\hat{s})\right) \\
& \widetilde{C}_{9}^{\mathrm{eff}}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right)\left(A_{9}+T_{9} h\left(\hat{m}_{c}^{2}, \hat{s}\right)+U_{9} h(1, \hat{s})+W_{9} h(0, \hat{s})\right) \\
&-\frac{\alpha_{s}(\mu)}{4 \pi}\left(C_{1}^{(0)} F_{1}^{(9)}(\hat{s})+C_{2}^{(0)} F_{2}^{(9)}(\hat{s})+A_{8}^{(0)} F_{8}^{(9)}(\hat{s})\right) \\
& \widetilde{C}_{10}^{\mathrm{eff}}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right) A_{10}
\end{aligned}
$$

- $\boldsymbol{A}_{\mathbf{7}}, \boldsymbol{A}_{\mathbf{8}}, \boldsymbol{A}_{\mathbf{9}}, \boldsymbol{A}_{\mathbf{1 0}}, \boldsymbol{T}_{\mathbf{9}}, \boldsymbol{U}_{\mathbf{9}}, W_{\mathbf{9}}$ are linear combinations of the Wilson coefficients

Comparison of $B \rightarrow X_{s} \ell^{+} \ell^{-}$with Data

[AA, Greub, Hiller, Lunghi 2001 (AGHL); Ghinculov, Hurth, Isidori, Yao 2004 (GHIY); Huber, Lunghi, Misiak, Wyler 2005 (HLMW); Bobeth, Gambino, Gorbahn, Haisch 2003]

- Inclusive $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$BRs

$$
\begin{gathered}
\mathcal{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(M_{\ell \ell}>0.2 \mathrm{GeV}\right)=\left(3.66_{-0.77}^{+0.76}\right) \times 10^{-6} \quad\left[\mathrm{HFAG}^{\prime} 12\right] \\
S M
\end{gathered}
$$

- Partial BRs (integrated over lower range of \boldsymbol{q}^{2})
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.20) \times 10^{-6} \quad[\mathrm{GHIY}]$
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; \quad q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.59 \pm 0.11) \times 10^{-6}[\mathrm{HLMW}]$
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.11) \times 10^{-6}$ [HLMW]
- Experiment: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) \quad q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.60 \pm 0.51) \times 10^{-6}$
- Partial BRs (integrated over higher range of \boldsymbol{q}^{2})
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; ~ q^{2}>14 \mathrm{GeV}^{2}=(4.04 \pm 0.78) \times 10^{-7}$ [GHIY]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; q^{2}>14.4 \mathrm{GeV}^{2}=2.40\left(1_{-0.26}^{+0.29}\right) \times 10^{-7}$ [HLMW]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right) ; q^{2}>14.4 \mathrm{GeV}^{2}=2.09\left(1_{-0.30}^{+0.32}\right) \times 10^{-7}$ [HLMW]
- Experiment: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) q^{2}>14.4 \mathrm{GeV}^{2}=(4.4 \pm 1.2) \times 10^{-7}$

Dilepton invariant mass distribution in $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$:
[Ghinculov, Hurth, Isidori, Yao 2004]

$$
\begin{gathered}
10^{7} \times \frac{d \mathcal{B}}{d q^{2}} \\
\left(\mathrm{GeV}^{-2}\right)
\end{gathered}
$$

- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.20) \times 10^{-6}$
- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; \quad q^{2}>14 \mathrm{GeV}^{2}=(4.04 \pm 0.78) \times 10^{-7}$
- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; \quad q^{2}>4 m_{\mu}^{2}=(4.6 \pm 0.8) \times 10^{-6}$,

Forward-Backward Asymmetry in $B \rightarrow X_{s} \ell^{+} \ell^{-}$

[Proposed in AA, Mannel, Morozumi, PLB 273, 505 (1991)]
[NNLL: Asatrian, Bieri, Greub, Hovhannisyan; Ghinculov, Hurth, Isidori, Yao]
Normalized FB Asymmetry

$$
\bar{A}_{\mathrm{FB}}(\hat{s})=\frac{\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} \operatorname{sgn}(z) d z}{\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell+\ell^{-}\right)}{d \hat{s} d z} d z}
$$

$\underline{\text { Unnormalized FB Asymmetry }}$

$$
\begin{gathered}
A_{\mathrm{FB}}(\hat{s})=\frac{\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} \operatorname{sgn}(z) d z}{\Gamma\left(B \rightarrow X_{c} e \bar{\nu}_{e}\right)} \mathrm{BR}_{\mathrm{sl}} \\
\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} \operatorname{sgn}(z) d z=\left(\frac{\alpha_{\mathrm{em}}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, \mathrm{pole}}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \\
\times\left[-3 \hat{s} \operatorname{Re}\left(\widetilde{C}_{9}^{\mathrm{eff}} \widetilde{C}_{10}^{\mathrm{eff} *}\right)\left(1+\frac{2 \alpha_{s}}{\pi} f_{910}(\hat{s})\right)-6 \operatorname{Re}\left(\widetilde{C}_{7}^{\mathrm{eff}} \widetilde{C}_{10}^{\mathrm{eff} *}\right)\left(1+\frac{2 \alpha_{s}}{\pi} f_{710}(\hat{s})\right)\right]
\end{gathered}
$$

- NNLL Contributions stabilize the scale $(=\mu)$ dependence of the FB Asymmetry

$$
A_{\mathrm{FB}}^{\mathrm{NLL}}(0)=-(2.51 \pm 0.28) \times 10^{-6} ; \quad A_{\mathrm{FB}}^{\mathrm{NNLL}}(0)=-(2.30 \pm 0.10) \times 10^{-6}
$$

- Zero of the FB Asymmetry is a precise test of the SM, correlating $\widetilde{C}_{7}^{\text {eff }}$ and $\widetilde{C}_{9}^{\text {eff }}$

$$
\hat{s}_{0}^{\mathrm{NLL}}=0.144 \pm 0.020 ; \quad \hat{s}_{0}^{\mathrm{NNLL}}=0.162 \pm 0.008
$$

Normalized FB-Asymmetry in $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$:

- Zero of the FB-Asymmetry is a precision test of the SM

$$
\begin{aligned}
q_{0}^{2} & =(3.90 \pm 0.25) \mathrm{GeV}^{2} \\
q_{0}^{2} & =\left(3.76 \pm 0.22_{\text {theory }} \pm 0.24_{m_{b}}\right) \mathrm{GeV}^{2}
\end{aligned}
$$

[Ghinculov, Hurth, Isidori, Yao 2004]
[Bobeth, Gambino, Gorbahn, Haisch 2003]

$B \rightarrow K^{*} \gamma$ Decays

$B \rightarrow K^{*} \gamma$ Branching Fraction in LO

- In LO, only the electromagnetic penguin operator $\mathcal{O}_{7 \gamma}$ contributes to the $B \rightarrow$ $K^{*} \gamma^{*}$ amplitude; involves the form factor $T_{1}^{\left(K^{*}\right)}(0)$

$$
\mathcal{M}^{\mathrm{LO}}=-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} C_{7}^{(0) \mathrm{eff}} \frac{e \bar{m}_{b}}{4 \pi^{2}} T_{1}^{\left(K^{*}\right)}(0)\left[(P q)\left(e^{*} \varepsilon^{*}\right)-\left(e^{*} P\right)\left(\varepsilon^{*} q\right)+i \operatorname{eps}\left(e^{*}, \varepsilon^{*}, P, q\right)\right]
$$

Here, $P^{\mu}=p_{B}^{\mu}+p_{K}^{\mu} ; q^{\mu}=p_{B}^{\mu}-p_{K}^{\mu}$ is the photon four-momentum; e^{μ} is its polarization vector; ε^{μ} is the K^{*}-meson polarization vector

- Branching ratio:

$$
\mathcal{B}^{\mathrm{LO}}\left(B \rightarrow K^{*} \gamma\right)=\tau_{B} \frac{G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2} \alpha M^{3}}{32 \pi^{4}} \bar{m}_{b}^{2}\left(\mu_{b}\right)\left|C_{7}^{(0) \mathrm{eff}}\left(\mu_{b}\right)\right|^{2}\left|T_{1}^{\left(K^{*}\right)}(0)\right|^{2}
$$

$B \rightarrow K^{*} \gamma$ decay rates in NLO

- Perturbative improvements undertaken in three approaches (QCD-F; PQCD; SCET)

Factorization Ansatz (QCDF):

$$
\begin{aligned}
& \text { [Beneke, Buchalla, Neubert, Sachrajda; Beneke \& Feldmann] } \\
& \langle\boldsymbol{V} \gamma| Q_{i}|\bar{B}\rangle=t_{i}^{I} \zeta_{V_{\perp}}+t_{i}^{I I} \otimes \phi_{+}^{B} \otimes \phi_{\perp}^{V}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
\end{aligned}
$$

- $\zeta_{V_{\perp}}$ (form factor) and $\phi^{B, V}$ (LCDAs) are non-perturbative functions
- t^{I} and $t^{I I}$ are perturbative hard-scattering kernels

$$
t^{I}=\mathcal{O}(1)+\mathcal{O}\left(\alpha_{s}\right)+\ldots, \quad t^{I I}=\mathcal{O}\left(\alpha_{s}\right)+\ldots
$$

- The kernels t^{I} and $t^{I I}$ are known at $\mathcal{O}\left(\alpha_{s}\right)$ for some time; include Hard-scattering and Vertex corrections [Parkhomenko, AA; Bosch, Buchalla; Beneke, Feldmann, Seidel 2001]

$\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \gamma$ Decays

Nonfactorizable α_{s} Corrections

(c)

(d)

(e)

- First line: hard-spectator corrections
- Second line: $b \rightarrow s \gamma$ vertex corrections

Hard spectator contributions in $B \rightarrow\left(K^{*}, \rho\right) \gamma$
Spectator corrections due to \mathcal{O}_{7}

Spectator corrections due to \mathcal{O}_{8}

$\underline{\text { Spectator corrections due to } \mathcal{O}_{2}}$

Estimates of $\operatorname{BR}\left(B \rightarrow K^{*} \gamma\right)$ in SCET at NNLO

[Pecjak, Greub, AA; EPJ C55: 577 (2008)]
Estimates at NNLO in units of 10^{-5}

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)= & 4.6 \pm 1.2\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt. } 4.2 \pm 0.18 \text { (HFAG 2012)]; }} \\
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)= & 4.3 \pm 1.1\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt.: } 4.33 \pm 0.15 \text { (HFAG 2012)]; }} \\
\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \phi \gamma\right)= & 4.3 \pm 1.1\left[\zeta_{\phi}\right] \pm 0.3\left[m_{c}\right] \pm 0.3\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {\left[\text { Expt.: } 5.7_{-1.8}^{+2.1}(\text { BELLE }) ; 3.9 \pm 0.5(\text { LHCb })\right] }
\end{aligned}
$$

Comparison with current experiments

- $\frac{\mathcal{B}\left(B^{+} \rightarrow K^{*+\gamma}\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B^{+} \rightarrow K^{*+}\right)_{\text {exp }}}=1.10 \pm 0.35[$ theory $] \pm 0.04[\mathrm{exp}]$
- $\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)_{\text {NNLO }}}{\mathcal{B}\left(B^{+} \rightarrow K^{* 0} \gamma\right)_{\text {exp }}}=1.00 \pm 0.32[$ theory $] \pm 0.04[\exp]$
- $\frac{\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)_{\text {exp }}}=1.1 \pm 0.3[$ theory $] \pm 0.1[\exp]$
- Theory error is about 30%; dominantly from $\boldsymbol{\zeta}_{V_{\perp}}, \boldsymbol{m}_{\boldsymbol{c}}$ and $\boldsymbol{\lambda}_{B}$; SM decay rates in good agreement with the data

$B \rightarrow \rho \gamma$ decay

Penguin amplitude $\mathcal{M}_{\mathrm{P}}(B \rightarrow \rho \gamma)$

$$
-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t d}^{*} C_{7} \frac{e m_{b}}{4 \pi^{2}} \epsilon^{(\gamma) \mu} \epsilon^{(\rho) \nu}\left(\epsilon_{\mu \nu \alpha \beta} p^{\alpha} q^{\beta}-i\left[g^{\mu \nu}(q \cdot p)-p^{\mu} q^{\nu}\right]\right) T_{1}^{(\rho)}(0)
$$

Annihilation amplitude $\mathcal{M}_{\mathrm{A}}\left(B^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)$
$e \frac{G_{F}}{\sqrt{2}} V_{u b} V_{u d}^{*} a_{1} m_{\rho} \epsilon^{(\gamma) \mu} \epsilon^{(\rho) \nu}\left(\epsilon_{\mu \nu \alpha \beta} p^{\alpha} q^{\beta} F_{A}^{(\rho) ; \text { p.v. }}-i\left[g^{\mu \nu}(q . p)-p^{\mu} q^{\nu}\right] F_{A}^{(\rho) ; \text { p.c. }}\right)$

- $\boldsymbol{F}_{A}^{(\rho) ; \text { p.v. }}(0) \simeq \boldsymbol{F}_{A}^{(\rho) ; \text { p.c. }}(0)=F_{A}^{(\rho)}(0) \quad$ [e.g., Byer, Melikhov, Stech]

$$
\epsilon_{\mathrm{A}}\left(\rho^{ \pm} \gamma\right)=\frac{4 \pi^{2} m_{\rho} a_{1}}{m_{b} C_{7}^{e f f}} \frac{F_{A}^{(\rho)}(0)}{T_{1}^{(\rho)}}=0.30 \pm 0.07
$$

- Holds in factorization approximation
- $O\left(\alpha_{s}\right)$ corrections to annihilation amplitude $\mathcal{M}_{\mathrm{A}}\left(B^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)$: Leading-twist contribution vanishes in the chiral limit [Grinstein, Pirjol]; non-factorizing annihilation contribution likely small; testable in $B^{ \pm} \rightarrow \ell^{ \pm} \boldsymbol{\nu}_{\ell} \gamma$
Annihilation amplitude $\mathcal{M}_{\mathrm{A}}\left(B^{0} \rightarrow \rho^{0} \gamma\right)$
- Suppressed due to the electric charges $\left(Q_{d} / Q_{u}=-1 / 2\right)$ and colour factors
(BSW Parameters: $a_{2} / a_{1} \simeq \mathbf{0 . 2 5}$)

$$
\Longrightarrow \epsilon_{\mathrm{A}}\left(\rho^{0} \gamma\right) \simeq 0.05
$$

$B \rightarrow(\rho, \omega) \gamma$ decay rates

[Parkhomenko, A.A.; Bosch, Buchalla; Lunghi, Parkhomenko, AA; Beneke, Feldmann, Seidel]

$$
\begin{gathered}
R(\rho \gamma) \equiv \frac{\overline{\mathcal{B}}(B \rightarrow \rho \gamma)}{\overline{\mathcal{B}}\left(B \rightarrow K^{*} \gamma\right)}=S_{\rho}\left|\frac{V_{t d}}{V_{t s}}\right|^{2} \frac{\left(1-m_{\rho}^{2} / M^{2}\right)^{3}}{\left(1-m_{K^{*}}^{2} / M^{2}\right)^{3}} \zeta^{2}\left[1+\Delta R\left(\rho / K^{*}\right)\right] \\
R(\omega \gamma) \equiv \frac{\overline{\mathcal{B}}(B \rightarrow \omega \gamma)}{\overline{\mathcal{B}}\left(B \rightarrow K^{*} \gamma\right)}=1 / 2\left|\frac{V_{t d}}{V_{t s}}\right|^{2} \frac{\left(1-m_{\omega}^{2} / M^{2}\right)^{3}}{\left(1-m_{K^{*}} / M^{2}\right)^{3}} \zeta^{2}\left[1+\Delta R\left(\omega / K^{*}\right)\right]
\end{gathered}
$$

- $S_{\rho}=1$ for $B^{ \pm} \rightarrow \rho^{ \pm} \gamma ;=1 / 2$ for $B^{0} \rightarrow \rho^{0} \gamma$
- $\zeta=\frac{T_{1}^{(\rho)}(0)}{T_{1}^{\left(K^{*}\right)}(0)} \simeq 0.85 \pm 0.10 ; T_{1}^{\omega}(0) \simeq T_{1}^{(\rho)}(0) \quad$ [SRs, Lattice Average] $\zeta=\simeq 0.85 \pm 0.06 ; T_{1}^{\omega}(0) \simeq T_{1}^{(\rho)}(0) \quad$ [Ball, Zwicky, 2006]
- $\Delta R\left(\rho^{ \pm} / K^{* \pm}\right)=0.12 \pm 0.10$
- $\Delta R\left(\rho^{0} / K^{* 0}\right) \simeq \Delta R\left(\omega / K^{* 0}\right)=0.1 \pm 0.07$

Branching Ratios (SM) vs. Expt.

$\mathrm{BR}\left(\mathrm{B}^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)=(1.35 \pm 0.4) \times 10^{-6}(\mathrm{SM})=(0.98 \pm 0.24) \times 10^{-6}$ (Expt.)
$\mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \rho^{0} \gamma\right) \simeq \mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \omega \gamma\right)=(0.65 \pm 0.2) \times 10^{-6}$
$\operatorname{BR}\left(\mathrm{B}^{0} \rightarrow \rho^{0} \gamma\right)($ Expt. $)=(0.86 \pm 0.14) \times 10^{-6}$
$\operatorname{BR}\left(\mathrm{B}^{0} \rightarrow \omega \gamma\right)($ Expt. $)=(1.30 \pm 0.18) \times 10^{-6}$

Experiment vs. SM $(b \rightarrow d \gamma)$

SM Estimates [Lunghi, Parkhomenko, AA; PLB 595 (2004) 323]

$$
\begin{aligned}
& \overline{\mathcal{B}}[B \rightarrow(\rho, \omega) \gamma] \equiv \frac{1}{2}\left\{\mathcal{B}\left(B^{+} \rightarrow \rho^{+} \gamma\right)+\frac{\tau_{B^{+}}}{\tau_{B^{0}}}\left[\mathcal{B}\left(B_{d}^{0} \rightarrow \rho^{0} \gamma\right)+\mathcal{B}\left(B_{d}^{0} \rightarrow \omega \gamma\right)\right]\right\} \\
&=(1.38 \pm 0.42) \times 10^{-6} \\
& R\left[(\rho, \omega) / K^{*}\right] \equiv \frac{\overline{\mathcal{B}}[B \rightarrow(\rho, \omega) \gamma]}{\overline{\mathcal{B}}\left[B \rightarrow K^{*} \gamma\right]}=0.033 \pm 0.010
\end{aligned}
$$

Expt. HFAG-2012

$$
\begin{gathered}
\overline{\mathcal{B}}_{\exp }[B \rightarrow(\rho, \omega) \gamma]=\left(1.30_{-0.19}^{+0.18}\right) \times 10^{-6} \\
R\left[(\rho, \omega) / K^{*}\right]=0.030 \pm 0.005(\text { stat })_{-0.002}^{+0.003}(\text { syst }) \\
\left|V_{t d} / V_{t s}\right|=0.20 \pm 0.02(\exp) \pm 0.04 \text { (theo) }
\end{gathered}
$$

- In good agreement with the determination from the ratio $\Delta M_{s} / \Delta M_{d} \Longrightarrow$ $\left|V_{t d}\right| /\left|V_{t s}\right|=0.211 \pm 0.001(\exp) \pm 0.006$ (theo) in the SM, but less precise
- A correlated study of $R\left[(\rho, \omega) / K^{*}\right]$ and $\Delta M_{s} / \Delta M_{d}$ provides valuable constraints on the parameters of the underlying theory

D. Mohapatra (BELLE)[EPS 2005)

Extraction of $\left|V_{\mathrm{td}} / V_{\mathrm{ts}}\right|$
$\frac{B(\bar{B} \rightarrow(\rho, \omega) \gamma)}{B\left(B \rightarrow K^{*} \gamma\right)}=\left|\frac{V_{\mathrm{td}}}{V_{\mathrm{ts}}}\right|^{2}\left|\frac{1-M_{\rho}^{2} / M_{B}^{2}}{1-M_{K^{\prime}}^{2} / M_{B}^{2}}\right| \zeta^{2}[1+\Delta R]$
Form factor ratio $\zeta=0.85 \pm 0.10$ $\mathrm{SU}(3)$-breaking effect $\Delta R=0.1 \pm 0.1$

$$
\frac{B(B \rightarrow(\rho, \omega) \gamma)}{B\left(B \rightarrow K^{*} \gamma\right)}=0.032 \pm 0.008_{-0.002}^{+0.003}
$$

$$
\begin{aligned}
& 0.143<\left|\frac{V_{\text {td }}}{V_{\text {ts }}}\right|<0.260 \\
& (95 \% \text { C.L. interval }) \\
& \left.\begin{array}{l}
V_{\text {td }} \\
V_{\text {td }}
\end{array}=\mathbf{0 . 2 0 0}_{-0.025}^{+0.026} \text { (expt. }\right)_{-0.029}^{+0.038}(\text { theo. })
\end{aligned}
$$

Isospin violation in $B \rightarrow \rho \gamma$ decays

$$
\begin{gathered}
\Delta=\frac{1}{2}\left[\Delta^{+0}+\Delta^{-0}\right], \quad \Delta^{ \pm 0} \equiv \frac{\Gamma\left(B^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)}{2 \Gamma\left(B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{0} \gamma\right)}-1 \\
\Delta_{\mathrm{LO}}=2 \epsilon_{A}\left[F_{1}+\frac{\epsilon_{A}}{2}\left(F_{1}^{2}+F_{2}^{2}\right)\right]=2 \epsilon_{A} F \cos \alpha+O\left(\epsilon_{A}^{2}\right) \\
\Delta_{\mathrm{NLO}} \simeq \Delta_{\mathrm{LO}}-\frac{2 \epsilon_{A}}{C_{7}^{(0) \mathrm{eff}} F \cos \alpha\left[A_{R}^{(1) t}+A_{R}^{u} F \cos 2 \alpha\right]+O\left(\epsilon_{A}^{2}\right)} \\
\boldsymbol{F}_{1}=F \cos \alpha ; \quad F_{2}=F \sin \alpha ; \quad F=\frac{R_{b}}{R_{t}} \simeq 0.5 \\
\Delta^{\mathrm{SM}}(\rho \gamma)=(1.1 \pm 3.9) \% \text { for } \alpha=(92 \pm 11)^{\circ} ; \quad \Delta^{\operatorname{expt}}(\rho \gamma)=-0.46_{-0.16}^{+0.17} \\
\Delta_{B}^{(\rho / \omega)} \equiv \frac{\left(M_{B}^{2}-m_{\omega}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \rho \gamma\right)-\left(M_{B}^{2}-m_{\rho}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \omega \gamma\right)}{\left(M_{B}^{2}-m_{\omega}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \rho \gamma\right)+\left(M_{B}^{2}-m_{\rho}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \omega \gamma\right)} \\
\text { with } \Delta_{\bar{B}}^{(\rho / \omega)}=\Delta_{B}^{(\rho / \omega)}\left(B^{0} \rightarrow \bar{B}^{0}\right) \\
\Delta_{B}^{(\rho / \omega)}=(0.3 \pm 3.9) \times 10^{-3} \text { for } \alpha=(92 \pm 11)^{\circ}
\end{gathered}
$$

CP Asymmetry in $B \rightarrow(\rho, \omega) \gamma$ decays

$$
\begin{gathered}
\text { Direct CP Asymmetry in } \rightarrow \rightarrow(\rho, \omega) \gamma \\
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(\rho^{ \pm} \gamma\right) \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow \rho^{-} \gamma\right)-\mathcal{B}\left(B^{+} \rightarrow \rho^{+} \gamma\right)}{\mathcal{B}\left(B^{-} \rightarrow \rho^{-} \gamma\right)+\mathcal{B}\left(B^{+} \rightarrow \rho^{+} \gamma\right)}=-0.11 \pm 0.032 \pm 0.09[\text { Expt }] . \\
\mathcal{A}_{\mathrm{CP}}^{\operatorname{dir}}\left(\rho^{0} \gamma\right) \equiv \frac{\mathcal{B}\left(\bar{B}_{d}^{0} \rightarrow \rho^{0} \gamma\right)-\mathcal{B}\left(B_{d}^{0} \rightarrow \rho^{0} \gamma\right)}{\mathcal{B}\left(\bar{B}_{d}^{0} \rightarrow \rho^{0} \gamma\right)+\mathcal{B}\left(B_{d}^{0} \rightarrow \rho^{0} \gamma\right)}=-0.44 \pm 0.49 \pm 0.14[\text { Expt }] \\
\mathcal{A}_{\mathrm{CP}}^{\operatorname{dir}}(\omega \gamma) \equiv \frac{\mathcal{B}\left(\bar{B}_{d}^{0} \rightarrow \omega \gamma\right)-\mathcal{B}\left(B_{d}^{0} \rightarrow \omega \gamma\right)}{\mathcal{B}\left(\bar{B}_{d}^{0} \rightarrow \omega \gamma\right)+\mathcal{B}\left(B_{d}^{0} \rightarrow \omega \gamma\right)} \\
\mathcal{A}_{\mathrm{CP}}(\rho / \omega \gamma)=\frac{2 F \sin \alpha\left(A_{I}^{u}-\epsilon_{A} A_{I}^{(1) t}\right)}{C_{7}^{(0) \mathrm{eff}}\left(1+\Delta_{\mathrm{LO}}\right)} \\
\\
\frac{\left.\mathrm{Mixing-induced} \mathrm{CP} \text { Asymmetery in } B^{0} \rightarrow(\rho, \omega) \gamma\right)}{a_{\mathrm{CP}}^{\rho \gamma}(t)=-C_{\rho \gamma} \cos \left(\Delta M_{d} t\right)+S_{\rho \gamma} \sin \left(\Delta M_{d} t\right)} \\
\lambda_{\rho \gamma} \equiv \frac{q}{p} \frac{A\left(\bar{B}_{d}^{0} \rightarrow \rho^{0} \gamma\right)}{A\left(B_{d}^{0} \rightarrow \rho^{0} \gamma\right)}=\frac{C_{7}^{(0) \mathrm{eff}}+A^{(1) t}-\left[C_{7}^{(0) \mathrm{eff}} \varepsilon_{A}^{(0)}+A^{u}\right] F \mathrm{e}^{+i \alpha}}{C_{7}^{(0) \mathrm{eff}}+A^{(1) t}-\left[C_{7}^{(0) \mathrm{eff}} \varepsilon_{A}^{(0)}+A^{u}\right] F \mathrm{e}^{-i \alpha}}
\end{gathered}
$$

where $p / q \simeq \exp (2 i \beta)$ and $F=\boldsymbol{R}_{\boldsymbol{b}} / \boldsymbol{R}_{t}$

$$
C_{\rho \gamma}=-\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(\rho^{0} \gamma\right)=\frac{1-\left|\lambda_{\rho \gamma}\right|^{2}}{1+\left|\lambda_{\rho \gamma}\right|^{2}}, \quad S_{\rho \gamma}=\frac{2 \operatorname{Im}\left(\lambda_{\rho \gamma}\right)}{1+\left|\lambda_{\rho \gamma}\right|^{2}}=-0.83 \pm 0.65 \pm 0.18[\text { Expt }]
$$

CP-violating Asymmetries in $B \rightarrow(\rho, \omega) \gamma$ decays
[AA, Lunghi, Parkhomenko; PLB 595 (2004) 323]

Exclusive Decays $B \rightarrow\left(K, K^{*}\right) \ell^{+} \ell^{-}$

- $\boldsymbol{B} \rightarrow \boldsymbol{K}$ (pseudoscalar \boldsymbol{P}); $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*}$ (Vector \boldsymbol{V}) Transitions involve the currents:

$$
\begin{gathered}
\Gamma_{\mu}^{1}=\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b, \quad \Gamma_{\mu}^{2}=\bar{s} \sigma_{\mu \nu} q^{\nu}\left(1+\gamma_{5}\right) b \\
\langle P| \Gamma_{\mu}^{1}|B\rangle \supset f_{+}\left(q^{2}\right), f_{-}\left(q^{2}\right) \\
\langle P| \Gamma_{\mu}^{2}|B\rangle \supset f_{T}\left(q^{2}\right) \\
\langle V| \Gamma_{\mu}^{1}|B\rangle \supset V\left(q^{2}\right), A_{1}\left(q^{2}\right), A_{2}\left(q^{2}\right), A_{3}\left(q^{2}\right) \\
\langle V| \Gamma_{\mu}^{2}|B\rangle \supset T_{1}\left(q^{2}\right), T_{2}\left(q^{2}\right), T_{3}\left(q^{2}\right)
\end{gathered}
$$

- 10 non-perturbative \boldsymbol{q}^{2}-dependent functions (Form factors) \Longrightarrow model-dependence
- Data on $B \rightarrow K^{*} \gamma$ provides normalization of $T_{1}(0)=T_{2}(0) \simeq 0.28$
- HQET/SCET-Approach allows to reduce the number of independent form factors from 10 to 3; perturbative symmetry-breaking corrections [Beneke, Feldmann, Seidel; Beneke, Feldmann]
- HQET \& $S U(3)_{\mathrm{F}}$ relate $B \rightarrow(\pi, \rho) \ell \nu_{\ell}$ and $B \rightarrow\left(K, K^{*}\right) \ell^{+} \ell^{-}$to determine the remaining FF's

Experimental data vs. SM in $B \rightarrow\left(X_{s}, \boldsymbol{K}, \boldsymbol{K}^{*}\right) \ell^{+} \ell^{-}$Decays

Branching ratios (in units of 10^{-6}) [HFAG: 2012]
SM: [A.A., Greub, Hiller, Lunghi PR D66 (2002) 034002]

Decay Mode	Expt. (BELLE \& BABAR)	Theory (SM)
$B \rightarrow K \ell^{+} \ell^{-}$	0.45 ± 0.04	0.35 ± 0.12
$B \rightarrow K^{*} e^{+} e^{-}$	$1.19_{-0.16}^{+0.17}$	1.58 ± 0.49
$B \rightarrow K^{*} \mu^{+} \mu^{-}$	$1.15_{-0.15}^{+0.16}$	1.19 ± 0.39
$B \rightarrow X_{s} \mu^{+} \mu^{-}$	$2.23_{-0.98}^{+0.97}$	4.2 ± 0.7
$B \rightarrow X_{s} e^{+} e^{-}$	$4.91_{-1.06}^{+1.04}$	4.2 ± 0.7
$B \rightarrow X_{s} \ell^{+} \ell^{-}$	$3.66_{-0.77}^{+0.76}$	4.2 ± 0.7

- Inclusive measurements and the SM rates include the cut $M_{\ell^{+} \ell^{-}}>0.2 \mathrm{GeV}$
- SM \& Data agree within 25%

Analysis at Large Recoil of $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}$
Khodjamirian, Mannel, Wang [1211.0234]

- Includes an estimate of the non-local contributions based on QCD sum rules and dispersion relations at large hadronic recoil; find these effects are modest
- Re-evaluated $d \Gamma\left(\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\ell}^{+} \ell^{-}\right) / d \boldsymbol{q}^{2}$, CP-averaged isospin asymmetry $\boldsymbol{a}_{\boldsymbol{I}}^{(0-)}\left(\boldsymbol{q}^{2}\right)$, and forward-backward asymmetry $\boldsymbol{a}_{\mathrm{FB}}\left(\boldsymbol{q}^{2}\right) \Longrightarrow$ improved theoretical estimates at large recoil
- Both $a_{I}^{(0-)}\left(q^{2}\right)$ and $a_{\text {FB }}\left(q^{2}\right)$ are small in the SM
- $a_{\mathrm{FB}}\left(\boldsymbol{q}^{2}\right)$ in agreement with SM, but current data hints at significantly larger isospin asymmetry $a_{I}^{(0-)}\left(q^{2}\right)$

Isospin Asymmetries (Current Experimental Summary)

[HFAG 2012]

- $\Delta_{0-}\left(K^{*} \gamma\right)=0.052 \pm 0.026$
- $\Delta_{0-}\left(X_{s} \gamma\right)=-0.01 \pm 0.06$
- $\Delta_{0-}(\rho \gamma)=-0.46_{-0.16}^{+0.17}$
- $\Delta_{0-}(K \ell \ell)=-0.40_{-0.15}^{+0.16}$
- $\Delta_{0-}\left(K^{*} \ell \ell\right)=-0.44_{-0.12}^{+0.13}$
- Currently, there is no measurement of $\Delta_{0-}\left(X_{d} \gamma\right)$
- Others remain to be well measured; all will be undertaken at Belle II \& LHCb
- More theoretical work needed to reduce the parametric uncertainties

Forward-Backward Asymmetry in $B \rightarrow K^{*} \ell^{+} \ell^{-}$

$$
\begin{gathered}
\frac{d A_{F B}}{d \hat{s}}=-\int_{0}^{\hat{u}(\hat{s})} d \hat{u} \frac{d \Gamma}{d \hat{u} d \hat{s}}+\int_{-\hat{u}(\hat{s})}^{0} d \hat{u} \frac{d \Gamma}{d \hat{u} d \hat{s}} \\
\sim C_{10}\left[\operatorname{Re}\left(C_{9}^{e f f}\right) V A_{1}+\frac{\hat{m}_{b}}{\hat{s}} C_{7}^{e f f}\left(V T_{2}\left(1-\hat{m}_{V}\right)+A_{1} T_{1}\left(1+\hat{m}_{V}\right)\right)\right]
\end{gathered}
$$

- T_{1}, T_{2}, V, A_{1} form factors
- Probes different combinations of WC's than dilepton mass spectrum; has a characteristic zero in the $\mathrm{SM}\left(\hat{s}_{0}\right)$ below $m_{J / \psi}^{2}$

$$
\begin{gathered}
\text { Position of the } A_{F B}(\hat{s}) \text { zero }\left(\hat{s}_{0}\right) \text { in } B \rightarrow K^{*} \ell^{+} \ell^{-} \\
\operatorname{Re}\left(C_{9}^{\text {eff }}\left(\hat{s}_{0}\right)\right)=-\frac{\hat{m}_{\mathrm{b}}}{\hat{\mathrm{~s}}_{0}} C_{7}^{\text {eff }}\left(\frac{\mathrm{T}_{2}\left(\hat{\mathrm{~s}}_{0}\right)}{\mathrm{A}_{1}\left(\hat{\mathrm{~s}}_{0}\right)}\left(1-\hat{\mathrm{m}}_{\mathrm{V}}\right)+\frac{\mathrm{T}_{1}\left(\hat{\mathrm{~s}}_{0}\right)}{\mathrm{V}\left(\hat{\mathrm{~s}}_{0}\right)}\left(1+\hat{\mathrm{m}}_{\mathrm{V}}\right)\right)
\end{gathered}
$$

- Model-dependent studies \Longrightarrow small FF-related uncertainties in \hat{s}_{0} [Burdman '98]
- HQET provides a symmetry argument why the uncertainty in \hat{s}_{0} is small. In leading order in $1 / m_{B}, 1 / E\left(E=\frac{m_{B}^{2}+m_{K^{*}}^{2}-q^{2}}{2 m_{B}}\right)$ and $O\left(\alpha_{s}\right)$:

$$
\frac{T_{2}}{A_{1}}=\frac{1+\hat{m}_{V}}{1+\hat{m}_{V}^{2}-\hat{s}}\left(1-\frac{\hat{s}}{1-\hat{m}_{V}^{2}}\right) ; \quad \frac{T_{1}}{V}=\frac{1}{1+\hat{m}_{V}}
$$

- No hadronic uncertainty in \hat{s}_{0} [AA, Ball, Handoko, Hiller '99]:

$$
C_{9}^{e f f}\left(\hat{s}_{0}\right)=-\frac{2 m_{b} M_{B}}{s_{0}} C_{7}^{e f f}
$$

Belle FB Asymmetry Distributions (EPS 2005)

Best Fits

- $A_{7}=-0.33: \quad A_{9} / A_{7}=-15.3_{-4.8}^{+3.4} ; \quad A_{10} / A_{7}=10.3_{-3.5}^{+5.2}$
- $A_{7}=+0.33: \quad A_{9} / A_{7}=-16.3_{-5.7}^{+3.7} ; \quad A_{10} / A_{7}=11.1_{-3.9}^{+6.0}$
- SM: $A_{7}=-0.33 ; \quad A_{9} / A_{7}=-12.3 ; \quad A_{10} / A_{7}=12.8$

Recent Measurements of Angular Observables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$

- Angular variables $\boldsymbol{F}_{\boldsymbol{L}}$ and $\boldsymbol{A}_{\boldsymbol{F B}}$ have been extracted from the decays $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*}(\rightarrow \boldsymbol{K} \boldsymbol{\pi}) \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$from the following expressions

$$
\begin{gathered}
\frac{d \Gamma^{\prime}}{d \theta_{K}}=\frac{3 \Gamma^{\prime}}{4} \sin \theta_{K}\left(2 F_{L} \cos ^{2} \theta_{K}+\left(1-F_{L}\right) \sin ^{2} \theta_{K}\right) \\
\frac{d \Gamma^{\prime}}{d \theta_{\ell}}=\Gamma^{\prime}\left(\frac{3}{4} F_{L} \sin _{\theta_{\ell}}^{2}+\frac{3}{8}\left(1-F_{L}\right)\left(1+\cos _{\theta_{\ell}}^{2}\right)+A_{F B} \cos \theta_{\ell}\right) \sin \theta_{\ell}
\end{gathered}
$$

$$
\text { with } \Gamma^{\prime}=\Gamma+\bar{\Gamma}
$$

- Their dependence on the Wilson Coeffs. and the FFs has been worked out in great detail and the measurements are in agreement with the SM

$B_{s} \rightarrow \mu^{+} \mu^{-}$in the SM

- Effective Hamiltonian

$$
\begin{aligned}
& \mathcal{H}_{e f f}=-\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t s}{ }^{*} V_{t b} \sum_{i}\left[C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu)\right] \\
& \mathcal{O}_{10}=\left(\bar{s}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha}\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right), \quad \mathcal{O}_{10}^{\prime}=\left(\bar{s}_{\alpha} \gamma^{\mu} P_{R} b_{\alpha}\right)\left(\bar{l}_{\gamma_{\mu}} \gamma_{5} l\right) \\
& \mathcal{O}_{S}=m_{b}\left(\bar{s}_{\alpha} P_{R} b_{\alpha}\right)(\bar{l}), \quad \mathcal{O}_{S}^{\prime}=m_{s}\left(\bar{s}_{\alpha} P_{L} b_{\alpha}\right)(\bar{l} l) \\
& \mathcal{O}_{P}=m_{b}\left(\bar{s}_{\alpha} P_{R} b_{\alpha}\right)\left(\bar{l}_{5} l\right), \quad \mathcal{O}_{P}^{\prime}=m_{s}\left(\bar{s}_{\alpha} P_{L} b_{\alpha}\right)\left(\bar{l}_{\gamma_{5}} l\right) \\
& \operatorname{BR}\left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)=\frac{G_{F}^{2} \alpha^{2} m_{B_{s}}^{2} f_{B_{s}}^{2} \tau_{B_{s}}}{64 \pi^{3}}\left|V_{t s}{ }^{*} V_{t b}\right|^{2} \sqrt{1-4 \hat{m}_{\mu}^{2}} \\
& \times\left[\left(1-4 \hat{m}_{\mu}^{2}\right)\left|F_{S}\right|^{2}+\left|F_{P}+2 \hat{m}_{\mu}^{2} F_{10}\right|^{2}\right]
\end{aligned}
$$

where $\hat{m}_{\mu}=m_{\mu} / m_{B_{s}}$ and

$$
F_{S, P}=m_{B_{s}}\left[\frac{C_{S, P} m_{b}-C_{S, P}^{\prime} m_{s}}{m_{b}+m_{s}}\right], \quad \quad F_{10}=C_{10}-C_{10}^{\prime}
$$

$\operatorname{BR}\left(\bar{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)_{\mathrm{SM}}=(\mathbf{3 . 2 3} \pm \mathbf{0 . 2 7}) \times \mathbf{1 0}^{-9} \quad$ [Buras et al.; arxiv:1208.09344]

- Experimentally, the measured $B R$ is time-averaged (TA), which differs from this value beacause of $y_{S}^{\mathrm{SM}}=\Delta \Gamma_{s} / \Gamma_{s}=0.088 \pm 0.014$
$B R\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right) \mathrm{TA}_{\mathrm{TA}}^{\mathrm{SM}}=(3.54 \pm 0.30) \times 10^{-9} ; \quad=\left(3.2_{-1.2}^{+1.5}\right) \times 10^{-9}(\mathrm{LHCb}: \mathrm{PRL}$ 110, 021801 (2013))

Leading diagrams for $B_{s} \rightarrow \mu^{+} \mu^{-}$in SM, 2HDM \& MSSM

First Evidence for the Decays $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
[R. Aaij et al. (LHCb), PRL 110, 021801 (2013)]]

$B \rightarrow K^{*} \gamma$ and $B \rightarrow K^{*} \ell^{+} \ell^{-}$decays in SCET

- Soft Collinear Effective Theory (SCET): Applicable to any QCD processes which contain collinear meson or jet, i.e. $P^{2} \ll Q^{2}$, in the final states [Bauer, Feming, Luke, Pirjol, Stewart (2001, 2002); Beneke, Chapovsky, Diehl, Feldmann (2003)]
- SCET allows for the separation of scales in a multiscale problem, allowing for an operator definition of objects in the factorization formulae derived in the $1 / m_{b}$-expansion
- $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \gamma$ in the SCET approach is worked out in the RG-improved perturbation theory (NLO). The main result is a Factorization formula, written as [Chay \& Kim (2003); Grinstein, Grossman, Ligeti, Pirjol (2005); Bechher, Hill, Neubert (2005)]

$$
\langle V \gamma| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta_{V_{\perp}}+\frac{\sqrt{m_{B}} F f_{V_{\perp}}}{4} \int d \omega d u \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) t_{i}^{\mathrm{II}}(\omega, u)
$$

- \boldsymbol{F} and $f_{V_{\perp}}$ are meson decay constants; The SCET form factor $\zeta_{V_{\perp}}$ is related to the QCD form factor $T_{1}^{K^{*}}(0)$ through perturbative and power corrections
- In SCET, the perturbative hard-scattering kernels are the matching coefficients $\Delta_{i} C^{A}$ and t_{i}^{II}
- For a given operator $\boldsymbol{O}_{\boldsymbol{i}}, \boldsymbol{t}_{\boldsymbol{i}}^{\mathbf{I I}}$ is sub-factorized into the convolution of a hard-coefficient function with a universal jet function

$$
t_{i}^{\mathrm{II}}(u, \omega)=\int_{0}^{1} d \tau \Delta_{i} C^{B 1}(\tau) j_{\perp}(\tau, u, \omega) \equiv \Delta_{i} C^{B 1} \star j_{\perp}
$$

- The coefficients $\Delta_{i} C^{B 1}$ contain physics at the hard scale \boldsymbol{m}_{b}, while the jet function j_{\perp} contains physics at the hard-collinear scale $\sqrt{m_{b} \Lambda}$
- The hard coefficient is identified in a first step of matching QCD $\rightarrow \operatorname{SCET}_{\mathrm{I}}$, and the jet function in a second step of matching $\operatorname{SCET}_{\mathbf{I}} \rightarrow \mathrm{SCET}_{\mathbf{I I}}$.
- For $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay, in the region $1 \mathrm{GeV}^{2} \leq \boldsymbol{q}^{2} \leq 8 \mathrm{GeV}^{2}$, a factorization formula, valid in leading power in $1 / \boldsymbol{m}_{\boldsymbol{b}}$, is also derived in SCET [AA, Kramer, Zhu (2006)]

$$
\begin{aligned}
\left\langle K_{a}^{*} \ell^{+} \ell^{-}\right| H_{e f f}|B\rangle & =T_{a}^{I}\left(q^{2}\right) \xi_{a}\left(q^{2}\right)+ \\
& +\sum_{ \pm} \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{ \pm}^{B}(\omega) \int_{0}^{1} d u \phi_{K^{*}}^{B}(u) T_{a, \pm}^{I I}\left(\omega, u, q^{2}\right)
\end{aligned}
$$

where $\boldsymbol{a}=\|, \perp$ denotes the polarization of the \boldsymbol{K}^{*} meson.

- SCET approach to these processes is the aim of this lecture

Hard spectator contributions in $B \rightarrow\left(K^{*}, \rho\right) \gamma$
Spectator corrections due to \mathcal{O}_{7}

Spectator corrections due to \mathcal{O}_{8}

$\underline{\text { Spectator corrections due to } \mathcal{O}_{2}}$

Momentum regions in $B \rightarrow K^{*} \gamma$ and $B \rightarrow K^{*} \ell^{+} \ell^{-}$decays

- The connection between SCET and perturbative QCD is provided by the method of regions [Smirnov; Beneke, Smirnov]
- A number of different momentum regions appear in the analysis. To identify these, introduce two light-like vectors $n_{ \pm}$
$n^{\mu}=(1,0,0,1), \bar{n}^{\mu}=(1,0,0,-1)$, satisfying $n^{2}=\bar{n}^{2}=0$ and $n \cdot \bar{n}=2$
- The outgoing \boldsymbol{K}^{*} is assumed to be along the \boldsymbol{n}_{-}direction, and define \boldsymbol{n}_{+}such that the velocity of the \boldsymbol{b} quark is given by

$$
v^{\mu}=n_{-}^{\mu} \frac{n_{+} v}{2}+n_{+}^{\mu} \frac{n_{-} v}{2}
$$

- To perform the expansion in $1 / m_{b}$, we define the parameter $\Lambda^{2}=\left(p_{B}-m_{b} v\right)^{2}$ and the dimensionless parameter $\lambda=\Lambda / m_{b} \ll 1$
- The regions are classified according to the scaling of their light-cone components with the expansion parameter $\boldsymbol{\lambda}$
- Denoting the light-cone components of a generic four-vector \boldsymbol{p} by $\left(\boldsymbol{n}_{+} \boldsymbol{p}, \boldsymbol{p}_{\perp}, \boldsymbol{n}_{-} \boldsymbol{p}\right)$, the relevant momentum regions are

Perturbative

hard	$m_{b}(1,1,1)$
hard-collinear	$m_{b}(1, \sqrt{\lambda}, \lambda)$

Non-perturbative

soft	$m_{b}(\lambda, \lambda, \lambda)$
collinear	$m_{b}\left(1, \lambda, \lambda^{2}\right)$
soft-collinear	$m_{b}\left(\lambda, \lambda^{3 / 2}, \lambda^{2}\right)$

- In the effective theory, contributions from the perturbative regions are encoded in Wilson coefficients of operators built from fields representing the regions of lower virtuality
- Factorize the two perturbative scales \boldsymbol{m}_{b}^{2} and $\boldsymbol{m}_{b} \boldsymbol{\Lambda}$ using a two-step matching procedure $\mathrm{QCD} \rightarrow \mathrm{SCET}_{\mathrm{I}} \rightarrow \mathrm{SCET}_{\mathrm{II}}$

Effective Fields of SCET

- Hard mode (h)
$P \sim E(1,1,1)$, integrated out in QCD \rightarrow SCET $_{I}$
- Hard-collinear mode (hc)
$\boldsymbol{P} \sim \boldsymbol{E}(\boldsymbol{\lambda}, 1, \sqrt{\boldsymbol{\lambda}})$, integrated out in $\mathrm{SCET}_{I} \rightarrow$ SCET $_{I I}$,

$$
\xi_{h c} \sim \sqrt{\lambda} \quad A_{h c} \sim(\lambda, 1, \sqrt{\lambda})
$$

- Power counting

$$
\begin{aligned}
& \xi_{h c}=\frac{h_{n} \vec{n}}{4} \psi_{h c} \Longrightarrow \\
& \int d^{4} x e^{i p \cdot x}\langle 0| T\left\{\xi_{h c}(x) \bar{\xi}_{h c}(0)\right\}|0\rangle=\frac{\hbar \bar{n} \vec{h}}{4}\left(\frac{i \not p}{p^{2}}\right) \frac{\bar{n} h n}{4}=\frac{i \bar{n} \cdot p}{p^{2}} \frac{\underline{x}}{2} \\
& \quad d^{4} x \sim 1 / d^{4} p \sim \lambda^{-2}, p^{2} \sim \lambda, \bar{n} \cdot p \sim 1 \Longrightarrow \xi_{h c} \sim \sqrt{\lambda}
\end{aligned}
$$

- Collinear mode (c)
$P \sim E\left(\lambda^{2}, 1, \lambda\right)$, long-distance mode,$\quad \xi_{c} \sim \lambda \quad A_{c} \sim\left(\lambda^{2}, 1, \lambda\right)$
- Soft mode (s)
$\boldsymbol{P} \sim \boldsymbol{E}(\boldsymbol{\lambda}, \boldsymbol{\lambda}, \boldsymbol{\lambda})$, long-distance mode, $\quad \boldsymbol{q}_{s} \sim \lambda^{3 / 2} \quad \boldsymbol{A}_{s} \sim(\lambda, \lambda, \lambda)$

Defining χ_{hc}

Introduction $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay Summary
Wilson lines

Hard-collinear Wilson line

$$
\begin{gathered}
W_{h c}=\mathrm{P} \exp \left(i g \int_{-\infty}^{y} \mathrm{~d} s \bar{n} \cdot A_{h c}(s \bar{n})\right) \\
\bar{q}\left\lceil b \Longrightarrow \quad\left(\bar{\xi}_{h c} W_{h c}\right) \Gamma^{\prime} h_{v}\right.
\end{gathered}
$$

- $X_{n c}=W_{h c}^{\dagger} \xi_{h c}$: collinear gauge invariance

Defining Y_{S}

Introduction $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay Summary
Soft Wilson line

Soft-collinear interaction

Soft Wilson line

- The interaction between soft gluon and hard-collinear quarks or gluons can be resummed into

$$
Y_{s}=\mathrm{P} \exp \left(i g \int_{-\infty}^{x} \mathrm{~d} s n \cdot A_{s}(s n)\right)
$$

- This property is crucial to prove the soft-collinear factorization
- $Q_{s}=Y_{s}^{\dagger} q_{s}$: soft gauge invariance

SCET approach to $B \rightarrow K^{*} \gamma$ decay

- The objects of interest are the hadronic matrix elements $\left\langle\boldsymbol{K}^{*} \gamma\right| \boldsymbol{Q}_{\boldsymbol{i}}|\boldsymbol{B}\rangle$
- First matching step: the hard scale \boldsymbol{m}_{b}^{2} is integrated out by matching the operators Q_{i} onto a set of operators in $\mathrm{SCET}_{\mathrm{I}}$
- For $\boldsymbol{B} \rightarrow \boldsymbol{V} \boldsymbol{\gamma}$, the matching takes the form

$$
Q_{i} \rightarrow \Delta_{i} C^{A} J^{A}+\Delta_{i} C^{B 1} \star J^{B 1}+\Delta_{i} C^{B 2} \star J^{B 2}
$$

- The momentum-space Wilson coefficients depend only on quantities at the hard scale \boldsymbol{m}_{b}^{2}. The exact form of the operators $\boldsymbol{J}^{(i)}$ is:

$$
\begin{aligned}
J^{A} & =\left(\bar{\xi} W_{h c}\right) \not \phi_{\perp}\left(1-\gamma_{5}\right) h_{v}, \\
J^{B 1} & =\left(\bar{\xi} W_{h c}\right) \not \phi_{\perp} \mathcal{A}_{h c_{\perp}}\left(1+\gamma_{5}\right) h_{v}, \\
J^{B 2} & =\left(\bar{\xi} W_{h c}\right) \mathcal{A}_{h c_{\perp}} \not{ }_{\perp}\left(1+\gamma_{5}\right) h_{v}
\end{aligned}
$$

- The operators contain a hard-collinear quark field $\boldsymbol{\xi}$, a composite object $\mathcal{A}_{\boldsymbol{h c}}$, which in light-cone gauge is the hard-collinear gluon field, and $\boldsymbol{W}_{h c}$, a Wilson line
- In SCET the b-quark field is treated as in HQET
- The \boldsymbol{B}-type operators are power suppressed in $\mathrm{SCET}_{\mathbf{I}}$, but contribute at the same order as the \boldsymbol{A}-type operator upon the transition to $\mathrm{SCET}_{\text {II }}$

SCET factorization formula for $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \gamma$

[Chay, Kim '03; Grinstein, Grossman, Ligeti '04; Becher, Hill, Neubert '05]

$$
\langle V \gamma| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta_{V_{\perp}}+\left(\Delta_{i} C^{B 1} \otimes j_{\perp}\right) \otimes \phi_{\perp}^{V} \otimes \phi_{+}^{B}
$$

- $\zeta_{V_{\perp}}, \phi_{\perp}^{V}, \phi_{+}^{B}$ are matrix elements of SCET operators
- Hard-scattering kernels $t^{I}, t^{I I}=$ SCET matching coefficients

$$
t_{i}^{I}=\Delta_{i} C^{A}\left(m_{b}\right) ; \quad t_{i}^{I I}=\Delta_{i} C^{B 1}\left(m_{b}\right) \otimes j_{\perp}\left(\sqrt{m_{b} \Lambda}\right) \quad \text { (subfactorization) }
$$

- Derivation of factorization in SCET

1) QCD $\rightarrow \mathrm{SCET}_{I}$: Integrate out \boldsymbol{m}_{b}; Defines vertex corrections $\Delta_{i} C^{A}=t_{i}^{I}$

$$
Q_{i} \rightarrow \Delta_{i} C^{A}\left(m_{b}\right) J^{A}+\Delta_{i} C^{B 1}\left(m_{b}\right) \otimes J^{B 1}+\ldots
$$

2) SCET $_{I} \rightarrow$ SCET $_{I I}$: Integrate out $\sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$; Defines spectator corrections

$$
J^{B 1} \rightarrow j_{\perp}\left(\sqrt{m_{b} \Lambda_{\mathrm{QCD}}}\right) \otimes O^{B 1, \mathrm{SCET}_{I I}}\left(\Lambda_{\mathrm{QCD}}\right)
$$

3) Large logs in $t_{\dot{L}_{1}}^{I I}$ resummed by solving RG equations

$$
\left[\Delta_{i} C^{B 1} \otimes j_{\perp}\right] \rightarrow\left[\Delta_{i} C^{B 1}\left(\mu_{h}\right) \otimes U\left(\mu_{h}, \mu_{h c}\right) \otimes j_{\perp}\left(\mu_{h c}\right)\right]
$$

$B \rightarrow K^{*} \gamma$ in SCET at NNLO

[Pecjak, Greub, AA '07]

Vertex Corrections

$$
\Delta_{i} C^{A}=\Delta_{7} C^{A(0)}\left[\Delta_{i 7}+\frac{\alpha_{s}(\mu)}{4 \pi} \Delta_{i} C^{A(1)}+\frac{\alpha_{s}^{2}(\mu)}{(4 \pi)^{2}} \Delta_{i} C^{A(2)}\right]
$$

- Contributions from O_{7} and O_{8} exact to NNLO $O\left(\alpha_{s}^{2}\right)$
- Contribution from O_{2} exact at NLO $O\left(\alpha_{s}\right)$ but only large- $\boldsymbol{\beta}_{0}$ limit at $O\left(\alpha_{s}^{2}\right)$ Spectator Corrections at $O\left(\alpha_{s}^{2}\right)$

$$
t_{i}^{I I(1)}(u, \omega)=\Delta_{i} C^{B 1(1)} \otimes j_{\perp}^{(0)}+\Delta_{i} C^{B 1(0)} \otimes j_{\perp}^{(1)}
$$

- Status of $O\left(\alpha_{s}^{2}\right)$ Calculations
- The one-loop jet-function $j_{\perp}^{(1)}$ known
[Becher and Hill '04; Beneke and Yang '05]
- The one-loop hard coefficient $\Delta_{7} C^{B 1(1)}$ known [Beneke, Kiyo, Yang '04; Becher and Hill '04]
- The one-loop hard coefficient $\Delta_{8} C^{B 1(1)}$ known [Pecjak, Greub, AA '07]
- $\Delta_{i} C^{B 1(1)}(i=1, \ldots, 6)$ remain unknown (require two loops)

One-loop corrections to spectator scattering with O_{8}

Estimates of $\operatorname{BR}\left(B \rightarrow K^{*} \gamma\right)$ in SCET at NNLO

[Pecjak, Greub, AA; EPJ C55: 577 (2008)]
Estimates at NNLO in units of 10^{-5}

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)= & 4.6 \pm 1.2\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt. } 4.2 \pm 0.18 \text { (HFAG 2012)]; }} \\
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)= & 4.3 \pm 1.1\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt.: } 4.33 \pm 0.15 \text { (HFAG 2012)]; }} \\
\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \phi \gamma\right)= & 4.3 \pm 1.1\left[\zeta_{\phi}\right] \pm 0.3\left[m_{c}\right] \pm 0.3\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {\left[\text { Expt.: } 5.7_{-1.8}^{+2.1}(\text { BELLE }) ; 3.9 \pm 0.5(\text { LHCb })\right] }
\end{aligned}
$$

Comparison with current experiments

- $\frac{\mathcal{B}\left(B^{+} \rightarrow K^{*+\gamma}\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B^{+} \rightarrow K^{*+}\right)_{\text {exp }}}=1.10 \pm 0.35[$ theory $] \pm 0.04[\mathrm{exp}]$
- $\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)_{\text {NNLO }}}{\mathcal{B}\left(B^{+} \rightarrow K^{* 0} \gamma\right)_{\text {exp }}}=1.00 \pm 0.32[$ theory $] \pm 0.04[\exp]$
- $\frac{\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)_{\text {exp }}}=1.1 \pm 0.3[$ theory $] \pm 0.1[\exp]$
- Theory error is about 30%; dominantly from $\boldsymbol{\zeta}_{V_{\perp}}, \boldsymbol{m}_{\boldsymbol{c}}$ and $\boldsymbol{\lambda}_{B}$; SM decay rates in good agreement with the data

Operators for $B \rightarrow K^{*} \ell^{+} \ell^{-}$in SCET

Introduction $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay Summary SCET formulae Phenomenological discussion

QCD \rightarrow SCET , matching

$$
\sum_{i=1}^{10} C_{i}(\mu) Q_{i}(\mu) \rightarrow \sum_{i=1}^{4} \tilde{C}_{i}^{A} J_{i}^{A}+\sum_{j=1}^{4} \tilde{C}_{j}^{B} J_{j}^{B}+\tilde{C}^{C} J^{C}
$$

$$
\begin{aligned}
& Q_{7}=-\frac{g_{e m} \bar{m}_{b}}{8 \pi^{2}} \bar{s}^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}, \quad Q_{9,10}=\frac{\alpha_{e m}}{2 \pi}(\bar{s} b)_{V-A}\left(\overline{\gamma_{\gamma}}{ }^{\mu} \gamma_{5} \ell\right), \\
& Q_{1,2}=\left(\bar{s} T^{A} c\right)_{V-A}\left(\bar{c} T^{A} b\right)_{V-A}, \quad Q_{3,4}=2\left(\bar{s} T^{A} b\right)_{V-A} \sum_{q}\left(\bar{q} \gamma^{\mu} T^{A} q\right), \\
& Q_{5,6}=2 \bar{s} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho}\left(1-\gamma_{5}\right) T^{A} b \sum_{q}\left(\bar{q}^{\mu} \gamma^{\nu} \gamma^{\rho} T^{A} q\right), \\
& Q_{8}=-\frac{g_{s} \bar{m}_{b}}{8 \pi^{2}} \bar{s}^{\mu \nu \nu}\left(1+\gamma_{5}\right) T^{A} b G_{\mu \nu}^{A},
\end{aligned}
$$

Full QCD $\rightarrow J_{i}^{A}$ in SCET

Crossed circles: locations where the virtual photon is emitted

$$
J_{1,3}^{A}=\bar{X}_{h c}(s \bar{n})\left(1+\gamma_{5}\right) \gamma_{\perp}^{\mu} h(0) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell, J_{2,4}^{A}=\bar{X}_{h c}(s \bar{n})\left(1+\gamma_{5}\right) \frac{n^{\mu}}{n \cdot v} h(0) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell
$$

(a)-(d): calculated in $B \rightarrow X_{s} \ell^{+} \ell^{-}$[Asatryan/Asatryan/Greub/Walker,2001]
(e)-(i): Form factor analysis [Bauer/Fleming/Pirjol/Stewart,2001, Beneke/Kiyo/Yang, 2004]

Full QCD $\rightarrow J_{i}^{B}$ in SCET

Introduction $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay Summary

SCET operators J_{i}^{β}

SCET,

Full QCD

Crossed circles: locations where the virtual photon is emitted. The crosses mark the possible places where a gluon line may be attached.

$$
\begin{aligned}
J_{1,3}^{B} & =\bar{\chi}_{h c}(s \bar{n})\left(1+\gamma_{5}\right) \gamma_{\perp}^{\mu} \mathcal{A}_{h c \perp}(r \bar{n}) h(0) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \\
J_{2,4}^{B} & =\bar{\chi}_{h c}(s \bar{n})\left(1+\gamma_{5}\right) \mathcal{A}_{h c \perp}(r \bar{n}) \frac{n^{\mu}}{n \cdot v} h(0) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell
\end{aligned}
$$

Full QCD $\rightarrow J_{i}^{C}$ in SCET

Introduction $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay Summary
SCET formulae Phenomenological discussion
SCET operators J^{C}

Full QCD: photon from spectator quark

Crossed circles: locations where the virtual photon is emitted. The last 3 diagrams are $1 / m_{b}$ suppressed.

SCET,

SCET ${ }^{\prime \prime}$

$$
J^{C}=\bar{\chi}_{h c}(s \bar{n})\left(1+\gamma_{5}\right) \frac{\not \hbar}{2} \chi_{h c}(r \bar{n}) \bar{\chi}_{\bar{h} c}(a n)\left(1+\gamma_{5}\right) \frac{\not x}{2} h(0)
$$

[AA, Kramer, Zhu; EPJ (2006) 625]

- We define the matrix elements of the A-type operators in SCET $_{1}$

$$
\langle M(p)| \bar{X}_{h c} \Gamma h|B(v)\rangle=-2 E \zeta_{M}(E) \operatorname{tr}\left[\overline{\mathcal{M}}_{M}(n) \Gamma \mathcal{M}_{B}(v)\right]
$$

where the projection operators are

$$
\mathcal{M}_{B}(v)=-\frac{1+\phi}{2} \gamma_{5}, \quad \overline{\mathcal{M}}_{K_{\perp}^{*}}(n)=q_{\perp}^{*} \frac{\vec{\eta} \nmid h}{4}, \quad \overline{\mathcal{M}}_{K_{\|}^{*}}(n)=-\frac{\bar{\eta} \nmid}{4}
$$

with $\varepsilon_{\perp}^{\mu}$ being the polarization vector of the K_{\perp}^{*} meson

- With this, the matrix elements of the SCET_{I} currents J_{i}^{A} are

$$
\begin{aligned}
& \left\langle K^{*} \ell^{+} \ell^{-}\right| J_{1}^{A}|B\rangle=-2 E \zeta_{\perp}\left(g_{\perp}^{\mu \nu}-i \epsilon_{\perp}^{\mu \nu}\right) \varepsilon_{\perp \nu}^{*} \bar{\ell} \gamma_{\mu} \ell,\left\langle K^{*} \ell^{+} \ell^{-}\right| J_{2}^{A}|B\rangle=-2 E \zeta_{\|} \frac{n^{\mu}}{n \cdot v} \bar{\ell} \gamma_{\mu} \ell \\
& \left\langle K^{*} \ell^{+} \ell^{-}\right| J_{3}^{A}|B\rangle=-2 E \zeta_{\perp}\left(g_{\perp}^{\mu \nu}-i \epsilon_{\perp}^{\mu \nu}\right) \varepsilon_{\perp \nu}^{*} \bar{\ell} \gamma_{\mu} \gamma_{5} \ell,\left\langle K^{*} \ell^{+} \ell^{-}\right| J_{4}^{A}|B\rangle=-2 E \zeta_{\|} \frac{n^{\mu}}{n \cdot v} \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \\
& \text { where } g_{\perp}^{\mu \nu} \equiv g^{\mu \nu}-\left(n^{\mu} \bar{n}^{\nu}+\bar{n}^{\mu} n^{\nu}\right) / 2 \text { and } \epsilon_{\perp}^{\mu \nu} \equiv \epsilon^{\mu \nu \rho \sigma} v_{\rho} n_{\sigma} /(n \cdot v) .
\end{aligned}
$$

Matrix elements of SCET Operators

- For the matrix elements of the B-type operators in SCET $_{I 1}$, we need to define first the LCDAs of the mesons:

$$
\begin{aligned}
&\langle 0| \bar{Q}_{s}(\operatorname{tn}) \Gamma \mathcal{H}_{s}(0)|B(v)\rangle=\frac{i F(\mu)}{2} \sqrt{m_{B}} \int_{0}^{\infty} d \omega e^{-i \omega n \cdot v t} \\
& \operatorname{tr}\left[\left(\phi_{+}^{B}(\omega, \mu)-\frac{n}{2 n \cdot v}\left(\phi_{-}^{B}(\omega, \mu)-\phi_{+}^{B}(\omega, \mu)\right)\right) \Gamma \mathcal{M}_{B}(v)\right] \\
&\left\langle K^{*}(p)\right| \bar{X}_{c}(s \bar{n}) \Gamma \frac{\not{n}}{2} \mathcal{X}_{c}(0)|0\rangle=\frac{i f_{K^{*}}(\mu)}{4} \bar{n} \cdot p \operatorname{tr}\left[\overline{\mathcal{M}}_{K^{*}} \Gamma\right] \int_{0}^{1} d u e^{i u s \bar{n} \cdot p} \phi_{K^{*}}(u, \mu)
\end{aligned}
$$

- Here two different K^{*}-distribution amplitudes $\left(\phi_{K^{*}}^{\|}(u, \mu)\right.$ for $\Gamma=1$ and $\phi_{K^{*}}^{\perp}(u, \mu)$ for $\Gamma=\gamma_{\perp}$) with their corresponding decay constants $f_{K^{*}}^{\|}$and $f_{K^{*}}^{\perp}(\mu)$, respectively, are involved
- $F(\mu)$ is related to the B meson decay constant f_{B} up to higher orders in $1 / m_{b}$

$$
f_{B} \sqrt{m_{B}}=F(\mu)\left(1+\frac{C_{F} \alpha_{s}(\mu)}{4 \pi}\left(3 \ln \frac{m_{b}}{\mu}-2\right)\right)
$$

- With the above LCDAs, the matrix elements of the operators O_{i}^{B} can be written as

$$
\begin{aligned}
\left\langle K^{*} \ell^{+} \ell^{-}\right| C_{1}^{B} O_{1}^{B}|B\rangle & =-\frac{F(\mu) m_{B}^{3 / 2}}{4}(1-\hat{s})\left(g_{\perp}^{\mu \nu}-i \epsilon_{\perp}^{\mu \nu}\right) \varepsilon_{\perp \nu}^{*} \bar{\ell} \gamma_{\mu} \ell \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{+}^{B}(\omega, \mu) \\
& \times \int_{0}^{1} d u f_{K_{\perp}^{*}}(\mu) \phi_{K_{\perp}^{*}}(u, \mu) \int_{0}^{1} d v \mathcal{J}_{\perp}\left(u, v, \ln \frac{m_{b} \omega(1-\hat{s})}{\mu^{2}}, \mu\right) C_{1}^{B}\left(v, \mu_{1}\right) \\
& \equiv-\frac{F(\mu) m_{B}^{3 / 2}}{4}(1-\hat{s})\left(g_{\perp}^{\mu \nu}-i \epsilon_{\perp}^{\mu \nu}\right) \varepsilon_{\perp \nu}^{*} \bar{\ell} \gamma_{\mu} \ell \phi_{+}^{B} \otimes f_{K_{\perp}^{*}} \phi_{K_{\perp}^{*}} \otimes \mathcal{J}_{\perp} \otimes C_{1}^{B}, \\
\left\langle K^{*} \ell^{+} \ell^{-}\right| C_{2}^{B} O_{2}^{B}|B\rangle & =-\frac{F(\mu) m_{B}^{3 / 2}}{4}(1-\hat{s}) \frac{n^{\mu}}{n \cdot v} \bar{\ell} \gamma_{\mu} \ell \phi_{+}^{B} \otimes f_{K_{\|}^{*}} \phi_{K_{\|}^{*}} \otimes \mathcal{J}_{\|} \otimes C_{2}^{B}
\end{aligned}
$$

- Matrix element of $C_{3}^{B} O_{3}^{B}\left(C_{4}^{B} O_{4}^{B}\right)$ is be obtained by replacing the lepton current $\bar{\ell} \gamma_{\mu} \ell$ by $\bar{\ell} \gamma_{\mu} \gamma_{5} \ell$, and also replacing $C_{1}^{B} \rightarrow C_{3}^{B}\left(C_{2}^{B} \rightarrow C_{4}^{B}\right)$.
- Matrix element of O^{C} is obtained likewise, with the result

$$
\left\langle K^{*} \ell^{+} \ell^{-}\right| D^{C} O^{C}|B\rangle=-\frac{F(\mu) m_{B}^{3 / 2}}{4}(1-\hat{s}) \frac{\bar{n}^{\mu}}{\bar{n} \cdot v} \bar{\ell} \gamma_{\mu} \ell \frac{\omega \phi_{-}^{B}}{\omega-q^{2} / m_{b}-i \epsilon} \otimes f_{K_{\|}^{*} \phi_{K_{\|}^{*}}} \otimes \widehat{D}^{C}
$$

- Since $\phi_{-}^{B}(\omega)$ does not vanish as ω approaches zero, the integral $\int d \omega \phi_{-}^{B}(\omega) /\left(\omega-q^{2} / m_{b}\right)$ would be divergent if $q^{2} \rightarrow 0$. We restrict the invariant mass of the lepton pair, say $q^{2} \geq 1 \mathrm{GeV}^{2}$.

Leading order in $\mathbf{1} / \boldsymbol{m}_{b}$ and all orders in $\boldsymbol{\alpha}_{s}$

[AA, Kramer, Zhu; EPJ (2006) 625]
The factorization formula in SCET

$$
\begin{aligned}
\left\langle K_{a}^{*} \ell^{+} \ell^{-}\right| H_{e f f}|B\rangle & =T_{a}^{I}\left(q^{2}\right) \xi_{a}\left(q^{2}\right)+ \\
& +\sum_{ \pm} \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{ \pm}^{B}(\omega) \int_{0}^{1} d u \phi_{K^{*}}^{B}(u) T_{a, \pm}^{I I}\left(\omega, u, q^{2}\right)
\end{aligned}
$$

where $a=\|, \perp$ denotes the polarization of the K^{*} meson.

- formally coincides with the formula in QCD Factorization
[Beneke/Feldmann/Seidel 2001], but valid to all orders of α_{S},
- for $T^{I I}$, the logarithms are summed from $\mu=m_{b}$ to $\sqrt{m_{b} \Lambda_{h}}$,
- compared with BFS, the definition of $\xi_{\|, \perp}$ is also different here.

Comparison with Data

Numerical results

Theor. vs. Belle

$$
\begin{aligned}
\left.B r\right|_{q^{2} \in[4,8] \mathrm{GeV}^{2}} & =\left(1.94_{-0.40}^{+0.44}\right) \times 10^{-7} \\
& =\left(\left.4.8_{-1.2}^{+1.4}\right|_{\text {stat }} \pm\left. 0.3\right|_{\text {syst }} \pm\left. 0.3\right|_{\text {model }}\right) \times 10^{-7}
\end{aligned}
$$

Comparison with experiments

Introduction
$B \rightarrow K^{*} \ell^{+} \ell^{-}$decay \qquad Numerical results
 SCET formulae Phenomenological discussion

Form factor determination
LCSRs $\quad \zeta_{\|}(0)=0.40 \pm 0.05, \zeta_{\perp}(0)=0.40 \pm 0.04$, their q^{2} dependencies LCSRs $+B \rightarrow K^{*} \gamma \quad \zeta_{\perp}(0)=0.32 \pm 0.02$

Theor. vs. BaBar

$$
\begin{aligned}
B r & q_{q^{2} \in[1,7]} \mathrm{GeV}^{2}
\end{aligned}=\left(\left.\left.2.92_{-0.50}^{+0.57}\right|_{\zeta_{\|}}{ }_{-0.28}^{+0.30}\right|_{\text {CKM }}{ }_{-0.20}^{+0.18}\right) \times 10^{-7} .
$$

Reduction of Scale Uncertainty in SCET

Introduction $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay Summary SCET formulae Phenomenological discussion
 Forward-backward asymmetry

$A_{F B}\left(q_{0}^{2}\right)=0$ free of hadronic uncertainties [Burdman1998, Ali et al., 2000]

$$
q_{0}^{2}=\left(4.07_{-0.13}^{+0.16}\right) \mathrm{GeV}^{2} \text { with } \Delta\left(q_{0}^{2}\right)_{\text {scale }}={ }_{-0.05}^{+0.08} \mathrm{GeV}^{2}
$$

```
QCD-F
q
```

Ahmed Ali
$B \rightarrow K^{*} \ell^{+} \ell^{-}$decay in soft-collinear effective theory

$$
\text { Experiment: } q_{0}^{2}\left(B^{0} \rightarrow \boldsymbol{K}^{* 0} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)=4.9_{-1.1}^{+1.3} \mathrm{GeV}^{2}
$$

- In agreement with the SM; however, current precision on \boldsymbol{q}_{0}^{2} is only 25%. Will improve at the upgraded LHCb and Super-B factories

Summary

- Thanks to dedicated experiments and progress in theoretical techniques (Pert. QCD, Lattice-QCD, QCD Sum Rules, Heavy quark Expansion, SCET) Rare \boldsymbol{B}-Decays are under quantitative control, but the precision varies between (10-30)\%
- From the CKM Phenomenology, there is added value in precisely measuring Rare B-Decays and in improving the SM theoretical accuracy, as this would overconstrain $\left|V_{t s}\right|$ and $\left|V_{t d}\right|$
- Rare B-Decays provide invaluable constraints on Beyond-the-SM Physics; theoretical interest in their dedicated studies remains high and they may turn out to be the harbinger of BSM physics, as they probe very high mass scales
- A new chapter on precision $\boldsymbol{B}_{\boldsymbol{s}}$-meson physics has opened at the LHC, in particular, by the LHCb, resolving some open issues and testing SM at an unprecedented rate, of which $\boldsymbol{B}_{\boldsymbol{s}}^{\mathbf{0}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$is a shining example
- We look forward to new data from the ongoing and planned experiments at the LHC and the Super-B factories

