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At which incident energy does onset of deconfinement happen?
What is the order of the deconfinement transition at high baryon densities?
Is there a critical end point in the phase diagram?



3 Hydrodynamics versus Kinetics

3FH model
NR Why we are not satisfied with kinetics or hybrid models?
sz @ Only crossover transition into QGP is accessible in

kinetics

‘H A Multi-Phase Transport (AMPT) model [Lin, Ko and Pal, PRL 89, 152301 (2002)]
Phys. Input Parton-Hadron-String Dynamics [Cassing, Bratkovskaya, arXiv:0907.5331 (2009)]

o @ In hybrid models (Kinetics-Hydro-Kinetics), transition into
QGP is inaccessible at the early (nonequilibrium) stage
of the collision

+ spectrum 3-Fluid Hydrodynamics

Rapidity

@ directly addresses Equation of State (EoS)!

Directed Flow
Slope

@ 1st-order phase transition into QGP is accessible
through EoS

@ Transition into QGP is accessible also at the early
(nonequilibrium) stage of the collision

@ However, all this requires certain approximations

Phase Evolution



M 3FH Assumption

3FH model e Distributions are separated in momentum space
JINR = different fluids
31.10.2016 e Leading particles carry baryon charge

=- 2 baryon-rich fluids: projectile-like and target-like

At high incident energies (E.p > 10A GeV)
e Produced particles populate mid-rapidity = fireball fluid

target projectile

fireball

distribution function

momentum along beam

This a minimal extension of hydrodynamics required by heavy-ion dynamics
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@ Kurchatov Inst. 1988—1991:
2-fluid hydro with free-streaming radiation of pions
Mishustin, Russkikh, and Satarov

@ Frankfurt University 1993—-2000:
3-fluid hydrodynamics with instant formation of fireball
Brachmann, Katscher, Dumitru, Rischke, Maruhn, Stocker, Greiner,
Mishustin, Satarov, et al.

@ GSI 2003—-now:
3-fluid hydrodynamics with delayed formation of fireball
Ivanov, Russkikh, Toneev
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3FH

3FH Equations of

Produced particles
populate mid-rapidity
= fireball fluid

distribution function

Motion

target projectile

fireball

momentum along beam

Target-like fluid: oudf' =0 O, TH =—Fp, + F},
Leading particles carry bar. charge exchange/emission

i i i id- B py o v v
Projectile-like fluid: 9, J, =0, Ty =—Fp+ Fp

Fireball fluid:  J!' =0,

Baryon-free fluid Source term  Exchange
The source term is delayed due to a formation time =

ou T :F/’;t + Ft’;)—F;;) — F4

Total energy-momentum conservation:
Ou(THy + T +T/")=0




M Hydrodymanic densities

3FH model

JINR
31.10.2016

Baryon current: Energy-momentum tensor:

JE = nyuby T4 = (eq + Pa)UNUE — 1 Pa
n, = baryon density of a-fluid £qo = €nergy density

uk = 4-velocity of a-fluid P, = pressure

+ Equation of state:

P=P(n,e)

Final Aim: To find a proper EoS, which reproduces all data
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Phys. Input

Physical Input |

I. Equation of State

@ Hadronic EoS
Galitsky&Mishustin

(1979)

@ 1st-order transition to QGP

(2-phase EoS*)
@ crossover EoS*

*[Khvorostukhin,
Redlich, Toneeyv, (2006)]

Skokov,
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Phys. Input

Physical Input Il and Il

Il. Friction was fitted to reproduce the baryon stopping

@ Hadronic EoS
Friction in hadronic phase was estimated by Satarov (SUNP 1990)
This friction had to be enhanced.

@ 2-phase EoS and crossover EoS
Phenomenological friction in QGP phase.

Advantage of deconfinement scenarios:
Satarov’s friction in hadronic phase needs no modification

lll. Freeze-out
When system becomes dilute, hydro has to be stopped

Freeze-out energy density 4, = 0.4 GeV/fm®
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3FH output
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Output at the freeze-out stage

All fluids are frozen out in small droplets characterized by

@ proper volume VP,

@ temperature T,

@ baryon, ug, and strange, us, chemical potentials
@ collective flow velocity u*,

T, ug and us

are determined from

baryon pg, strangeness ps and energy e densities
using hadronic-gas EoS.



M 3FH observables
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L Hadron phase space distributions,

*0 d3 Ni _ gi Vapr p*O
d®pr (2m)3 exp [(p*° — prai)/ Ta] £ 1

3FH observ.

tai = Bi - o + Si - pas is the chemical potential of hadron i with baryon
number B; and strangeness S,
« summation runs over droplets from all (p, t and f) fluids,

* denotes momentum in the droplet rest frame.

Observables are integrals of distribution functions

directed flow = vi(y) — / &pr (px/pr) (0°° d°N/dPp*)/(a®N/dy)

rapidity distribution dN/dy = / d’pr p*° d®N/d®p*
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Particlization

Particlization

In order to use the 3FH as an event generator, the output
should be in terms of observed particles.

Monte Carlo sampling procedure:

Hadrons are sampled according to their phase space distributions,

0 d@°N; _ Z gV p*°
a3p* (2m)2 exp [(Pp*® — pai)/ To] £ 1

[e3

p

* denotes momentum in the droplet rest frame

Lai = Bi - liaB + Si - ias is the chemical potential of hadron i
with baryon number B; and strangeness S;,

« summation runs over droplets from all (p, t and f) fluids.
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Particlization

Sampling

The sampling is runs as a loop over all droplets:
@ average multiplicities of all hadron species are calculated according
to
ANio = VEnia(T, i),
together with their sum ANi,o = > ; AN;o;
@ total (integer) number of hadrons from each droplet is sampled
according to Poisson distribution with mean ANy, «.

If the number is greater than zero, sort of hadron is randomly chosen
based on probabilities AN; o/ AN, ;

@ hadron’s momentum p* is sampled according to its phase space
distribution, which is isotropic in momentum space;

@ momentum is Lorentz boosted to the global frame of the collision.

Particle multiplicities fluctuate from event to event according
to the composition of grand canonical ensembles.



3 UrQMD simulation of final state interactions
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Afterburner:

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

is used to treat the interactions during the late non-equilibrium
Afterburner hadronic stage of heavy ion reactions,

i.e. after particlization.

3FH + Particlization + Afterburner
Three-fluid Hydrodynamics-based Event Simulator Extended
by UrQMD final State interactions (THESEUS)
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Ppr spectrum
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Figure: Transverse momentum spectrum for pions (left panel) and
kaons (right panel) for central Au+Au collisions (b = 2 fm) at

Ei., = 30 A GeV for the 2-phase EoS.

3FH and THESEUS without UrQMD show excellent agreement.
UrQMD leads to a slight steepening of the pion pr spectrum.
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Rapidity

B Figure: Rapidity distribution for pions (left panel) and kaons (right
panel) for central Au+Au collisions (b = 2 fm) at E;,, = 30 A GeV
for the 2-phase EoS.

3FH and THESEUS without UrQMD show excellent agreement.
UrQMD hadronic rescattering smeares out the double-peak structure in
the kaon rapidity spectrum.
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Directed Flow
Slope
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M Directed Flow for Au+Au collisions
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Afterburner: Shadowing of pion by baryonic matter.
S. A. Bass, et al., Phys. Lett. B 302, 381 (1993).
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Three-fluid Hydrodynamics-based Event Simulator
Extended by UrQMD final State interactions (THESEUS)
is developed

3FH + Particlization + Afterburner(UrQMD)

@ it can be used for simulations of experimental events at
NICA and FAIR

@ it can describe a hadron-to-quark matter transition which
proceeds in the baryon stopping regime

summary @ THESEUS without UrQMD well reproduces 3FH results
@ afterburner has little effect on the proton flow observables

@ afterburner results in a qualitative change of the pion
emission pattern: from flow to antiflow
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Phase Evolution
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Crossover transition by Khvorostukhin et al. is too smooth

Lattice QCD predicts a fast crossover.

Dynamical trajectories

of matter in the central

|box of colliding nuclei

(4fmx 4fmx yom 4fm)

Therefore, a true EoS is somewhere in between the "Khvorostukhin et al.™-crossover
and "Khvorostukhin et al.-2-phase EoS’s.

Onset of deconfinement happens at top-AGS-low-SPS energies.
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kt /7t ratio
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afterburner does not essen-
tially affects the K+ /= ratio
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