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Main results

e Having used the Contour Gauge and the Collinear Factorization
for Drell-Yan and Direct Photon Production hadron tensors, we
find new contributions to gluon poles.

e In the Feynman Gauge, we discuss the constraints for the gluon
poles in the DY hadron tensor.
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Geometrical interpretation of gluons

e Gluon field as a connection of P(R*, G, 7): R* — the base of the
principal fiber bundle, G — the group and {x |R* — P}.

e Each g(x) defines the gauge-transformed field and forms the
orbit of the gauge-equivalent fields.

e The p.t.e. X,(v) Dag(x(v)) = 0 has a solution g(x) = [Xo, X|
(Hahn-Banach theorem).

e The contour gauge demands that g( ) = 1 for ¥x € R* and

A9 = [ 0252 Gup(alAce)
,u

P(xo,X)
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e The simple illustration of the use of the contour gauge
conception, [xo, X] = 1, which generates the usual axial-type
gauges:

On the Contour Gauge, see S.lvanov, G.Korchemsky, A.Radyushkin "85 -’90
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Factorization theorem, in a nutshell

Schematically, F.T. (applied, for example, to DVCS) corresponds to

Amplitude = {Hard part (pQCD)} ® {Soft part (npQCD)},

where both hard and soft parts are independent of each other, UV-
and IR-renormalizable and, finally, parton distributions must possess
the universality property.
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Drell-Yan process

We study
NI (pr) + N(p2) = 7v*(q) + X(Px) = £(h) + U(k) + X(Px),

where I; + h = g has a large mass squared (g% = Q?).
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The cross-sections reads (kinematics: py ~ n* ™, po ~ n™)

do = (dP.S.)? £, WE

pv o

where £,,, is a lepton tensor, and W&/ — the QED gauge invariant
hadron tensor.

3 b)

» The standard diagram (a) and the non-standard diagram (b)
differ by the hard parts. (Factorization links: IVA, O.V.Teryaev ‘09.)
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Single Spin Asymmetry

Any SSA are defined as
SSA ~ do —do® ~ £, H,, .

In our case, we deal with the unpolarized leptons, i.e. £,, € Re.
Therefore, the hadron tensor H,,,, should also be real one, i.e.

H,.. € e, provided, at the same time, one of hadrons is transversely
polarized. Usually, it is possible if

H(a) ~ [3m [Hard] ® {<p1 ) ST|O(77;a ¢aA)|ST7p1> ;7\-: iEOéBSTMCD} )

uv

H® ~ Hard ® {<p1 ,ST|O(, 1, A)| ST, p1) % igapsp, |SM [(D]} :
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However, if BY € Re, which parametrizes

(pr, STIH (M) gAT(AP)i(0)[ST, pr) Z i+~ (p1p2) BY (X1, %)

with

P
BY(x1,%) = X T(x1,X2),

— Xo
T(x, %) X (S(AR)y ", GE (AR)(0)),
the non-standard diagram (b) does NOT contribute to the SSA.

» As aresult, we are faced to a problem with QED gauge
invariance and, therefore, with the factorization breaking.
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The inference on BY € Re is based on the solution of the differential
equation (within the gauge: At = 0)

ot Ay = G

The solution has previously been assumed to have two equivalent
representations:

Al(z) = / dw0(z" —w )G(w™) + A(—o0)
= — / dw O(w™ — 27 )G (w™) + A¥(c0).
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Inserting the above-mentioned presentations into the corresponding
matrix elements, we thus obtain

) - . (=) &(x1, X2)
Pa(x1,Xe) = 00 = Xe) P4y (1) + =2 ==
and

(—1) ®G(x1, X2) '

q)Oé :6 — q)O(
A(X1, X2) = (X1 — Xx2) P o) (1) + X2 — Xi+ie

Here, the corresponding prescriptions +ie arise from the integral
representation for the theta-function:

+oo

+i ek
X)) = R
0(%x) 27 / dk k+tie

— 0o
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Calculation the plus and minus combinations leads to

1 1
¢2(X1 , Xg) = fq)%(Xth) + *q)z(Xth) =

2 2
1 [e3 «
5000 = 3){ P4y (¥1) + Do) (50) | +
P N
Xo — X (—=NP&(x1, x2)

and
0= CD/(X(X1 R X2) — ¢Z‘(X1 , X2) =

6061 = 2e){ Pl o) (1) — Py (X1) } -
2/7T(5(X1 — X2)(—i)¢%(X1 s Xg) .
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Mulders, Boer et al. '94-96; Barone et al. '00; Boer, Qiu '02
So, this ambiguity ultimately gives us the standard representation:

BV(X-],Xg) =

T(xq, X:
X1 — Xo (17 2)7

T(x1, %) X (§v5 AyGra )  T(x,x) #0.

provided the asymmetric boundary condition for gluons:

B/‘\/(oo)(x) = _B/‘\/(—oo)(x)

Thus, for the considered DY, a pure real BY(x;, x2) will lead to the
problem with QED gauge invariance which means factorization
breaking.
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I.V.A., O.V.Teryaev '10-15
In fact, the two representations are NOT equivalent.

Using the contour gauge conception, one can easily check that

e the representation with §(z~ — w™) belongs to the gauge
[X, —o0] =1;

e the representation with §(w~ — z7) belongs to the gauge
[+o00, x] = 1.

Therefore, there are no reasons to believe that two repres. are
equivalent, i.e.

{Repe(z:m) = B+V(X1,X2)} # {BZ(Xth) — Repe(w:zf)} :
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We get

T(x1,x2)
Xy — Xo+le
B/\\/(—oo)(x) = 0;

BV(X17X2) = +5(X1 —Xg)B/\‘/(foo)(Xﬂ,

which leads to the non-zero contribution from the diagram (b).

Conclusions for DY:

T(x1, X2)
Xy — Xo+ie

ISl = =[z7,—x]= = Gl

0+ — e

The new non-standard diagram H,(,,‘L) DOES contribute to the DY
hadron tensor in the same way as the well-known standard diagram
H@.
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DY hadron tensor in Feynman Gauge

The unintegrated tensor W,,, for the factorized hadron tensor W,,,, of
the process reads

R 2 - _
Wi z/quTdWW = ?/quT(g(?)(qT) X

i /dx1 dy [6(x1/x8 —1)6(y/ys — 1) Wy
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The parametrizing functions are associated with the following
correlators:

) 2 (i) AT(2)00))

B® (x1,x2) = (h(m) v+ A*(2) $(0))
B (%1, x2) <= (d(m)~* (94 A*(2)) %(0)).

8(1)(X1 s Xg) =
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After some algebra, we arrive at the following contributions for the
unintegrated h. t. (which involves all relevant contributions except the
mirror ones):

e the standard diagram gives

pv

Pi Xt =X g
- dxo———=—B'Y(xq, x;
) sl,sr,pz/ 2x1 ot B )

P2y X1 X2)
[x1 EusT— P2+ EvsT— Pz X1 d27’

X1 — Xo + le
P1u B (x1, X2)
+7y €vST—p, /dX27X1 “xptic [

W(Stand.) 4 WLSVtand.,aL) _ E](y) {
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e the non-standard diagram contributes as

—(Non-stand.)

v = (_7(}/)'[:,)‘2M EvST—p, / dXz{B(1)(X1,X2) + B(z)(X1,X2)}'

<

L.V. Anikin DY, DPP: Twist 3, Gluon Poles



Summing up all contributions, we finally obtain the expression

W/w = W(Stand) + WELSVIand., 91) + szljon-stand,) _
a(y) 3 |22 - P (1)
(i o farin:

ELST—p, /dxz )(x1, x2) —

v X1, X
[pj EuST—p, +— p2 EpsT— X1 /dX2 ( i 2) +
1

Xy — Xo + Ie
Py d B (x4, x2)
- X _ s
y “vSTop / ®X1 — Xg + e

Notice that the first term coincides with the hadron tensor calculated
within the light-cone (contour) gauge.
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QED gauge invariance of hadron tensor (FG)

Let us now discuss the QED gauge invariance of the hadron tensor.

Wu W (Stand.) W(Sytand., 01) n W(I\Iljon—stand.) _
P2p  Pip
q(y) { |:71 — | €vST—p, /dX2 )

P2 2
XifgusT—pg /ngB( )(X1,X2)—

Y " B@(xq, x;
{p; 5M377p2+%€V377p2}x1/dx2M+

X1 — Xo + e
Pt BW(xy, X2)
e X - b}
y “vSTop ./d ?X1 — Xp + I
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QED gauge invariance of hadron tensor (FG)

Let us now discuss the QED gauge invariance of the hadron tensor.

Wu W Stand) WLSVtand.,BL) n nglzljon—stand.) _

5 Pep _ Pin (M

Q(Y){{ Xq y j|€l/ST—P2 /dsz (X1, X2)+
pju EvST—p, /dxz X17X2)

Py P2 " B@(xy,x)

[ X EuST—p, T 71u€l,sT,p2]X1 / axo——————-+

X1 — Xo + e
Pt BW(xy, X2)
e X - b}
yE”L”/HZM—&+m
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QED gauge invariance of hadron tensor (FG)

Let us now discuss the QED gauge invariance of the hadron tensor.

Wu W (Stand.) WLSVtand., 01) n nglzljon—stand.) _

Pay _ Pip (1
[x1 y j|€1/ST—p2 /dsz (X1, X2)+

B(2)(X1 s Xg)
X1 — Xo + i€
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QED gauge invariance of hadron tensor (FG)

Let us now discuss the QED gauge invariance of the hadron tensor.

Wu W (Stand.) WLSVtand., 01) n nglzljon—stand.) _

Pay _ Pip (1
[x1 y j|€1/ST—p2 /dsz (X1, X2)+

Peu ELST—py /dsz(Z)(Xqu)—

B(2)(X1 s Xg)
X1 — Xo + i€

p2[L '
EnST—ps + 7161137—7[)2})(1 axo

: (L)
P s | de(XX)}

Xy — Xo + le
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B®) (x4, x2) has no gluon poles

Consider the correlator:

/(d/\1 d/\z)e—ix1>\1—i(X2—X1))\2 %

(p1, STID(MM) vz AL (A1) ¥(0)|ST, pr)
which can be parametrized with

ieﬂaSTf (p1 p2) B(Z)(X1 s XQ) .
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see also V.Braun, D.lvanov, A.Schafer, L.Szymanowski ‘02

In the momentum representation, we have (¢ = ko — kq)
1

o 1

a(ki)vs u(kz)] X oo X
where ki = (X1pT7k;, R1 J_), ko = (Xgpr,kg, EQJ_).
To get the non-zero contribution we must have either Ky, # 0 or
ko, # 0.
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One can conclude that, in the case with the substantial transverse
component of the momentum, there are no sources for the gluon pole
at x; = Xxo.

As a result, for DY process,

e the function B®)(xy, x2) has no gluon poles (therefore, there is
no dT(x, x)/dx)

e due to T-invariance (B®(xq, x2) = —B®)(xz, x1)), the function
obeys
B®(x,x)=0.

e The hadron tensor is gauge-independent.
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Direct Photon Production in hadron collisions

We now dwell on the direct photon production in two hadron
collisions:

N (pr) + N(pz2) = (q) + X(Px).

where xg = 2g3/\/S is relatively large. The cross-section do is
defined by the hadron tensor as
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Kinematics

It is convenient to fix the dominant light-cone directions as

—\/En* —\/gn with
p1* P ) p2* ) 5

m=(1/v2,0r,1/v2), n,=(1/v2,07, -1/V2).

The final on-shell photon and quark(anti-quark) momenta can be
presented as
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The Mandelstam variables for the process and subprocess are
defined as

S=(pi+p)?% T=(pPi—q?% U=(q—p)
§=(xip1 + yp2)? = x1¥S,
t=(apr—qf =xT, U=(q-yp)*=yU.
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QCD gauge invariance

To study the QCD gauge invariance, we consider the following
diagrams:

DPP: Twist 3, Gluon Poles



The quark-gluon correlator reads
O5(ki0) = — [(dmd*2)e I oy (0)y U ()AL (D))
= - /‘(d“m )&~ M (py|(0)y T (n1)at (€)Ip1) -
Factorization procedure gives us
(X1, X2) = /(d4k1 d*0)s(x1 — k1n)d(xe1 — £n)® (ke 0) =

—&; /(CI/A1)<9_"X‘M (P19 (0)y 4 (A1n) /(d45)5(Xe1 —Lma*(l)lpr) .

e For checking of the QCD gauge invariance, we make a
replacement: £+ = 7, in the diagrams.
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Initial and Final states interactions

In the process we consider, we have both ISl and FSI:

1 T
ISl= ——=[z27,—-0|=> M
/+ — e Xy — Xo+le
and
1 T
FSl= —— = [t ,27] = M
/t 4+ e X1 — Xo—le

P.S. Definitions:
ISI and FSI are defined regarding the hard subprocess.
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QCD gauge invariance: final stage

T Cgl/dXQ X2;X1 T(x1,X2)
2

X1 X1 — X2—i6 ’
1 1 T
W@ ~ Cg—/dxa i M
Xq Xo X1 — Xo—le
— T
e) ~C1l2/dx2LX2).,
X; X{ — Xo+le
T
W - oy [ oy TO%)
X; Xy — Xo+le

where C; are corresponding colour factors. After calculation of
imaginary parts, we get

+Co—C1—Cy = —[t3, tP] tP 13 — ifdbc e 13 tb —
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Hadron tensor of the DPP: new contributions

The full expression for the hadron tensor can be split into two groups:

(i) the first type, before factorization,takes the following form

: ag o3k
W(dlag.H)—/( 27)32E (2r)o2: Cuy /(d ki )(d*kz) x

@ (ks + ko — g — k) 055 (k) /(d“e)cb[j Lo (ky, 0) HP 2 (ky Ky, £)
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(i) the second type can be presented as

. £§ &K
W(onag.D):/(ZW)S‘;E(&r 35 Co /(d ki) (k)

5D (ki + ko — q — k)5 (ko)trp [0 (ki) D (ky, ko)) .

where the twist-3 quark distribution which is given by

AP
oM (k) = L LY /d4 ek
(k1) ok e (d*m)

(1. STID(0)y* AL (0)w(m)IST. p1)
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We now perform the factorization procedure, we obtain
g a3k
(2m)32E | (2m)32¢

2 o
/ dxidyd(xs — xg) 6(y — ¥8) §fg(y) g7’ x

dW(diag.H) = 5@ (KL +¢.)Ch x

/dx2 oD P (xy, x2) HYP0 (x4, X)

for the first type of contributions;
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and
g a3k
(27)32E | (27)32¢
s dyd(x1 — X&) 8y — yg) 2F9(y) 9o trp [0 (x;) D°P
x1dyd(x1 — xg) 5(y — ¥B) g/ (¥) 917 wp [ (x1) D (x4)] ,

dW(diag.D) = 5@ (K. +¢.)Cp x

for the second type of contributions.
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Kinematical constraints

To simplify our calculations without losing generality, we may impose
the frame where g2 < S. The Mandelstam variable defined for the
subprocess, {, is a small variable and can be neglected. It means
that the Bjorken fraction yg becomes independent of xz, and
—xp~yg=—T/S (dueto 8+ 1+ & =0).
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DPP Hadron Tensor: final stage

The only nonzero contributions to the hadron tensor come from the
diagrams H1, H7, D4 and H10:

d®g a3k
(2m)32E | (2m)32¢
/ oy dyd(x; — xg) 3y — y6) FO(y) x

25% X1 y? gd1+SL—
adxo - 5 T
[XoyS+ie][x1 yS+ie] o2

dW(diag.H1) = 5@ (k. +.)Ca x

BY(X‘UXZ)a
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d®g Bk e -
(27)%2E (27r)3255( (K. +4.)C1

/ axydyd(xs — xg) 6(y — yB) FI(y) x

2)STx (y —3yp) e9-+5:— _,
B
/dX2 [Xo T+i€][xs T+ie]2 T (X1, x2)

aW(diag.H7) =
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3G Bk SO, 1 a

(27)32E ) (2rm)32¢
2

/dX1 dyd(x1 — xg) d(y — yB) gfg(Y) X

282 x; (y — 2yg) e9++S:-
[xq T+ie]2 2x1py +ie

dW(diag.D4) =

/ dX2 B+V(X1 s Xg) s
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G Pk o -
@rp2E | @apat (et d)Csx
/ dxidyd(x1 — Xg) 8(y — y8) FO(y) x

/d 2T (xy — x2)(2T + Sy) gaLt+SL—
2 THie| X T+ie[(x1 — X2)yS+ie] Py

Here, C1 = C,_—Nc, CQ = —CF/Z, C3 = CF Nc CA/2.

dW(diag.H10) =

B_‘:(X1 R X2) .
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The other diagram contributions disappear owing to the following
reasons:

e the y-algebra gives (y7)% = 0;
e the common pre-factor T + yS goes to zero,

e the diagrams H2 and H5 cancel each other.
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Analysing the results for the diagrams H1, H7, D4 and H10, we can
see that

| dW(diaH1) + dW(dia.H7) + dW(dia.D4) = dW(dia.H10) .|

In other words, as similar to the Drell-Yan process, the new
(non-standard) contributions generated by the diagrams H1, H7 and
D4 result again in the factor of 2 compared to the standard diagram
H10 contribution to the corresponding hadron tensor.

This is our principle result.

P.S. Definitions:
Standard contributions — non-zero contributions for BV € Re
Non-Standard contributions — zero contributions for BY € Re
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Spin Asymmetries

IVA, O.V. Teryaev, '09-10

e Single Transverse SA from Polarized DY:

doM = dg)
T do™ + do)’

dot) = (dP.S.)L,, W,
2

Ly =1 ,lo, + 01,02, —QW%, q="11+12

T

and

—Gl —
E,w W/w = —-2co0sf €0,8Tppo CI(yB) T(XB, XB)

where T(x, x) = xfr(x) with T-odd function r(x).
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e Single Transverse SA from Polarized DY

—Gl =
do™ ~ £, W, = —2¢08 0,670, 4(V8) T(X5, X8) .

which revises the previous results:

w A d
Lo WZ‘fG' = —C08 0, 57p,p, G(¥B) [T(XB, XB)_XBdTB T(xs,x8)| ,
where (p1 = xgpy)

el N A ﬁ q p1 L_p2 N
Low WZ?’ = Ly P = Ly {p1 u*quﬁ} = ﬁ,w%

owing to £,,,q.p - q/ Q% = 0.
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DY process in (semi)Exclusive mode

Figure: Drell-Yan process coming through the pion DA and the transition
GPDs (left) and Drell-Yan process coming through the nucleon DA and the
transition GPDs (right).
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IVA, B. Pire, O.V. Teryaev, work in progress

At leading twist, the corresponding factorized amplitude takes the
following form:

ADY = /d,U,(Z, X) (DM(N)(zv Mz) H(X, z, 02, /1'27 :u%) F(X, [1:2)
= ¢M(N) ® H® F,
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More precisely, the factorized amplitude can be written as

Q) _ 67'rozsf7r CF

Al s Er
o VeN.Q

[eﬁm - ed’ﬁjd} Pl ),

AU(PX)Eff’(X) X

¥ AY. L Ti n-
A = [ U msUPOH () + TP s

—1

i il
X+E&—de x—&4iel’
1
vim) = /dyaﬁw(y)[1 + 1}
s y 1-y

Here, functions H and E are standard leading twist GPD’s and their
properties are fairly well-known
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Drell-Yan process:

» |t is mandatory to include a contribution of the extra diagram
which naively does not have an imaginary part;

» This additional contribution emanates from the complex gluon
pole prescription in the representation of the twist 3 correlator
BY(x1, x2) owing to the corresponding contour gauge;

» In the Feynman gauge, the correlators with v~ A* and 4+ (9+A")
do not have the gluon poles and the gauge-invariant amplitude
coincides with the amplitude derived within the axial-type gauge.
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Direct Photon Production:

» In contrast to DY, this process includes both ISI and FSI that
leads to the different gluon pole prescriptions in the diagrams
under our consideration; In turn, the different gluon pole
prescriptions ensure the QCD gauge invariance.

» We find that the non-standard new terms, which exist in the case
of the complex twist-3 BY-function with the corresponding
prescriptions, do contribute to the hadron tensor in the same
way as the standard term known previously. This is another
important result of our work. We also observe that this is exactly
similar to the case of Drell-Yan process.

» We observed the universality breaking, which spoils the
standard factorization. However, the factorization procedure we
proposed can still be applied for calculations.

L.V. Anikin DY, DPP: Twist 3, Gluon Poles



