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In order to answer 2-nd question we need a very accurate tool to analyze data.



Where Is Onset of Deconfinement?

30 years experience tells, that it is not difficult to invent a signal of QGP 
formation. 

!
The most difficult part is to justify that it is related to phase transition.

In order to make such relations we need a very accurate tool to analyze data.







Formally, in such a treatment two gases are separated by the wall!

Two component models do not solve the problems! 
Hence we need more sophisticated approach.
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The resonance width is taken into account in thermal densities.
The resonance width is taken into account in thermal densities.

In contrast to many other groups we found that  



Data and Fitting Parameters!

111 independent hadronic ratios measured at AGS,  SPS and RHIC energies 

# of published ratios measured at mid-rapidity depends on energy => 	



# of global fit parameters = 4 
R_pi, R_K, R_mesons, R_baryons

# of local fit parameters for each  
collision energy = 3    (no                  ) 
T, mu_B, mu_I3 
Total  # for 14 energies = 42 
!
# of fit parameters with                   is 4 
Total # for 14 energies = 56

γ  factors

γ  factors

p
sNN Nrat �

2
1 �

2
2 �

2
3 �

2
4

(GeV) FO SFO SFO+�S SFO��S

2.7 4 0.62 0.62 0.62 1.3 · 10

�5

3.3 5 0.17 0.08 0.08 3.4 · 10

�9

3.8 5 0.56 0.03 0.03 0.03
4.3 5 0.35 0.26 0.26 0.21
4.9 8 0.55 0.55 0.40 0.40
6.3 9 7.91 2.88 2.45 2.45
7.6 10 17.5 16.6 5.9 5.9
8.8 11 7.9 7.85 7.56 7.56
9.2 5 0.16 0.15 0.03 1.3 · 10

�7

12 10 17.3 11.9 9.57 9.57
17 13 14.7 7.39 7.38 7.38

62.4 5 0.4 0.09 0.03 0.03
130 11 5 4.62 4.32 4.32
200 10 7.4 5.49 5.09 5.09

Sum 111 80.5 58.5 43.72 42.9

Dof N/A 69 55 47 41

Table 1:

pQGP = A0T

4 + A2T

2
µ

2 + A4µ

4 � B| {z }
fitting

= A

L
0 T

4 + A

L
2 T

2
µ

2 + A

L
4 µ

4

| {z }
LQCD

�Beff

Beff(T, µB) = B � (A0 � A

L
0 )T 4 � (A2 � A

L
2 )T 2

µ

2 � A4 � A

L
4 )µ4

�s(
p

s)/�s(
p

s = 4.9) = 7.7/14 , �s(
p

s)/�s(
p

s = 4.9)

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j

2
B = � p�p0

X�X0
, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
and the straight line with the slope j

2
B known as the Raleigh line. To solve

6

# of local fit parameters cannot be larger  
than 4 (for all energies) or larger 
than 5 (for energies above 2.7 GeV) 



NO γ_s is used!



K. A. Bugaev, D. R. Oliinychenko,  A. S. Sorin and G. M. Zinovjev, Simple Solution to the 

Strangeness Horn Description Puzzle,  Eur. Phys. J. A 49 (2013), 30--1-8:               Etap I

Best global fit of all ratios gives  R_pi=0.1 fm,  R_K =0.38 fm,

!^2/dof =1.16      for     fixed: R_baryons =0.2 fm, R_mesons = 0.4 fm 

Note that Lambda and other hyperons can be described better!
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NO γ_s is used!



However, until 2013 the situation  with strangeness was unclear:

P. Braun-Munzinger & Co  found that                   is  about 1γ  factors

In 1991 J. Rafelski introduced strangeness fugacity 
!

                                              which quantifies strange charge chemical oversaturation (>1) or	


  

γ  factors

strange charge chemical undersaturation (<1)

Phys. Lett. 62(1991)

F. Becattini  & Co  found that                   is < 1γ  factors

Idea: if s-(anti)quarks are created at QGP stage, then their number should not 
be changed during further evolution since s-(anti)quarks number is small and 
since density decreases => there is no chance for their annihilation!  
Hence, we should observe chemical enhancement of strangeness with γ  > 1s

In 1982 J. Rafelski and B. Müller predicted  that enhancement of strangeness  
production is a signal of deconfinement. 

                 	


  

Phys. Rev. Lett. 48(1982)
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Our Results on Strangeness Enhancement in 2013

Solving problem with Kaons leads to (anti)Λ selective  suppression!

High quality description of hadron multiplicities requires T, µ  , µ  B I3 γ  factorsand
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Strangeness Horn and  Λ Horn in 2014
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V. V. Sagun,  Ukr. J. Phys. 59, No 8, 755-763  (2014)

V. V. Sagun et al., Ukr. J. Phys. 59, No 11, 1043-1050 (2014)

To avoid selective suppression of Λ-hyperons we added their hard-core radius



Strangeness Horn and  Λ Horn in 2014



Intermediate Conclusions

3.   Studies of chemical freeze-out require that ANY realistic 
          EoS  of hadron matter must reproduce HRG model results 
  at chemical freeze-out (important for NICA & FAIR)

4.   Using  multicomponent HRG model we can study  
  thermodynamics at chemical freeze out

1.  The multicomponent HRG model is a precise tool 
of HIC phenomenology 

2.   With high confidence we conclude  that chemical  
           enhancement of strangeness exists at very low energies 
   where  we do not expect deconfinement



Jump of ChFO Pressure at  AGS Energies
TCFO

p
s

' 6 ' 5

K.A. Bugaev et al., Phys. Part. Nucl. Lett. 12(2015) [arXiv:1405.3575];	


Ukr. J. Phys. 60 (2015) [arXiv:1312.4367]



 Trace Anomaly Peaks

Are these trace anomaly peaks related to each other?   
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Figure 17: Upper figure: Contribution of the charm quark to the pressure on the Nt = 8 lattices.
Lower figure: The pressure normalized by T 4 for nf = 2 + 1 + 1 and nf = 2 + 1 flavors on Nt = 8
lattices. The corresponding Stefan-Boltzmann limits are indicated by arrows. The charm to strange
quark mass ratio is Q = 11.85 on this plot.
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Figure 18: The normalized trace anomaly obtained in our study is compared to recent results
from the “hotQCD” collaboration [13, 14].
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Hadrons
QGP

WupBud EOS  arxive: lat 1007.2580K.A. Bugaev et al., arXiv:1412.0718 [nucl-th]

At chemical FO (large µ) Lattice QCD (vanishing µ)
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 Trace Anomaly Peaks (Most Recent)

Are these trace anomaly peaks related to each other?   

Figure 17: Upper figure: Contribution of the charm quark to the pressure on the Nt = 8 lattices.
Lower figure: The pressure normalized by T 4 for nf = 2 + 1 + 1 and nf = 2 + 1 flavors on Nt = 8
lattices. The corresponding Stefan-Boltzmann limits are indicated by arrows. The charm to strange
quark mass ratio is Q = 11.85 on this plot.

!

!

!

!

!

!

!

!!!
!

!

!

!

"

""

"
"

"

"

"

""""

"
"

"
"

"

#
#
#

#

#

#

#

#

#

#

#

#

#

#

#
#
#

#

#

#

#

#

#

#

#

#

#

#

!!

!

!!

""

## !!

hotQCD results

p4 Nt"8

asqtad Nt"8

Wuppertal#Budapest results

stout Nt"8

stout Nt"10, 12

100 150 200 250 300 350 400

1

2

3

4

5

6

7

T !MeV"

#Ε
#
3
p
$%
T
4

Figure 18: The normalized trace anomaly obtained in our study is compared to recent results
from the “hotQCD” collaboration [13, 14].
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Hadrons
QGP

WupBud EOS  arXiv: lat 1007.2580

Model from V.V. Sagun et al., arXiv:1703.00009 [hep-ph]

At chemical FO (large µ) Lattice QCD (vanishing µ)

4.9

9.2

at CFO



Shock Adiabat Model for A+A Collisions

From hydrodynamic point of view  
   this is a problem of  

arbitrary discontinuity decay: 
in normal media there appeared 
two shocks moving outwards

Yu.B. Ivanov, V.N. Russkikh, and V.D. Toneev, 	



Phys. Rev. C 73 (2006) 

H. Stoecker and W. Greiner, Phys. Rep. 137 (1986)
Works reasonably well at these energies. 

A+A central collision at 1< Elab<30  Its hydrodynamic model  



Medium with Normal and Anomalous Properties

Usually pure phases (Hadron Gas, QGP)   
have normal properties

Shock Adiabat in Normal Medium

move in opposite directions toward the vacuum, leaving high-density matter
at rest behind the shock fronts. The thermodynamic parameters X, p, ⇢B of
this compressed matter

Rankine-Hugoniot-Taub (RHT) adiabat = shock adiabat

connects (X0, p0, ⇢B0)| {z }
initial

and (X, p, ⇢B)
| {z }

final

states

⇢2
BX2 � ⇢2

B0X2
0 = (p � p0) (X + X0)

by conservation laws of energy, momentum and baryonic charge.

X = "+p
⇢2

B
– generalized specific volume

" is energy density, p is pressure, ⇢B is baryonic charge density

j2
B = � p�p0

X�X0
baryonic current is a straight line in (X � p) plane

Normal properties, if ⌃ ⌘
⇣

@2p
@X2

⌘�1

s/⇢B

> 0 = convex down:

pure phases have normal properties.

Anomalous properties otherwise.
Usually mixed phase is anomalous!

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j

2
B = � p�p0

X�X0
, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
and the straight line with the slope j

2
B known as the Raleigh line. To solve

Eq. (??) one needs to know the EOS. Within the compression shock model

5

Shock transitions to region 1-4 are unstable and forbidden!   

Shock adiabat example

Region 1-2 is mixed 
phase with anomalous 

properties.

To solve RHT adiabat we need EOS!
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Region 1-2 is mixed 
phase with anomalous 

properties.

To solve RHT adiabat we need EOS!
Almost in all substances  

with liquid-gas phase transition 
the mixed phase has anomalous properties! 
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Shock transitions to region 1-4 are unstable and forbidden!   

Shock adiabat example

Region 1-2 is mixed 
phase with anomalous 

properties.

To solve RHT adiabat we need EOS!

Then shock transitions to mixed phase 
are unstable and more complicated flows 

are possible.



Z model has stable RHT adiabat, 
which leads to quasi plateau!

Generalized Shock Adiabat Model
In case of unstable shock transitions more complicated flows appear:  

1 GeV  Elab  30 GeV

)

)shock 01 + compression simple wave

In each point of simple wave

move in opposite directions toward the vacuum, leaving high-density matter
at rest behind the shock fronts. The thermodynamic parameters X, p, ⇢B of
this compressed matter
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s
⇢B

= const

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable

5

If during expansion entropy conserves,  
then unstable parts lead to entropy plateau!

Remarkably 



Since the main part of the system entropy is defined by thermal pions =>  
thermal pions/baryon should have a plateau!

Also the total number of pions per baryons should have a (quasi)plateau!

Correlated Quasi-Plateaus

) {s/⇢B, ⇢th⇡ /⇢B, ⇢tot⇡ /⇢B} Elab

) M i0
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Thermal pions demonstrate 2 plateaus

Entropy per baryon has wide plateaus 
due to large errors

Quasi-plateau in total pions per baryon ?



Details on Highly Correlated Quasi-Plateaus
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X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?



Details of Hadronic and QGP EOS
)

p =
h

(anti)baryons
z }| {
2CBT

ABch
⇣µ

T

⌘
e�

mB
T +

mesonsz }| {
CMTAMe�

mM
T

i
e�

pVH
T

p
s

NN

N

rat

�

2
1 �

2
2 �

2
3 �

2
4

(GeV) FO SFO SFO+�

S

SFO��

S

2.7 4 0.62 0.62 0.62 1.3 · 10

�5

3.3 5 0.17 0.08 0.08 3.4 · 10

�9

3.8 5 0.56 0.03 0.03 0.03
4.3 5 0.35 0.26 0.26 0.21
4.9 8 0.55 0.55 0.40 0.40
6.3 9 7.91 2.88 2.45 2.45
7.6 10 17.5 16.6 5.9 5.9
8.8 11 7.9 7.85 7.56 7.56
9.2 5 0.16 0.15 0.03 1.3 · 10

�7

12 10 17.3 11.9 9.57 9.57
17 13 14.7 7.39 7.38 7.38

62.4 5 0.4 0.09 0.03 0.03
130 11 5 4.62 4.32 4.32
200 10 7.4 5.49 5.09 5.09

Sum 111 80.5 58.5 43.72 42.9

Dof N/A 69 55 47 41

Table 1:

p

QGP

= A0T

4 + A2T

2
µ

2 + A4µ

4 � B| {z }
fitting

= A

L

0 T

4 + A

L

2 T

2
µ

2 + A

L

4 µ

4

| {z }
LQCD

�B

eff

B

eff

(T, µ

B

) = B � (A0 � A

L

0 )T 4 � (A2 � A

L

2 )T 2
µ

2 � (A4 � A

L

4 )µ4

�

s

(
p

s)/�

s

(
p

s = 4.9) = 7.7/14 , �

s

(
p

s)/�

s

(
p

s = 4.9)
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Trace Anomaly Along Shock Adiabat 2016

QGP ?

Mixed  
Phase 

Hadron 
Gas 

We found one-to-one correspondence between these two peaks.

Thus, sharp peak of trace anomaly at c.m. energy 4.9 GeV 
evidences for mixed phase formation. But what is it?

K.A. Bugaev et al., EPJ A (2016)

Is second peak  at c.m. energy 9.2 GeV due to another PT?



Induced Surface Tension EOS (2017) 

1. Allows to go beyond  the Van der Waals approximation

2. Number of equations is 2 and  it does not depend on the number 
different hard-core radii!

Introduction
Novel Equation of State

Data analysis
Derivation

Extrapolation to high densities
Extrapolation to high densities is not unique )
equations for pressure and surface tension can differ

p

T

=

X

i

�i exp

⇣µi � pVi � ⌃Si

T

⌘

⌃

T

=

X

i

Ri�i exp

⇣µi � pVi � ⌃Si

T

⌘
·

not uniqueness
of extrapolationz }| {

exp

⇣
(1� ↵)Si⌃

T

⌘

↵ = const in the simplest case
One component case with ↵ > 1

⌃ = pR exp

⇣
(1�↵)S⌃

T

⌘

p = T� exp

⇣
µ�pVe↵

T

⌘

Ve↵ = V

h
1 + 3 exp

⇣
(1�↵)Si⌃

T

⌘i
) low densities (⌃! 0) : Ve↵ = 4V

high densities (⌃!1) : Ve↵ = V

↵ switches excluded and eigen volume regimes
high order virial coefficients?

A. Ivanytskyi Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii
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new termpressure

induced surface tension

Advantages
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A. Ivanytskyi Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii

V  and S  are  eigenvolume and eigensurface of hadron of sort kk k

Recall A. Ivanytskyi talk on EoS beyond  the Van der Waals approximation



Main Results for AGS, SPS and RHIC energies  

1. We confirm that there is a jump of T       between √s = 4.3 GeV and √s = 4.9 GeV    CFO

2. We confirm that there is a strangeness enhancement peak at √s = 3.8 GeV  

Only pion and  Λ hyperon radii are changed, but no effect on T and µ_B   

IST EOS (without ALICE):

Figure 6: Same as in Fig. 5, but for the center of mass collision energies
p

sNN = 130 GeV and
p

sNN = 200
GeV.

radii of baryons

R⇡=0.15 fm, RK=0.395 fm, R⇤=0.085 fm, Rb=0.365 fm, Rm=0.42 fm

�

2
1/dof = 57.099/55 ' 1.04

R⇡=0.10 fm, RK=0.395 fm, R⇤=0.11 fm, Rb=0.355 fm, Rm=0.40 fm =) �

2
/dof ' 0.95

Compared to the values found by the HRGM [7], i.e. the hard-core radii of baryons Rb=0.355 fm,
mesons Rm=0.4 fm, pions R⇡=0.1 fm, kaons RK=0.395 fm and ⇤-hyperons R⇤=0.11 fm, the hard-core
radii of the IST EoS Rb, Rm and RK are practically unchanged, while the pionic hard-core radius is
increased by 50% and the hard-core radius of ⇤-hyperons is diminished by 20%. From Fig. 4 one can
see that, despite the di↵erent hard-core radii of pions and ⇤-hyperons, the collision energy dependence
of the baryonic chemical potential and temperature at CFO are unchanged compared to the HRGM [7].
The sudden jump of the CFO temperature observed between the collision energies

p
sNN = 4.3 GeV

and
p

sNN = 4.9 GeV also remains unchanged. This is an important finding since such an irregularity,
analyzed for the first time in [8], led to a discovery of possible signals of the mixed phase formation in the
central nuclear collisions [8, 9].

Some typical results of the IST EoS fit are compared with the ones of HRGM in Figs. 5 and 6. As one
can see from these figures at the collision energies

p
sNN = 4.9 GeV,

p
sNN = 6.3 GeV and

p
sNN = 200

GeV the quality of the IST EoS fit is almost the same as the one achieved with the HRGM. At the collision
energies

p
sNN = 7.6 GeV and

p
sNN = 130 GeV one can find an improved description of the �-meson

to proton ratio and the K

+-meson to ⇡

+-meson ratio respectively, while at
p

sNN = 8.8 GeV we found a
slight worsening in the description of proton to ⇡

�-meson ratio and in the ratio ⇤/⇡

� (see Fig. 5). The fit
results for other collision energies obtained by the HRGM and by the IST EoS are hardly distinguishable
from each other.

We would like to mention that the IST EoS provides an improvement of the K

+
/⇡

+ description (the
Strangeness Horn) from �

2
/dof ' 3.92/14 in [7] to �

2
/dof ' 3.29/14 here, while

p
sNN dependences of

⇤/⇡

� and ⇤̄/⇡

� ratios are reproduced here with �

2
/dof ' 11.62/12 and �

2
/dof ' 8.89/8 respectively.

11

Figure 6: Same as in Fig. 5, but for the center of mass collision energies
p

sNN = 130 GeV and
p

sNN = 200
GeV.

radii of baryons

R⇡=0.15 fm, RK=0.395 fm, R⇤=0.085 fm, Rb=0.365 fm, Rm=0.42 fm

�

2
1/dof = 57.099/55 ' 1.04

R⇡=0.10 fm, RK=0.395 fm, R⇤=0.11 fm, Rb=0.355 fm, Rm=0.40 fm =) �

2
/dof ' 0.95

Compared to the values found by the HRGM [7], i.e. the hard-core radii of baryons Rb=0.355 fm,
mesons Rm=0.4 fm, pions R⇡=0.1 fm, kaons RK=0.395 fm and ⇤-hyperons R⇤=0.11 fm, the hard-core
radii of the IST EoS Rb, Rm and RK are practically unchanged, while the pionic hard-core radius is
increased by 50% and the hard-core radius of ⇤-hyperons is diminished by 20%. From Fig. 4 one can
see that, despite the di↵erent hard-core radii of pions and ⇤-hyperons, the collision energy dependence
of the baryonic chemical potential and temperature at CFO are unchanged compared to the HRGM [7].
The sudden jump of the CFO temperature observed between the collision energies

p
sNN = 4.3 GeV

and
p

sNN = 4.9 GeV also remains unchanged. This is an important finding since such an irregularity,
analyzed for the first time in [8], led to a discovery of possible signals of the mixed phase formation in the
central nuclear collisions [8, 9].

Some typical results of the IST EoS fit are compared with the ones of HRGM in Figs. 5 and 6. As one
can see from these figures at the collision energies

p
sNN = 4.9 GeV,

p
sNN = 6.3 GeV and

p
sNN = 200

GeV the quality of the IST EoS fit is almost the same as the one achieved with the HRGM. At the collision
energies

p
sNN = 7.6 GeV and

p
sNN = 130 GeV one can find an improved description of the �-meson

to proton ratio and the K

+-meson to ⇡

+-meson ratio respectively, while at
p

sNN = 8.8 GeV we found a
slight worsening in the description of proton to ⇡

�-meson ratio and in the ratio ⇤/⇡

� (see Fig. 5). The fit
results for other collision energies obtained by the HRGM and by the IST EoS are hardly distinguishable
from each other.

We would like to mention that the IST EoS provides an improvement of the K

+
/⇡

+ description (the
Strangeness Horn) from �

2
/dof ' 3.92/14 in [7] to �

2
/dof ' 3.29/14 here, while

p
sNN dependences of

⇤/⇡

� and ⇤̄/⇡

� ratios are reproduced here with �

2
/dof ' 11.62/12 and �

2
/dof ' 8.89/8 respectively.

11

��������	
��
��
���������������
����������	
��
��������
�������

�

��


�
��

��

���

���

���

��
��
�
� � �� � ��� � ���� �

��������	
��
��
���������������
����������	
��
��������
�������

�

�
�

�

��

��

���

���

���

���

��
��
�
� ��� ���  ��

�����������		��
��


� �

���

���

���

���

�������
��� ���� �����

IST EOS 

V.V. Sagun et al., arXiv:1703.00009 [hep-ph]



Most Problematic ratios at AGS, SPS and 
RHIC energies
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IST EOS results are very similar to previous ones:�

2
/dof ' 3.92/14 �

2
/dof ' 10.22/12 �

2
/dof ' 6.49/8

�

2
/dof ' 3.29/14 �

2
/dof ' 11.62/12 �

2
/dof ' 8.89/8

�

2
/dof ' 3.29/14 here, while

p
sNN dependences of ⇤/⇡

� and ⇤̄/⇡

� ratios are reproduced here with
�

2
/dof ' 11.62/12 and �

2
/dof ' 8.89/8 respectively. Compared to the fit qualities �

2
/dof ' 10.22/12

for ⇤/⇡

� and �

2
/dof ' 6.49/8 for ⇤̄/⇡

� obtained in [7] the present results are slightly worse, but still
they are rather good. The collision energy dependence of these ratios is shown in Fig. 7.

The other important finding is that the collision energy dependence of the factor �s for the IST EoS
is practically the same as for the HRGM of Ref. [7]. Thus, the factor �s demonstrates a low sensitivity to
the IST EoS, which means that the present model confirms an existence of a strangeness enhancement at
low collision energies, namely the peak of the factor �s is found at

p
sNN = 3.8 GeV as one can see from

Fig. 7.
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Figure 7: The fit results obtained by the IST EoS. Upper left panel:
p

sNN dependence of K

+
/⇡

+.
Upper right panel:

p
sNN dependence of ⇤/⇡

�. Lower left panel:
p

sNN dependence of ⇤̄/⇡

�.
Lower right panel:

p
sNN dependence of the factor �s.
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Only few points for Λ (anti)hyperon are improved



Related Peaks (2017)  

Trace anomaly peaks and baryonic density 

peaks are related to each other. 

Can we relate them to γ   irregularities? s
Model from V.V. Sagun et al., arXiv:1703.00009 [hep-ph]



Strangeness Irregularities  

At c.m. energies above 8.8 GeV the strange hadrons 
 are in chemical equilibrium due to formation of  
QG bags  with Hagedorn mass spectrum!

Hagedorn mass spectrum is a perfect thermostat and 
a perfect particle reservoir! => Hadrons born from 
such bags will be in a full equilibrium!

L. G. Moretto, K. A. B., J. B. Elliott and L. Phair, Europhys. Lett. 76, 402 (2006)	



M. Beitel, K. Gallmeister and C. Greiner, Phys. Rev. C 90, 045203 (2014)

At c.m. energy  GeV strange particles are in  
chemical equilibrium due to formation of mixed 
phase, since under CONSTANT PRESSURE  
condition  the mixed phase of 1-st order PT is 
explicit thermostat and explicit particle reservoir!

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?

in mixed phase 
p = const



If There Are 2 Phase Transitions, then

1. What kind of phase exists at √s = 4.9-9.2 GeV? 

2. Can we get any info about its properties? 

We are sure that:   at √s > 62.4 GeV there exists sQGP and the partons are massless  
!

      at 1 GeV < √s < 4.3 GeV  there exists Hadron Gas 

Details of Hadronic and QGP EOS
)

p =
h

(anti)baryons
z }| {
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ABch
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T

⌘
e�

mB
T +

mesonsz }| {
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i
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pVH
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pQGP = A0T
4 + A2T

2
µ

2 + A4µ
4 �B| {z }

fitting
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L
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4 + A

L
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2
µ

2 + A

L
4 µ

4

| {z }
LQCD

�Beff

Beff (T, µB) = B � (A0 �A

L
0 )T 4 � (A2 �A

L
2 )T 2

µ

2 �A4 �A

L
4 )µ4

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j

2
B = � p�p0

X�X0
, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
and the straight line with the slope j

2
B known as the Raleigh line. To solve

Eq. (??) one needs to know the EOS. Within the compression shock model
the laboratory energy per nucleon is

Elab = 2mN

(" + p0)("0 + p)
(" + p)("0 + p0)

� 1
�

, (1)

where mN is the mean nucleon mass. A typical example for the shock adiabat
is shown in Fig. 3. As one can see from this figure the shock adiabat in the
pure hadronic and QGP phases exhibits the typical (concave) behavior for
a normal medium, while the mixed-phase (the region A1B) in Fig. 3 has a
convex shape which is typical for matter with anomalous properties. Until
now there is no complete understanding why in a phase-transition or cross-
over region matter exhibits anomalous thermodynamic properties. In pure
gaseous or liquid phases the interaction between the constituents at short
distances is repulsive and, hence, at high densities the adiabatic compress-
ibility of matter �

⇣
@X
@p

⌘

s/⇢B

usually decreases for increasing pressure, i.e.,
⇣

@2p
@X2

⌘�1

s/⇢B

= ⌃ > 0. In the mixed-phase there appears another possibility
to compress matter: by converting the less dense phase into the more dense
one. As it was found for several EOS with a first-order phase transition be-
tween hadronic gas and QGP, the phase transformation leads to an increase of
the compressibility in the mixed-phase at higher pressures, i.e., to anomalous
thermodynamic properties. The hadronic phase of the aforementioned EOS
was described by the Walecka model [29] and by a few of its more realistic
phenomenological generalizations [18, 30, 25]. The appearance of anomalous
thermodynamic properties for a fast cross-over can be understood similarly,
if one formally considers the cross-over states as a kind of mixed-phase (but

6

Then at 4.9 < √s < 9.2 GeV they cannot exist!  

In our fit of entropy per baryon along the shock adiabat we used the QGP EoS

K.A. Bugaev et al., Eur. Phys. J. A (2016) 52: 175

21

such a model not only represents the mass-integrated spectrum of all hadrons, but also

it rather accurately reproduces the chemical FO densities of mesons ⇢M and baryons ⇢B

and the ratios s/⇢B and s/⇢M for chemical FO temperatures below 155 MeV [59]. The

parameters of the center of the shock adiabat were fixed as: p0 = 0, ⇢0 = 0.159 fm�3 and

"0 = 126.5 MeV fm�3.

The QGP EOS is motivated by the MIT-Bag model [58]

pQ = A0T
4 + A2T

2
µ

2 + A4µ
4 �B , (8)

where the constants

A0 ' 2.53 · 10�5 MeV�3fm�3

A2 ' 1.51 · 10�6 MeV�3fm�3

A4 ' 1.001 · 10�9 MeV�3fm�3

B ' 9488 MeV fm�3

were found by fitting the s/⇢B chemical FO data for Elab < 50 GeV with s/⇢B values

along the RHT adiabat and by keeping the pseudocritical temperature value at zero baryonic

density close to 150 MeV, in agreement with lattice QCD data [60].

Note that the above values of the coe�cients A0, A2 and A4 di↵er from the values A

L
0 , A

L
2

and A

L
4 obtained within lattice QCD [60] at vanishing baryonic chemical potential, but this

di↵erence can be attributed to the T and µB dependence of the bag pressure

Beff (T, µB) = B � (A0 � A

L
0 )T 4 � (A2 � A

L
2 )T 2

µ

2

� (A4 � A

L
4 )µ4

, (9)

which identically generates the QGP pressure (8) pQ = A

L
0 T

4 + A

L
2 T

2
µ

2 + A

L
4 µ

4 � Beff ,

but with coe�cients A

L
0 , A

L
2 and A

L
4 . The obtained result for Beff (T, µB) is in line with the

requirements of the finite-width model [61, 62] of quark gluon bags.

Using the above EOS we calculated the phase diagram and constructed the RHT adia-

bat inside all phases. As usual, the phase transition was found from the Gibbs criterion,

pH(T, µB) = pQ(T, µB). The resulting RHT adiabat describes the s/⇢B chemical FO data

well (see Fig. 11). The most remarkable finding is the appearance of a peak in the trace

anomaly, which exists exactly at the boundary of the mixed phase and the QGP (see upper

panel of Fig. 12). Comparing the trace-anomaly peak at chemical FO (see Fig. 5) and that

on the RHT adiabat shown in Fig. 12, one can conclude that the respective collision energies



Effective Number of Degrees of Freedom 
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where mN is the mean nucleon mass. A typical example for the shock adiabat
is shown in Fig. 3. As one can see from this figure the shock adiabat in the
pure hadronic and QGP phases exhibits the typical (concave) behavior for
a normal medium, while the mixed-phase (the region A1B) in Fig. 3 has a
convex shape which is typical for matter with anomalous properties. Until
now there is no complete understanding why in a phase-transition or cross-
over region matter exhibits anomalous thermodynamic properties. In pure
gaseous or liquid phases the interaction between the constituents at short
distances is repulsive and, hence, at high densities the adiabatic compress-
ibility of matter �
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usually decreases for increasing pressure, i.e.,
⇣

@2p
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= ⌃ > 0. In the mixed-phase there appears another possibility
to compress matter: by converting the less dense phase into the more dense
one. As it was found for several EOS with a first-order phase transition be-
tween hadronic gas and QGP, the phase transformation leads to an increase of
the compressibility in the mixed-phase at higher pressures, i.e., to anomalous
thermodynamic properties. The hadronic phase of the aforementioned EOS
was described by the Walecka model [29] and by a few of its more realistic
phenomenological generalizations [18, 30, 25]. The appearance of anomalous
thermodynamic properties for a fast cross-over can be understood similarly,
if one formally considers the cross-over states as a kind of mixed-phase (but
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One look at this EoS:

Another look at this EoS:
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New 
phase 

It corresponds to massless particles with strong interaction 

Then one can find  an  effective #dof  from   A  ! 0

 For massless particles 

21

such a model not only represents the mass-integrated spectrum of all hadrons, but also

it rather accurately reproduces the chemical FO densities of mesons ⇢M and baryons ⇢B

and the ratios s/⇢B and s/⇢M for chemical FO temperatures below 155 MeV [59]. The

parameters of the center of the shock adiabat were fixed as: p0 = 0, ⇢0 = 0.159 fm�3 and

"0 = 126.5 MeV fm�3.

The QGP EOS is motivated by the MIT-Bag model [58]

pQ = A0T
4 + A2T

2
µ

2 + A4µ
4 �B , (8)

where the constants

A0 ' 2.53 · 10�5 MeV�3fm�3

A2 ' 1.51 · 10�6 MeV�3fm�3

A4 ' 1.001 · 10�9 MeV�3fm�3

B ' 9488 MeV fm�3

A0 = Ndof
⇡2

90
with Ndof = N

Bosons
dof + 7

8
⇥ 2N

Fermions
dof

were found by fitting the s/⇢B chemical FO data for Elab < 50 GeV with s/⇢B values

along the RHT adiabat and by keeping the pseudocritical temperature value at zero baryonic

density close to 150 MeV, in agreement with lattice QCD data [60].

Note that the above values of the coe�cients A0, A2 and A4 di↵er from the values

A

L
0 , A

L
2 and A

L
4 obtained within lattice QCD [60] at vanishing baryonic chemical potential,

but this di↵erence can be attributed to the T and µB dependence of the bag pressure
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which identically generates the QGP pressure (8) pQ = A
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4 �Beff ,

but with coe�cients A

L
0 , A

L
2 and A

L
4 . The obtained result for Beff(T, µB) is in line with

the requirements of the finite-width model [61, 62] of quark gluon bags.

Using the above EOS we calculated the phase diagram and constructed the RHT adia-

bat inside all phases. As usual, the phase transition was found from the Gibbs criterion,

pH(T, µB) = pQ(T, µB). The resulting RHT adiabat describes the s/⇢B chemical FO

data well (see Fig. 11). The most remarkable finding is the appearance of a peak in the
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were found by fitting the s/⇢B chemical FO data for Elab < 50 GeV with s/⇢B values

along the RHT adiabat and by keeping the pseudocritical temperature value at zero baryonic

density close to 150 MeV, in agreement with lattice QCD data [60].
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but with coe�cients A

L
0 , A

L
2 and A

L
4 . The obtained result for Beff(T, µB) is in line with

the requirements of the finite-width model [61, 62] of quark gluon bags.

Using the above EOS we calculated the phase diagram and constructed the RHT adia-

bat inside all phases. As usual, the phase transition was found from the Gibbs criterion,

 It`s a huge number for QGP! 



Possible Interpretations 

1. The phase emerging at √s = 4.9-9.2 GeV has no Hagedorn mass 
spectrum, since strange hadrons are not in chemical equilibrium. 

2.   1800 of massless dof  may evidence either about new phenomena (i.e.     
 unitary/chiral symmetry restoration) in hadronic sector.

3.   Or 1800 of massless dof  may evidence about tetra-quarks with massive   
      strange quark!?                       see Refs. in R.D. Pisarski, 1606.04111 [hep-ph] 

4.   Or 1800 of massless dof  may evidence about quarkyonic phase!?   
                          A. Andronic et. al, Nucl. Phys. A 837, 65 (2010)

5.   1800 of massless dof  may evidence about something else…  
                          



Consequent Problem and Its Possible Solution 

      If 1800 of massless dof  exist then at  high T and same µ_B   the QGP 
      cannot exist, since its pressure is too low to dominate!    
 ⇒ Contradiction with Lattice QCD!

      The only possibility to avoid the contradiction with LQCD is to assume 
       hard-core repulsion for 1800 of massless dof ! 
!
      Since they are almost massless (m << T), then the hard-core repulsion  
      should be formulated for ultra-relativistic particles and include the effect 
      of Lorentz contraction.                     see K. A. Bugaev, Nucl. Phys. A 807, 251 (2008). 

In the limit  µ_B /T << 1 and mass/T <<1  the pressure of such  system is 
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such a model not only represents the mass-integrated spectrum of all hadrons, but also
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and the ratios s/⇢B and s/⇢M for chemical FO temperatures below 155 MeV [59]. The

parameters of the center of the shock adiabat were fixed as: p0 = 0, ⇢0 = 0.159 fm�3 and

"0 = 126.5 MeV fm�3.
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the requirements of the finite-width model [61, 62] of quark gluon bags.

No mass dependence  and very weak dependences on T and on #dof:   
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Conclusions

1. High quality description of the chemical FO data allowed  
us to find few novel irregularities  at c.m. energies   

4.3-4.9 GeV (pressure, entropy density jumps e.t.c.)

2. HRG model with multicomponent repulsion allowed us to  
find the correlated (quasi)plateaus at c.m. energies 3.8-4.9 GeV 

which were predicted about 26 years ago.  The second set of  
plateaus and irregularities may be a signal of another phase transition!

3. Generalized shock adiabat model allowed us to  describe entropy 
per baryon at chemical FO and determine the parameters of the 

EOS of new phase from the data. Actually, LQCD can help us to 
find out what kind of properties exist at cross-over!

4. Hopefully, FAIR, NICA and J-PARC experiments    
 will allow us to make more definite conclusions



Thank You for Your Attention!



         Microcanonical Ensemble
Example #1:  1-d Harmonic Oscillator

• For 1-d Harmonic Oscillator with energy & in contact with 
Hagedorn resonance (just exponential spectrum  for simplicity). 
Total energy is E.  K.A.B.et al, Europhys. Lett. 76 (2006) 402  

• The microcanonical probability of state & is:
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As T → TH − 0+ it follows E → ∞

Peculiar thing is that in the r.h.s. of mass integral

infinitely heavy states contribute! Where do they come from?

For E → ∞ : ε̄ → TH

⇒ for spectrum ρ(m) one obtains
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Where to get the spectrum ρ(m) from?

S. Frautschi suggested the Bootstrap Equation of the form
S. Frautschi, Phys. Rev. D3 (1971) 2821
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∞
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(ρ(mi) dmi) (6)

⇒The fireball on mass m is either “input particle” with mass m0,

or it is composed of any number of fireballs of any masses such
that

∑

mi = m

Exponent is 
Grand canonical!

With fixed T!
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Example #2:  An  Ideal  Vapor 
coupled to Hagedorn resonance

• Consider microcanonical partition of N particles of mass 
m and kin. energy �. The total level density is 
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• TH is the sole temperature characterizing the system:

• A Hagedorn-like system is a perfect thermostat!
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The most probable energy partition is

• TH is the sole temperature characterizing the system:

• A Hagedorn-like system is a perfect thermostat!

Exponent is 
Grand canonical!

With fixed T!
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Example #3: An Ideal Particle Reservoir 

• If, in addition, particles are 
generated by the Hagedorn 
resonance, their concentration is 
volume independent!

ρΗ(E)

ideal vapor ρiv

• particle mass = m

• volume = V

• particle number = N

• energy = ε
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Remarkable result because it mean saturation 
between gas of particles and Hagedorn thermostat!

         L.G. Moretto, K.A.B. et al, nucl-th/0601010 
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Possible Interpretation 

probably means that trajectory goes  
near critical (left) or 3critical (right) endpoint 

Appearance of 2-nd intersection at c.m. energies 8.8-9.2 GeV

Evolution of possible «initial» states with collision energy 

To resolve this problem we need data from NICA and FAIR!

13

At the collision energies
p

sNN = 4.2 GeV ,
p

sNN = 4.87 GeV and
p

sNN = 12.3 GeV one finds

h�2/niaa{h}
aa{A}

����
aaHG

= h�2/niaa{h}
aa{A}

����
aaQGP

. (19)

In the collision energy ranges 4.87 GeV <
p

sNN < 12.3 GeV and 12.3 GeV <
p

sNN < 17.3 GeV the QGP

models describe the data essentially better. Therefore, the arithmetic averaging meta-analysis suggests

that at energies below 4.2 GeV there is hadron phase, while in the region 4.2 GeV  p
sNN  4.87 GeV

there is hadron-QGP mixed phase, while at higher energies there exists QGP. Such a picture is well fit into

the recent findings of the generalized shock adiabat model [15, 16]. However, the most interesting question

is how should we interpret the coincidence of two sets of results at the collision energy
p

sNN = 12.3 GeV?

FIG. 5: Schematic pictures of possible locations of the initial states of matter formed in A+A collisions are shown on

the plane of baryonic density and pressure. Each point on these trajectories (dashed curves) corresponds to a single

collision energy value. Left panel: As it is argued in the text the possible initial states correspond to the trajectories

AD or BD as it follows from KTBO-plot 1 for the case of critical endpoint. The trajectory CD is located far from

the mixed phase region and, hence, it cannot generate the second region in which the QDDs of HG and QGP models

are equally good. Right panel: In case of the tricritical endpoint the second region in which the QDDs of HG and

QGP models are equally good may, alternatively, appear due to the second phase transition.

At first glance it seems that at the collision energy
p

sNN = 12.3 GeV the QGP states created by the

corresponding generators touch the phase boundary with hadron phase. However, one must remember that

both curves depicted in Fig. 4 have, in fact, finite width defined by the error bars. Taking into account

an overlap of the curves with finite error bars, one immediately concludes that the overlap region is rather

wide on collision energy scale, namely it ranges from
p

sNN ' 10 GeV to
p

sNN ' 13.5 GeV. Recalling that

the collision energy width of the mixed phase at low values of
p

sNN is below 1 GeV, one may guess that

4.3 GeV
4.9 GeV

8.8-9.2 GeV

4.3 GeV
4.9 GeV

8.8-9.2 GeV





Minimum of ChFO Volume at  AGS Energies

a fit (χ2/Ndf=0.48/8). Our µb parametrization is the one proposed in ref. [26], but with
different parameters to better fit the newly obtained µb values of the present analysis. In
Eq. 6 we assume a ”limiting” temperature Tlim, which was obtained by fitting the five
points for the highest energies (SPS and RHIC). The result of the fit is Tlim = 161 ± 4
MeV, with χ2/Ndf=0.3/3.
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Fig. 15. Energy dependence of the volume for central collisions (Npart=350). The chemical
freeze-out volume for one unit of rapidity, dV/dy, is compared to the kinetic freeze-out volume
from HBT measurements, VHBT [87]. Note that the scales are different for the two observables.

We now briefly turn to another interesting parameter which is (either implicitly or ex-
plicitly) determined in the course of thermal model analyses. The volume at chemical
freeze-out (corresponding to a slice of one unit of rapidity, dV/dy) is shown in Fig. 15 as
a function of energy. The values extracted directly from the fits of particle yields (see Ap-
pendix) are compared to the values obtained by dividing measured charged particle yields
with calculated densities (based on the above parametrization of T and µb; note that for
the AGS energies of 2-8 AGeV the values of T corresponding to the upper limit of the
systematic error were used instead). As expected, the two methods give identical results,
with the exception of a small discrepancy for the lowest energies. The chemical freeze-out
volume is compared to the kinetic freeze-out volume extracted from Hanbury Brown and
Twiss (HBT) measurements, VHBT [87]. We note here (see also the Appendix) that to
determine a volume from thermal model analyses one needs to know absolute densities.
This implies an explicit dependence of the volume on whether or not excluded volumes
are implemented in the calculations, and, if included, on details of the implementation.
We follow here the procedure developed in [5].

While the bias towards unphysically large volumes seen at the energies of 2-8 AGeV (see

A. Andronic, P.Braun-Munzinger, J. Stachel,  
NPA (2006)777 

D.R. Oliinychenko, K.A. Bugaev and A.S. Sorin,  
Ukr. J. Phys. 58, (2013) 

All these irregularities occur at c.m. energies 4.3-4.9 GeV!   

Are these minima related to deconfinement?



Other Minima  at  AGS Energies

D.R. Oliinychenko, K.A. Bugaev and A.S. Sorin,  
Ukr. J. Phys. 58, (2013) 

 X is generalized specific volume
Is second X peak due to other PT?

min V at ChFO min X at ChFOSAME energy!

K.A. Bugaev et al., EPJ A (2016)

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?

In this work we gave  
a proof that min X 

at boundary between  
QGP and mixed phase 

generates min X at ChFO 
which leads to min V 

of ChFO!

min X at shock 
adiabat!



It was suggested in          M. Gazdzicki, Z. Phys. C 66 (1995).  
 

It was suggested in           M. Gazdzicki and M.I. Gorenstein,         
                                            Acta  Phys. Polon. B 30 (1999)   
 

It was suggested in           M. Gazdzicki, M.I. Gorenstein and       
                                            K.A. Bugaev, Phys. Lett. B 567 (2003)  
 

F is Fermi variable ~ s^1/4 

Claim that onset of deconfinement 
is at c.m. energy 7.6 GeV



Updated Signals Found by NA49
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⟨π⟩
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1
4F

shows that the number of

d.o.f. g changes at about

Elab = 30 GeV

Horn in
⟨K+⟩
⟨π+⟩ ratio shows

that elementary d.o.f. of

strangeness are changing

from K± to sq at about

Elab = 30 GeV

Step in K± inverse slopes

shows that ≈ F indepen-

dent initial pressure devel-

ops at about Elab = 30 GeV

I. There is NO a single model which can  
simultaneously describe these «signals»!

II. These «signals» cannot be reproduced by existing  
hydrodynamic and hydro-cascade models with 

deconfinement phase transition.   

Therefore, their relation to deconfinement 
is unclear!

Hence, these  «signals» are irregularities 
which require an explanation!

Furthermore, it seems that there is also something 
wrong with our EOS!



In 1982 J. Rafelski and B. Müller predicted  that enhancement of strangeness  
production is a signal of deconfinement. 

                 	


  

Phys. Rev. Lett. 48(1982)

We observe 3 regimes: at c.m. energies 4.3 GeV and ~8 GeV  
slope of experimental data drastically changes! 

Combining Rafelsky & Muller idea  
with our result that mixed phase  

appears at 4.3 GeV we explain 
this finding:  

Below 4.3 GeV  Lambdas appear in 
N+N collisions

Above 4.3 GeV and below ~8 GeV 
formation of QGP produces  

additional s (anti)s quark pairs

Above ~8 GeV there is saturation due to small baryonic chemical potential



What To Measure at FAIR & NICA ?

We predicted  JUMPS of these ratios at 4.3 GeV due to 1-st order PT and 
!

CHANGE OF their SLOPES at ~ 9-12 GeV due to 2-nd order PT 
(or weak 1-st order PT?)

To locate the energy of SLOPE CHANGE  we need MORE data at 7-13 GeV


