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QCD at finite isospin chemical potential
Theoretical description in the grand canonical ensemble:

QCD at finite chemical potential (Nf = 2):
u quark: µu d quark: µd

I can be decomposed in baryon and isospin chemical potentials:

µB = 3(µu + µd)/2 and µI = (µu − µd)/2

I in nature: often effect of µB more important than µI

here: consider µB = 0

⇒ lattice simulations are possible

I physical systems with µI > µB :
I in systems predominantly made of π±

I early universe with large lepton asymmetry

⇒ pion stars?

I symmetry breaking: finite µI breaks SUV (2) explicitly to Uτ3 (1)
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Phase structure at µB = 0 [ Son, Stephanov, PRL86 (2001); PAN64 (2001) ]

I hadronic phase (white)

I quark-gluon plasma

I pion condensation:

at T = 0 and µI > mπ/2:

Uτ3 (1) spontaneously broken
⇒ condensation of charged pions

I BCS superconducting:
pseudoscalar Cooper pairs
⇒ non-localised pions

main ingredients:
pion condensation and deconfinement

[ BB, Endrődi, Schmalzbauer, PRD97 (2018) ]

first results from lattice QCD: Nt = 4, unphysical masses, unimproved

Nf =2 [ Kogut, Sinclair, PRD66(2002); PRD70(2004) ]

Nf =8 [ de Forcrand, et al, PoS LAT2007 (2007) ]



QCD at nonzero isospin asymmetry

Introduction and simulation setup

Phase structure at µB = 0 [ Son, Stephanov, PRL86 (2001); PAN64 (2001) ]

I hadronic phase (white)

I quark-gluon plasma

I pion condensation:

at T = 0 and µI > mπ/2:

Uτ3 (1) spontaneously broken
⇒ condensation of charged pions

I BCS superconducting:
pseudoscalar Cooper pairs
⇒ non-localised pions

main ingredients:
pion condensation and deconfinement
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Simulation setup Nf = 2 + 1

I use improved actions

I quark masses are tuned to their physical values.

I gauge action: Symanzik improved

I mass-degenerate u/d quarks: [ Kogut, Sinclair, PRD66 (2002); PRD70 (2004) ]

fermion matrix: M =

(
D(µ) λγ5

−λγ5 D(−µ)

)
D(µ): staggered Dirac operator with 2×-stout smeared links

λ: small explicit breaking of residual symmetry (unphysical)

I necessary to observe spontaneous symmetry breaking at finite V
I serves as a regulator in the pion condensation phase.

⇒ need to extrapolate results to λ = 0

I strange quark: rooted staggered fermions (no chemical potential)
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Introduction and simulation setup

λ-extrapolations

main task for final analysis:
perform reliable extrapolation to λ = 0

problem: usual λ-dependence extremely steep
⇒ extrapolation uncontrolled

extrapolation: 〈O〉λ=0 = lim
λ→0

1

Z(λ)

∫
[dU]O[U](λ) det

(
M[U](λ)

)
e−SG [U]

improvement program:

I valence quark improvement
(using singular values of D)

effective for observable

I leading order reweighting
effective for ensemble
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2. Phase diagram at finite µI

[PRD97 (2018), arXiv:1712.08190]
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Phase diagram at finite µI

Pion condensation phase
main observable: renormalised pion condensate

Σπ =
mud

m2
πf 2
π

〈
π±
〉
T ,µI

with
〈
π±
〉

=
T

V

∂ logZ

∂λ

pion condensation: phase where Σπ > 0
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(use 2d cubic spline fit and MC generated nodepoints for interpolation)
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Phase diagram at finite µI

Pion condensation phase: continuum etrapolation
parameterise phase boundary by: (include a2 lattice artefacts)

µI ,c(T , a) = µI ,c(T0, a) +
4∑

n=2

bn(a)(T − T0)n

with µI ,c(T0, 0) = 67.5 MeV and T0 = 140 MeV

(no pion condensation above T = 161 MeV)
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Chiral symmetry restoration
main observable: renormalised chiral condensate

Σψ̄ψ =
mud

m2
πf 2
π

[〈
ψ̄ψ
〉
T ,µI
−
〈
ψ̄ψ
〉

0,0

]
+ 1

pseudocritical temperature Tpc : defined by inflection point of Σψ̄ψ
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(use 2d cubic spline fit and MC generated nodepoints for interpolation)
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Chiral symmetry restoration

parameterise Tpc by: (include a2 lattice artefacts)

Tpc(µI , a) = Tpc(0, a) + d2(a)µ2
I for µI < 67.5 MeV
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Pseudo-triple point

meeting point between Tpc and pion condensation phase boundary:

three phases coexist ⇒ pseudo-triple point (Tpt , µI ,pt)

here: defined by point where curves overlap within errors
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Phase diagram at finite µI

Chiral symmetry restoration for µI > mπ/2

coincides with pion condensation phase boundary
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Phase diagram at finite µI

Order of the transition on the boundary
symmetry restoration pattern: 2nd order in O(2) universality

check scaling: (including scaling violations)

Σπ = h1/δ · fG
(

t

h1/(βδ)

)
+ a1th + b1h + b3h

3 with h =
λ

λ0
, t =

µI ,c − µI

t0

⇒ data shows consistency with O(2)
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Phase diagram at finite µI

Polyakov loop and BCS phase
main ingredients for BCS superconducting phase:

pion condensation and deconfinement

measure for deconfinement: renormalised Polyakov loop

Pr (T , µI ) = Z · P(T , µI ) Z =

(
P?

P(T?, µI = 0)

)T?/T

(possible definition for deconfinement transition: Pr = 1)
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Polyakov loop and BCS phase

deconfinement transition:

smoothly penetrates into pion condensed phase
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Taylor expansion around µI = 0
simulations at finite µB : suffer from a sign problem!

one of the most important tools to obtain information at finite µB :
Taylor expansion around µB = 0.

however: range of applicability at a given order is unknown

here: test Taylor expansion method using our data for µI 6= 0

I as an observable we use the isospin density (analogue to Baryon density):

〈nI 〉 =
T

V

∂ logZ

∂µI

I associated Taylor expansion (follows from expansion of pressure p/T 4):

〈nI 〉
T 3

= c2

(µI

T

)
+

c4

6

(µI

T

)3

coefficients: take values from Budapest-Wuppertal
[ BW: Borsanyi et al, JHEP1201 (2012) ]
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Comparison to data at finte µI

Compare data for 6× 243 lattice:
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Comparison to Taylor expansion around µI = 0

Comparison to data at finte µI

contour plot for ∆LO/NLO ≡
∣∣ 〈nI 〉 − 〈nI 〉Taylor
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Equation of state at finite µI

Pressure and trace anomaly

Most important quantities to study equation of state (EOM):

I Pressure:
p

T 4
= − 1

T 3V
logZ

I Trace anomaly:
I

T 4
=
ε− 3p

T 4
= T

∂

∂T

p

T 4
+
µInI
T 4

⇒ All other quantities derive from those and the number densities!

Here: Consider these quantities at finite µI !

First: Focus on the pressure!

⇒ p(T , µI ) = p(T , 0) +

∫ µI

0

dµ′I nI (T , µ
′
I ) ≡ p(T , 0) + ∆p(T , µI )

(since nI = ∂p
∂µI

)

p(T , 0) take results from [ Borsanyi, et al, JHEP 1011 (2010) ]
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(since nI = ∂p
∂µI

)

p(T , 0) take results from [ Borsanyi, et al, JHEP 1011 (2010) ]
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Pressure at finite µI

Interpolation of 〈nI 〉 for 6× 243 lattice:
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Equation of state at finite µI

Pressure at finite µI

Pressure for 6× 243 lattice:
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5. An application for the EOS: pion stars

[arXiv:1802.06685]
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Pion stars and EOS
pion condensed matter:

in principle allows for gravitationally stable objects

⇒ pion stars

mass-radius relation: can be obtained from solving TOV equation
[ Glendenning, Compact stars: . . . (1997) ]

input: EOS at T = 0 (for cold stars)
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(results from 32× 243 paper with T ≈ 0; convention here: µI → 2µI )
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Pion stars: physical setup

condensing particles: charged pions ⇒ Obtain a boson star!

I hypothetical objects [ Kaup, PR172 (1968) ]

I have been considered in the literature
[ reviews: Jetzer, PR220 (1992); Liebling, Palenzuela, LRR15 (2012) ]

condensate decay and charge of star:

⇒ need to include leptons

generic case:
include e, νe , µ, νe in chemical equilibrium

condensate decay:

no decaying exitation (Higgs effect for π and γ)

but: charged weak currents couple to
axial charge density σA =

〈
A±0
〉
6= 0
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Mass-radius relation of pion stars

black
holes πe
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I stars fulfill stability criteria
(robustness against density perturbations)

I generically they will decay (with which rate?)
(however: neutrinos can be trapped in the condensate)

I in principle: could have been generated in the early universe?!
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Summary and Perspectives

I we have investigated the phase structure of QCD at finite isospin
chemical potential µI

I can use the theory to test Taylor expansion around µI = 0

I started to measure the equation of state at finite µI

I an interesting application: pion stars

I relevance of pion condensation for early universe?

I reweighting to finite µB

mapping out (µI , µB) phase diagram

I a lot of other interesting things to look at . . .
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Thank you for your attention!
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