Pseudotoric structures and exotic lagrangian tori

Nikolay A. Tyurin Bogolyubov Laboratory of Theor. Phys, JINR (Dubna) and Depart. of Math., HSE (Moscow)

RT-5 DUBNA 18 Dec 2012

Let (X, ω) — be a symplectic manifold of real dimension 2n. We understand it as *the phase space of a classical mechanical system*

We are interested in the case of compact phase space The main problem we have in mind — **Quantization** of such systems

The main approach — lagrangian quantization:

- · for \mathbb{R}^{2n} , $\omega = \sum dp \wedge dq$ —**V.Maslov**, semiclassical approximation;
- · for T^*S , $d\alpha$ S. Dobrokhotov, A. Shafarevich,
- · for general compact $(X, \omega) \mathbf{N.T.}$ (algebraic lagrangian geometry)

basic geometrical idea — lagrangian submanifolds in X look and behave like points (Darboux - Weinstein theorem) of an infinite dimensional variety, and any classical Hamiltonian function on Xgenerates the corresponding dynamics on this variety. **Lagrangian geometry** — questions about *lagrangian submanifolds* of *X*:

1) which homology classes from $H_n(X,\mathbb{Z})$ can be realized by smooth lagrangian submanifolds;

2) what are the topological types of these lagrangian submanifolds;

3) classification up to lagrangian deformations of lagrangian submanifolds of the same topological type and homology class;

4) classification up to Hamiltonian isotopy of lagrangian submanifolds of the same deformation type.

5) unification of all lagrangian submanifolds in an appropriate category

Recall that $S \subset X$ is lagrangian if

 $\omega|_S \equiv 0$ and $\dim S = n$

Thus at least [S] is perpendicular to $[\omega]$. Two lagrangian submanifolds $S_0, S_1 \subset X$ are of the same deformation type if there is a lagrangian film

such that $p(S \cap X \times \{i\}) = S_i$, i = 0, 1.

Thus at least $[S_0] = [S_1]$ and $S_0 \simeq S_1$ Hamiltonian isotopy of lagrangian submanifold $S_0 \subset X$ is given by a time dependent Hamiltonian function $H(x, t) : X \times \mathbb{R} \to \mathbb{R}$ which generates the flow ϕ_H^t , and $S_t = \phi_H^t(S_0)$ is the corresponding isotopy. Toy example: dim = 2. Let Σ be a Riemann surface equipped with a symplectic form.

Then since every loop is lagrangian (dimensional reason):

1) every primitive homology class from $H_1(\Sigma, \mathbb{Z})$ is realizable by a smooth lagrangian submanifold;

2) every smooth lagrangian submanifold is isomorphic to S^1 ;

3) two loops from the same homology class are deformation equivalent;

4) two loops are Hamiltonian isotopic if the symplectic area of the oriented film bounded by the loops is zero;

5) the Fukaya category for a curve of any genus exists

thus for this case the problem is completely solved

Example: \mathbb{CP}^2 . The projective plane is the simplest compact symplectic manifold in dimension 4:

1) since $H^2(\mathbb{CP}^2,\mathbb{Z}) = \mathbb{Z}$, any lagrangian submanifold must present trivial homology class;

2) vanishing results for 2- spheres (M. Gromov), riemann surfaces of genus > 1 (M. Audin), Klein bottle (S. Nemirovskiy, V. Shevchishin) — they are not realizable as lagrangian submanifolds;

3) — 4) it was believed that well known Clifford tori are unique examples of lagrangian tori in \mathbb{CP}^2 since in 1996 Yu. Chekanov proposed a construction of lagrangian torus which is not Hamiltonian isotopic to a Clifford torus — and nobody knows are there other types of lagrangian tori;

5) nevertheless certain constructions of appropriate categories exist (Fukaya - Seidel).

thus even for this basic case in dimension 4 the problem is not solved yet

Why we are interested in lagrangian geometry?

If we would like to proceed in the **lagrangian approach to Geometric Quantization** —

there lagrangian submanifolds represent quantum states — it is necessury to know all these states = all types of lagrangian submanifolds.

F.e. in **ALAG** the Chekanov result ensures that the moduli space of half weighted Bohr - Sommerfeld lagrangian cycles of level 3, $\mathcal{B}_{5,3}^{hw,r}$, has at least two disjoint components

and may be there is a tunneling between these components? As well for **Homological Mirror Symmetry** — one should try to describe all objects in the Fukaya category, so all types of nonisotopic lagrangian tori.

Well known Clifford tori in \mathbb{CP}^2 comes from the **toric geometry**: there are two real Morse functions f_1, f_2 in involution:

$$f_1 = \frac{|z_1|^2 - |z_2|^2}{\sum_{i=0}^2 |z_i|^2}, f_2 = \frac{|z_0|^2 - |z_1|^2}{\sum_{i=0}^2 |z_i|^2}, \{f_1, f_2\}_{\omega} = 0$$

in homogeneous coordinates $[z_0 : z_1 : z_2]$; the degeneration set

$$\Delta(f_1, f_2) = \{ df_1 \wedge df_2 = 0 \} \subset \mathbb{CP}^2$$

is formed by three lines $I_i, I_i = \{z_i = 0\};$

the action map $F = (f_1, f_2) : \mathbb{CP}^2 \to P_{\mathbb{CP}^2} \subset \mathbb{R}^2$ sends $\Delta(f_1, f_2)$ to the boundary component $\partial P_{\mathbb{CP}^2}$, and the preimage of any inner point $p \in P_{\mathbb{CP}^2}$ is a smooth lagrangian torus, labeled by values of f_1, f_2 .

It is the standard picture for a toric manifold

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exotic Chekanov tori — the first version for \mathbb{R}^4 :

fix a complex structure, so we have \mathbb{C}^2 with a coordinate system (z_1, z_2) ;

choose a smooth contractible loop $\gamma\subset\mathbb{C}^*,$ which lies in a half plane so ${\rm Re}\gamma>$ 0;

consider two - dimensional subset given in the coordinates by $(z_1, z_2) = (e^{i\phi}\gamma, e^{-i\phi}\gamma)$ — it is a lagrangian torus;

Remark. If γ is not contractible, we get a standard torus.

since $\mathbb{CP}^2 \setminus I$ is symplectomorphic to an open ball in \mathbb{R}^4 one implements the construction to the projective plane; and the last step:

using **Hofer's capacity technique**, Chekanov proved that this torus is not equivalent to the standard one.

This torus is called **the Chekanov torus**; the forthcoming paper by Yu. Chekanov and F. Schlenk contains the details how to construct these nonstandard tori in \mathbb{CP}^n for certain *n*, the products $S^1 \times ... \times S^1$, and some other cases. An alternative description of the Chekanov tori based on the notion of **pseudotoric structure:**

· again we take \mathbb{C}^2 and consider pencil $\{Q_w\}$,

 $Q_w = \{z_1 z_2 = w\} \subset \mathbb{C}^2$ of quadrics;

· take real Morse function $F = |z_1|^2 - |z_2|^2$;

· note that the Hamiltonian vector field X_F of this function F preserves each quadric Q_w from the pencil;

· take a smooth contractible loop $\gamma' \subset \mathbb{C}_w^*$ where \mathbb{C}_w parameterizes our pencil $\{Q_w\}$;

 \cdot on each quadric $Q_w, w \in \gamma'$, mark the level set

 $S_w = \{F = 0\} \cap Q_w$ which is a smooth loop;

 \cdot collect these loops along γ' :

 $T(\gamma') = \bigcup_{w \in \gamma'} S_w$, getting a torus

— it is not hard to see, that we again get the Chekanov torus from the previous slide, if we put $\gamma = \sqrt{\gamma'}$.

Let us repeat the construction for for the projective plane:

· consider pencil of quadrics $\{Q_p\}$, $p \mapsto [\alpha : \beta] \subset \mathbb{CP}^1_{\alpha,\beta}$

$$Q_p = \{ \alpha z_1 z_2 = \beta z_0^2 \} \subset \mathbb{CP}^2;$$

· consider real Morse function $F = \frac{|z_1|^2 - |z_2|^2}{\sum_{i=0}^2 |z_i|^2}$;

note that its Hamiltonian vector field X_F preserves each element of the pencil;

- · choose a smooth contractible loop $\gamma \subset \mathbb{CP}^1_{\alpha,\beta} \setminus \{[1:0], [0:1]\};$
- \cdot on each quadric $Q_{p}, p \in \gamma$ take the level set
- $S_p = \{F = 0\} \cap Q_p$ which is a smooth loop;
- \cdot collect the level sets ${\it S}_{\it p}$ along the loop γ

 $T(\gamma) = \bigcup_{p \in \gamma} S_p$ getting again a lagrangian torus.

The resulting torus is exactly the Chekanov torus, given by the identification of symplectic ball in \mathbb{R}^4 and $\mathbb{CP}^2 \setminus \text{line}$.

Another remark: if $\gamma \subset \mathbb{CP}^{1}_{\alpha,\beta}$ is non contractible, then the resulting torus is equivalent to a Clifford torus.

Thus equivalence classes $\Rightarrow \pi_1(\mathbb{CP}^1_{\alpha,\beta} \setminus \{[0:1], [1:0]\}).$

What is the difference between toric and pseudo toric considerations?

R real Morse function fLefschetz pencil $\{Q_p\}$ $\psi: X \setminus B \to \mathbb{CP}^1, Q_p = \overline{\psi^{-1}(p)}$ $f: X \to \mathbb{R}$ toric case pseudtoric case (f_1, f_2) on \mathbb{CP}^2 $(f, \{Q_p\})$ on \mathbb{CP}^2 such that ${f_1, f_2}_\omega = 0$ such that $X_f \parallel Q_n$ standard commutation rel. new commutation rel.

New commutation relation: pencil $\{Q_p\}$ commutes with real function f if the Hamiltonian vector field X_f is parallel to each element Q_p of the pencil at each point.

In other words, *pseudotoric structure* (of rank one) is a combination of

· real data $(f_1, ..., f_{n-1})$ — first integrals in involution

 \cdot complex data $\{Q_p\}$ — a pencil of symplectic divisors, covering whole X s.t.

$$\psi: X \backslash B \to \mathbb{CP}^1$$

has generically smooth symplectic fibers

$$Q_p = \overline{\psi^{-1}(p)} = \psi^{-1}(p) \cup B$$

and H_{f_i} is parallel to Q_p at each point (for all i, p) Distinguished points $p_1, ..., p_k \in \mathbb{CP}^1$ - singular fibers - form $D_{\text{Sing}} \subset \mathbb{CP}^1$

- $\cdot B \subset X$ is the base set of pencil $\{Q_p\}$
- $\cdot Q_p, (f_i|_{Q_p})$ toric manifold with the same convex polytop.

Now we have

Theorem (S. Belyov, N.T.) Let $(f_1, ..., f_{n-1}, \psi)$ be a regular pseudotoric structure of rank one on a compact symplectic manifold X. Let $S \subset \mathbb{CP}^1$ be a smooth lagrangian torus which doesn't pass through p_i . Then the choice of non critical values $(c_1, ..., c_{n-1})$ of $f_1, ..., f_{n-1}$ defines a smooth lagrangian torus $T(S, c_1, ..., c_{n-1}) \subset X$.

· Thus we get a correspondence

 $H_1((\mathbb{CP}^1 \setminus D_{\mathrm{Sing}}), \mathbb{Z}) \longrightarrow \text{different types of lagrangian tori}$ For example, coming back to \mathbb{CP}^2 , Clifford and Chekanov tori:

Clifford type = primitive elem.

 $H_1(\mathbb{CP}^1 \setminus ([1:0], [0:1]), \mathbb{Z})$

Chekanov type = trivial elem.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

This hints how to construct non standard lagrangian tori in toric symplectic manifolds in view of the following

Theorem (S. Belyov, N.T.):

· Any smooth compact toric symplectic manifold admits regular pseudotoric structure $(f_1, ..., f_{n-1}, \psi, \mathbb{CP}^1)$ of rank one.

· For this structure the singular divisor $D_{sing} \subset \mathbb{CP}^1$ consists of exactly two distinct points, $p_N, p_S \subset \mathbb{CP}^1$.

• The primitive and the trivial elements of $H_1(\mathbb{CP}^1 \setminus (p_N \cup p_S), \mathbb{Z})$ generates lagrangian tori of the standard type and of the Chekanov type respectively.

Suppose additionaly that our given toric (X, ω_X) is monotone, so

 $K_X = k[\omega_X] \subset H^2(X,\mathbb{Z})$ — f.e. Fano varieties in AG — then

• *if there is a standard monotone lagrangian torus then there exists a monotone lagrangian torus of the Chekanov type.* Main conjecture: these monotone tori are not Hamiltonian isotopic.

Outline of the proof:

• take for a given toric X the set of commuting Morse moment maps $(f_1, ..., f_n)$, which give the action map by "action coordinates" $F = (f_1, ..., f_n) : X \to P_X$ to convex moment polytop $P_X \subset \mathbb{R}^n$; • for the components D_i of the boundary divisor $D = F^{-1}(\partial P_X)$ find an integer combination $\sum \lambda_i D_i$ equals to zero;

· rearrange this to the form $\sum_{\lambda_i > 0} \lambda_i D_i = \sum_{\lambda_j < 0} |\lambda_j| D_j$, $D_i \neq D_j$, thus we have two divisors from the same linear system $D_+ = \sum_{\lambda_i > 0} \lambda_i D_i$, $D_- = \sum_{\lambda_j < 0} |\lambda_j| D_j \in |\sum_{\lambda_i > 0} \lambda_i D_i|$; · take the pencil $< D_+, D_- >$ with the base set $B = D_+ \cap D_-$ — it is our pencil ψ , and for generic point $p \in \mathbb{CP}^1$, $p \neq [1:0](\mapsto D_+)$, $[0:1](\mapsto D_-)$, the divisor $\overline{\psi^{-1}(p)} \subset X$ is smooth outside the base set B;

• the same linear combination $\sum \lambda_i D_i$ after substitution of linear forms I_i which correspond to D_i in \mathbb{R}^n gives a linear relation on x_i — and this relation derive our real data f'_1, \dots, f'_{n-1} from f_1, \dots, f_n . **Example:** \mathbb{CP}_3^2 — del Pezzo surface of degree 6 can be realized in the direct product $\mathbb{CP}_x^2 \times \mathbb{CP}_y^2 \supset \mathcal{U} = \{x_0y_0 = x_1y_1 = x_2y_2\}$ with the projection $p_x : \mathcal{U} \to \mathbb{CP}_x^2$, $p_x(x_i, y_j) = [x_0 : x_1 : x_2]$.

 $p_x^0:\mathcal{U}\backslash \text{three lines}\simeq\mathbb{CP}_x^2\backslash \text{three points},$ but $(p_x^0)^{-1}(\mathcal{T}_{Ch})\subset\mathcal{U}$ is **not lagrangian** — we cann't lift the Chekanov torus, but we can lift the corresponding pseudotoric structure!

· take the pencil $\{Q_{\alpha,\beta}\} = \{\alpha x_0 x_1 y_2^2 = \beta x_2^2 y_0 y_1\} \subset \mathbb{CP}_x^2 \times \mathbb{CP}_y^2$, and the intersections $Q_{\alpha,\beta} \cap \mathcal{U}$ gives the Lefschetz pencil ψ on \mathcal{U} ;

• the real Morse function $F = \frac{|x_0|^2 - |x_1|^2}{\sum_{i=0}^2 |x_i|^2} + \frac{|y_1|^2 - |y_0|^2}{\sum_{i=0}^2 |y_i|^2}$ preserves by the Hamiltonian action \mathcal{U} and each element $Q_{\alpha,\beta}$ of the pencil, and the restriction $f = F|_{\mathcal{U}}$ gives the real data;

· the choice of a smooth loop $\gamma \subset \mathbb{CP}^1 \setminus ([1:0], [0:1])$ gives a lagrangian torus $T(0, \gamma) = \bigcup_{p \in \gamma} \{f|_{\overline{\psi^{-1}(p)}} = 0\}$, and if γ is contrctible, we get a Chekanov torus in \mathbb{CP}_3^2 .

Another usage of pseudotoric structure — in construction of **special lagrangian fibrations** on Fano varieties.

D. Auroux, an approach to Mirror Symmetry conjecture: (X, I, ω, g) — Kahler manifold, $|K_X^{-1}| \supset D$ $D \mapsto \Theta_D$ — holomorphic form with pole along D. Lagrangian fibration $\pi : X \setminus D \rightarrow B$ is said to be *special* if the proportionality coefficient ρ from

 $\Theta_D|_{\pi^{-1}(p)} = \rho \mathsf{Vol}(g|_{\pi^{-1}(p)})$

has the same phase: $Arg\rho = const$ for each $p \in B$.

Example: standard toric fibration.

X with collection of Morse commuting moment maps $(f_1, ..., f_n)$ with the degeneration locus $\Delta(f_1, ..., f_n) = D \in |\mathcal{K}_D^{-1}|$

The corresponding form $\Theta_{\textit{D}}$ is preserved by the moment maps, so

 $\Theta_D(X_{f_1} \wedge ... X_{f_n}) = \text{const on } X \setminus D$ but essentially this constant is our ρ . **Question:** what about another elements from $|K_X^{-1}|$? **Auroux's conjecture for** \mathbb{CP}^2 : each $D \in |3H|$ is realizable.

Example: the flag variety. Take F^3 — full flag in \mathbb{C}^3 , realize it as $\mathcal{U} \subset \mathbb{CP}^2_{\mathbf{x}} \times \mathbb{CP}^2_{\mathbf{y}}$, given by the equation $\sum_{i=0}^3 x_i y_i = 0$. **Pseudotoric structure** on \mathcal{U} : two real Morse functions $f_1 = \frac{|x_0|^2 - |x_1|^2}{\sum |x_1|^2} + \frac{|y_1|^2 - |y_0|^2}{\sum |y_1|^2}, \quad f_2 = \frac{|x_1|^2 - |x_2|^2}{\sum |x_1|^2} + \frac{|y_2|^2 - |y_1|^2}{\sum |y_1|^2};$ Lefschetz pencil $\psi : \mathcal{U} \to \mathbb{CP}^1$ given by $\psi([x_0:x_1:x_2]\times[y_0:y_1:y_2])=[x_0y_0:x_1y_1:x_2y_2], \sum_{i=0}^3 x_iy_i=0.$ The base set $B \subset \mathcal{U}$ is a hexagon, general element of the pencil is toric del Pezzo surface \mathbb{CP}^2_3 ; three singular elements correspond to points $[1:-1:0], [1:0:-1], [0:1:-1] \in \mathbb{CP}^1$ have the form $\mathbb{CP}_2^2 \cup \mathbb{CP}_2^2$ with intersection along a diagonal of hexagon *B*. Now take a Morse function h on \mathbb{CP}^1 which preserve the Kahler structure by the Hamiltonian action and which has critical points at $p_1 = [1:-1:0]$ and $p_2 = [1:0:-1]$.

(日) (同) (三) (三) (三) (○) (○)

Then

· we get a lagrangian fibration on $\mathcal{U} \setminus D_1 \cup D_2$ where $D_i = \overline{\psi^{-1}(\rho_i)}$ has the type $\mathbb{CP}_2^2 \cup \mathbb{CP}_2^2$;

 \cdot in the fibration there is a 1- dimensional subfamily of singular lagrangian tori while generic fiber is smooth;

· the bundary divisor $D_1 \cup D_2$ lies in the anticanonical system $|\mathcal{K}_{\mathcal{U}}^{-1}|$;

· and this fibration is special.

In contrast with the previous examples: F^3 is not toric, but it admits pseudotorci structure. It is natural to call such a manifold **pseudotoric** since it carries a lagrangian fibration which looks similiar to the standard toric lagrangian fibrations. Another examples of pseudotoric manifolds are complex quadrics and certain complete intersections in \mathbb{CP}^n ; it is reasonable to ask: which symplectic manifolds are pseudotoric?