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Let (X , ω) — be a symplectic manifold of real dimension 2n.
We understand it as the phase space of a classical mechanical
system
We are interested in the case of compact phase space
The main problem we have in mind — Quantization of such
systems
The main approach — lagrangian quantization:
· for R2n, ω =

∑
dp ∧ dq —V.Maslov, semiclassical aproximation;

· for T ∗S , dα — S. Dobrokhotov, A. Shafarevich,
· for general compact (X , ω) — N.T. (algebraic lagrangian
geometry)
basic geometrical idea — lagrangian submanifolds in X look and
behave like points (Darboux - Weinstein theorem) of an infinite
dimensional variety, and any classical Hamiltonian function on X
generates the corresponding dynamics on this variety.



Lagrangian geometry — questions about lagrangian
submanifolds of X :

1) which homology classes from Hn(X ,Z) can be realized by
smooth lagrangian submanifolds;

2) what are the topological types of these lagrangian
submanifolds;

3) classification up to lagrangian deformations of lagrangian
submanifolds of the same topological type and homology class;

4) classification up to Hamiltonian isotopy of lagrangian
submanifolds of the same deformation type.

5) unification of all lagrangian submanifolds in an appropriate
category



Recall that S ⊂ X is lagrangian if

ω|S ≡ 0 and dimS = n

Thus at least [S ] is perpendicular to [ω].
Two lagrangian submanifolds S0,S1 ⊂ X are of the same
deformation type if there is a lagrangian film

S ⊂ X × C, ω ⊕ dz ∧ dz̄
p ↙ ↘ q

X C

such that p(S ∩ X × {i}) = Si , i = 0, 1.
Thus at least [S0] = [S1] and S0 ' S1

Hamiltonian isotopy of lagrangian submanifold S0 ⊂ X is given by
a time dependent Hamiltonian function H(x , t) : X × R→ R
which generates the flow φtH , and St = φtH(S0) is the
corresponding isotopy.



Toy example: dim = 2. Let Σ be a Riemann surface equipped
with a symplectic form.
Then since every loop is lagrangian (dimensional reason):

1) every primitive homology class from H1(Σ,Z) is realizable by
a smooth lagrangian submanifold;

2) every smooth lagrangian submanifold is isomorphic to S1;
3) two loops from the same homology class are deformation

equivalent;
4) two loops are Hamiltonian isotopic if the symplectic area of

the oriented film bounded by the loops is zero;
5) the Fukaya category for a curve of any genus exists

thus for this case the problem is completely solved



Example: CP2. The projective plane is the simplest compact
symplectic manifold in dimension 4:

1) since H2(CP2,Z) = Z, any lagrangian submanifold must
present trivial homology class;

2) vanishing results for 2- spheres (M. Gromov), riemann
surfaces of genus > 1 (M. Audin), Klein bottle (S. Nemirovskiy, V.
Shevchishin) — they are not realizable as lagrangian submanifolds;

3) — 4) it was believed that well known Clifford tori are unique
examples of lagrangian tori in CP2 since in 1996 Yu. Chekanov
proposed a construction of lagrangian torus which is not
Hamiltonian isotopic to a Clifford torus — and nobody knows are
there other types of lagrangian tori;

5) nevertheless certain constructions of appropriate categories
exist (Fukaya - Seidel).
thus even for this basic case in dimension 4 the problem is not
solved yet



Why we are interested in lagrangian geometry?

If we would like to proceed in the lagrangian approach to
Geometric Quantization —

there lagrangian submanifolds represent quantum states
— it is necessury to know all these states = all types of lagrangian
submanifolds.
F.e. in ALAG the Chekanov result ensures that the moduli space
of half weighted Bohr - Sommerfeld lagrangian cycles of level 3,
Bhw ,rS,3 , has at least two disjoint components

and may be there is a tunneling between these components?
As well for Homological Mirror Symmetry — one should try to
describe all objects in the Fukaya category, so all types of
nonisotopic lagrangian tori.



Well known Clifford tori in CP2 comes from the toric geometry:
there are two real Morse functions f1, f2 in involution:

f1 =
|z1|2 − |z2|2∑2

i=0 |zi |2
, f2 =

|z0|2 − |z1|2∑2
i=0 |zi |2

, {f1, f2}ω = 0

in homogeneous coordinates [z0 : z1 : z2];
the degeneration set

∆(f1, f2) = {df1 ∧ df2 = 0} ⊂ CP2

is formed by three lines li , li = {zi = 0};
the action map F = (f1, f2) : CP2 → PCP2 ⊂ R2 sends

∆(f1, f2) to the boundary component ∂PCP2 , and the preimage of
any inner point p ∈ PCP2 is a smooth lagrangian torus, labeled by
values of f1, f2.

It is the standard picture for a toric manifold



Exotic Chekanov tori — the first version for R4:
fix a complex structure, so we have C2 with a coordinate

system (z1, z2);
choose a smooth contractible loop γ ⊂ C∗, which lies in a

half plane so Reγ > 0;
consider two - dimensional subset given in the coordinates by

(z1, z2) = (e iφγ, e−iφγ) — it is a lagrangian torus;
Remark. If γ is not contractible, we get a standard torus.

since CP2\l is symplectomorphic to an open ball in R4 one
implements the construction to the projective plane;
and the last step:

using Hofer’s capacity technique, Chekanov proved that
this torus is not equivalent to the standard one.
This torus is called the Chekanov torus; the forthcoming paper
by Yu. Chekanov and F. Schlenk contains the details how to
construct these nonstandard tori in CPn for certain n, the products
S1 × ...× S1, and some other cases.



An alternative description of the Chekanov tori based on the
notion of pseudotoric structure:
· again we take C2 and consider pencil {Qw},
Qw = {z1z2 = w} ⊂ C2 of quadrics;
· take real Morse function F = |z1|2 − |z2|2;
· note that the Hamiltonian vector field XF of this function F

preserves each quadric Qw from the pencil;
· take a smooth contractible loop γ′ ⊂ C∗w where Cw

parameterizes our pencil {Qw};
· on each quadric Qw ,w ∈ γ′, mark the level set
Sw = {F = 0} ∩ Qw which is a smooth loop;
· collect these loops along γ′:
T (γ′) =

⋃
w∈γ′ Sw , getting a torus

— it is not hard to see, that we again get the Chekanov torus from
the previous slide, if we put γ =

√
γ′.



Let us repeat the construction for for the projective plane:
· consider pencil of quadrics {Qp}, p 7→ [α : β] ⊂ CP1

α,β

Qp = {αz1z2 = βz2
0} ⊂ CP2;

· consider real Morse function F = |z1|2−|z2|2∑2
i=0 |zi |2

;

· note that its Hamiltonian vector field XF preserves each
element of the pencil;
· choose a smooth contractible loop γ ⊂ CP1

α,β\{[1 : 0], [0 : 1]};
· on each quadric Qp, p ∈ γ take the level set
Sp = {F = 0} ∩ Qp which is a smooth loop;
· collect the level sets Sp along the loop γ
T (γ) =

⋃
p∈γ Sp getting again a lagrangian torus.

The resulting torus is exactly the Chekanov torus, given by the
identification of symplectic ball in R4 and CP2\line.
Another remark:if γ ⊂ CP1

α,β is non contractible, then the resulting
torus is equivalent to a Clifford torus.
Thus equivalence classes⇒ π1(CP1

α,β\{[0 : 1], [1 : 0]}).



What is the difference between toric and pseudo toric
considerations?

R | C
real Morse function f | Lefschetz pencil {Qp}

‖ | ‖
f : X → R | ψ : X\B → CP1,Qp = ψ−1(p)
↓ | ↓

toric case | pseudtoric case
(f1, f2) on CP2 | (f , {Qp}) on CP2

such that {f1, f2}ω = 0 | such that Xf ‖ Qp

↑ | ↑
standard commutation rel. | new commutation rel.

New commutation relation: pencil {Qp} commutes with real
function f if the Hamiltonian vector field Xf is parallel to each
element Qp of the pencil at each point.



In other words, pseudotoric structure (of rank one) is a
combination of
· real data (f1, ..., fn−1) — first integrals in involution
· complex data {Qp} — a pencil of symplectic divisors, covering

whole X s.t.
ψ : X\B → CP1

has generically smooth symplectic fibers

Qp = ψ−1(p) = ψ−1(p) ∪ B

and Hfi is parallel to Qp at each point (for all i , p)
Distinguished points p1, ..., pk ∈ CP1 - singular fibers - form
DSing ⊂ CP1

· B ⊂ X is the base set of pencil {Qp}
· Qp, (fi |Qp) — toric manifold with the same convex polytop.



Now we have
Theorem (S. Belyov, N.T.)Let (f1, ..., fn−1, ψ) be a regular
pseudotoric structure of rank one on a compact symplectic
manifold X . Let S ⊂ CP1 be a smooth lagrangian torus which
doesn’t pass through pi . Then the choice of non critical values
(c1, ...cn−1) of f1, ..., fn−1 defines a smooth lagrangian torus
T (S , c1, ..., cn−1) ⊂ X .
· Thus we get a correspondence
H1((CP1\DSing),Z) −→ different types of lagrangian tori

For example, coming back to CP2, Clifford and Chekanov tori:

Clifford type = primitive elem.
↗

H1(CP1\([1 : 0], [0 : 1]),Z)
↘

Chekanov type = trivial elem.



This hints how to construct non standard lagrangian tori in toric
symplectic manifolds in view of the following
Theorem (S. Belyov, N.T.):
· Any smooth compact toric symplectic manifold admits regular

pseudotoric structure (f1, ..., fn−1, ψ,CP1) of rank one.
· For this structure the singular divisor Dsing ⊂ CP1 consists of

exactly two distinct points, pN , pS ⊂ CP1.
· The primitive and the trivial elements of H1(CP1\(pN ∪ pS),Z)

generates lagrangian tori of the standard type and of the Chekanov
type respectively.
Suppose additionaly that our given toric (X , ωX ) is monotone, so

KX = k[ωX ] ⊂ H2(X ,Z) — f.e. Fano varieties in AG — then
· if there is a standard monotone lagrangian torus then there

exists a monotone lagrangian torus of the Chekanov type.
Main conjecture: these monotone tori are not Hamiltonian
isotopic.



Outline of the proof:
· take for a given toric X the set of commuting Morse moment

maps (f1, ...fn), which give the action map by “action coordinates”
F = (f1, ..., fn) : X → PX to convex moment polytop PX ⊂ Rn;
· for the components Di of the boundary divisor D = F−1(∂PX )

find an integer combination
∑
λiDi equals to zero;

· rearrange this to the form
∑

λi>0 λiDi =
∑

λj<0 |λj |Dj ,
Di 6= Dj , thus we have two divisors from the same linear system

D+ =
∑

λi>0 λiDi , D− =
∑

λj<0 |λj |Dj ∈ |
∑

λi>0 λiDi |;
· take the pencil < D+,D− > with the base set B = D+ ∩ D−

— it is our pencil ψ, and for generic point p ∈ CP1,
p 6= [1 : 0]( 7→ D+), [0 : 1](7→ D−), the divisor ψ−1(p) ⊂ X is
smooth outside the base set B;
· the same linear combination

∑
λiDi after substitution of linear

forms li which correspond to Di in Rn gives a linear relation on xi
— and this relation derive our real data f ′1 , ...f

′
n−1 from f1, ..., fn.



Example: CP2
3 — del Pezzo surface of degree 6 can be realized

in the direct product CP2
x × CP2

y ⊃ U = {x0y0 = x1y1 = x2y2}
with the projection px : U → CP2

x , px(xi , yj) = [x0 : x1 : x2].
p0
x : U\three lines ' CP2

x\three points,
but (p0

x)−1(TCh) ⊂ U is not lagrangian — we cann’t lift the
Chekanov torus, but we can lift the corresponding pseudotoric
structure!
· take the pencil {Qα,β} = {αx0x1y2

2 = βx2
2y0y1} ⊂ CP2

x × CP2
y ,

and the intersections Qα,β ∩ U gives the Lefschetz pencil ψ on U ;

· the real Morse function F = |x0|2−|x1|2∑2
i=0 |xi |2

+ |y1|2−|y0|2∑2
i=0 |yi |2

preserves by the Hamiltonian action U and each element Qα,β of
the pencil, and the restriction f = F |U gives the real data;
· the choice of a smooth loop γ ⊂ CP1\([1 : 0], [0 : 1]) gives a

lagrangian torus T (0, γ) =
⋃

p∈γ{f |ψ−1(p)
= 0}, and if γ is

contrctible, we get a Chekanov torus in CP2
3.



Another usage of pseudotoric structure — in construction of
special lagrangian fibrations on Fano varieties.
D. Auroux, an approach to Mirror Symmetry conjecture:
(X , I , ω, g) — Kahler manifold, |K−1X | ⊃ D
D 7→ ΘD — holomorphic form with pole along D.
Lagrangian fibration π : X\D → B is said to be special if the
proportionality coefficient ρ from

ΘD |π−1(p) = ρVol(g |π−1(p))
has the same phase: Argρ = const for each p ∈ B.
Example: standard toric fibration.
X with collection of Morse commuting moment maps (f1, ..., fn)
with the degeneration locus ∆(f1, ..., fn) = D ∈ |K−1D |
The corresponding form ΘD is preserved by the moment maps, so

ΘD(Xf1 ∧ ...Xfn) = const on X\D
but essentially this constant is our ρ.
Question: what about another elements from |K−1X |?
Auroux’s conjecture for CP2: each D ∈ |3H| is realizable.



Example: the flag variety. Take F 3 — full flag in C3, realize it
as U ⊂ CP2

x × CP2
y , given by the equation

∑3
i=0 xiyi = 0.

Pseudotoric structure on U : two real Morse functions
f1 = |x0|2−|x1|2∑

|xi |2
+ |y1|2−|y0|2∑

|yi |2
, f2 = |x1|2−|x2|2∑

|xi |2
+ |y2|2−|y1|2∑

|yi |2
;

Lefschetz pencil ψ : U → CP1 given by
ψ([x0 : x1 : x2]× [y0 : y1 : y2]) = [x0y0 : x1y1 : x2y2],

∑3
i=0 xiyi = 0.

The base set B ⊂ U is a hexagon, general element of the pencil is
toric del Pezzo surface CP2

3; three singular elements correspond to
points [1 : −1 : 0], [1 : 0 : −1], [0 : 1 : −1] ∈ CP1 have the form
CP2

2 ∪ CP2
2 with intersection along a diagonal of hexagon B.

Now take a Morse function h on CP1 which preserve the Kahler
structure by the Hamiltonian action and which has critical points
at p1 = [1 : −1 : 0] and p2 = [1 : 0 : −1].



Then
· we get a lagrangian fibration on U\D1 ∪ D2 where

Di = ψ−1(pi ) has the type CP2
2 ∪ CP2

2;
· in the fibration there is a 1- dimensional subfamily of singular

lagrangian tori while generic fiber is smooth;
· the bundary divisor D1 ∪ D2 lies in the anticanonical system

|K−1U |;
· and this fibration is special.

In contrast with the previous examples: F 3 is not toric, but it
admits pseudotorci structure. It is natural to call such a manifold
pseudotoric since it carries a lagrangian fibration which looks
similiar to the standard toric lagrangian fibrations. Another
examples of pseudotoric manifolds are complex quadrics and
certain complete intersections in CPn; it is reasonable to ask:
which symplectic manifolds are pseudotoric?


