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Let (X,w) — be a symplectic manifold of real dimension 2n.
We understand it as the phase space of a classical mechanical
system

We are interested in the case of compact phase space

The main problem we have in mind — Quantization of such
systems

The main approach — lagrangian quantization:

- for R?",w = 3" dp A dg —V.Maslov, semiclassical aproximation;
- for T*S,da — S. Dobrokhotov, A. Shafarevich,

- for general compact (X,w) — N.T. (algebraic lagrangian
geometry)

basic geometrical idea — lagrangian submanifolds in X look and
behave like points (Darboux - Weinstein theorem) of an infinite
dimensional variety, and any classical Hamiltonian function on X
generates the corresponding dynamics on this variety.



Lagrangian geometry — questions about lagrangian
submanifolds of X:

1) which homology classes from H,(X,Z) can be realized by
smooth lagrangian submanifolds;

2) what are the topological types of these lagrangian
submanifolds;

3) classification up to lagrangian deformations of lagrangian
submanifolds of the same topological type and homology class;
4) classification up to Hamiltonian isotopy of lagrangian

submanifolds of the same deformation type.
5) unification of all lagrangian submanifolds in an appropriate
category



Recall that S C X is lagrangian if
wls=0 and dimS=n

Thus at least [S] is perpendicular to [w].
Two lagrangian submanifolds Sp, S1 C X are of the same
deformation type if there is a lagrangian film

S ¢ X x C wédzndz

P \(q
X C

such that p(SNX x {i})=S;, i=0,1.

Thus at least [So] = [S1] and So ~ 51
Hamiltonian isotopy of lagrangian submanifold So C X is given by
a time dependent Hamiltonian function H(x,t) : X x R - R
which generates the flow ¢f,, and S; = ¢},(So) is the
corresponding isotopy.



Toy example: dim = 2. Let X be a Riemann surface equipped
with a symplectic form.
Then since every loop is lagrangian (dimensional reason):

1) every primitive homology class from H;(X,Z) is realizable by
a smooth lagrangian submanifold;

2) every smooth lagrangian submanifold is isomorphic to S*;

3) two loops from the same homology class are deformation
equivalent;

4) two loops are Hamiltonian isotopic if the symplectic area of
the oriented film bounded by the loops is zero;

5) the Fukaya category for a curve of any genus exists

thus for this case the problem is completely solved



Example: CP2. The projective plane is the simplest compact
symplectic manifold in dimension 4:

1) since H?(CP?,Z) = Z, any lagrangian submanifold must
present trivial homology class;

2) vanishing results for 2- spheres (M. Gromov), riemann
surfaces of genus > 1 (M. Audin), Klein bottle (S. Nemirovskiy, V.
Shevchishin) — they are not realizable as lagrangian submanifolds;

3) — 4) it was believed that well known Clifford tori are unique
examples of lagrangian tori in CP? since in 1996 Yu. Chekanov
proposed a construction of lagrangian torus which is not
Hamiltonian isotopic to a Clifford torus — and nobody knows are
there other types of lagrangian tori;

5) nevertheless certain constructions of appropriate categories
exist (Fukaya - Seidel).
thus even for this basic case in dimension 4 the problem is not
solved yet



Why we are interested in lagrangian geometry?

If we would like to proceed in the lagrangian approach to
Geometric Quantization —
there lagrangian submanifolds represent quantum states

— it is necessury to know all these states = all types of lagrangian
submanifolds.
F.e. in ALAG the Chekanov result ensures that the moduli space
of half weighted Bohr - Sommerfeld lagrangian cycles of level 3,
Bg";”, has at least two disjoint components

" and may be there is a tunneling between these components?
As well for Homological Mirror Symmetry — one should try to
describe all objects in the Fukaya category, so all types of
nonisotopic lagrangian tori.



Well known Clifford tori in CP? comes from the toric geometry:
there are two real Morse functions f1, f> in involution:

Nzl — |z - |02 — | 21|
- 2 ) - 2
Zi:o |zi|? Zi:O |zi|?

in homogeneous coordinates [zy : 71 : 2p];
the degeneration set

,{f]_, fZ}w =0

A(fi, f) = {dfi A df, = 0} C CP?

is formed by three lines [, [; = {z; = 0};

the action map F = (f, f) : CP? — Pgp2 C R? sends
A(f1, ) to the boundary component OPcp2, and the preimage of
any inner point p € Pgp2 is a smooth lagrangian torus, labeled by
values of f1, f.

It is the standard picture for a toric manifold



Exotic Chekanov tori — the first version for R*:

fix a complex structure, so we have C? with a coordinate
system (z1, z);

choose a smooth contractible loop v C C*, which lies in a
half plane so Rey > 0;

consider two - dimensional subset given in the coordinates by

(z1,22) = (€%, e7'?y) — it is a lagrangian torus;
Remark. If v is not contractible, we get a standard torus.

since CPP?\/ is symplectomorphic to an open ball in R* one
implements the construction to the projective plane;
and the last step:

using Hofer’s capacity technique, Chekanov proved that
this torus is not equivalent to the standard one.
This torus is called the Chekanov torus; the forthcoming paper
by Yu. Chekanov and F. Schlenk contains the details how to
construct these nonstandard tori in CPP" for certain n, the products
Sl x ... x S, and some other cases.



An alternative description of the Chekanov tori based on the
notion of pseudotoric structure:

- again we take C? and consider pencil {Q,},

Qw = {z1z20 = w} C C? of quadrics;

- take real Morse function F = |z1|2 — |z|?;

- note that the Hamiltonian vector field Xg of this function F
preserves each quadric Q, from the pencil;

- take a smooth contractible loop 7" C C%, where C,,
parameterizes our pencil {Qy };

- on each quadric Q,,w € v/, mark the level set

Sw = {F =0} N Qu which is a smooth loop;

- collect these loops along +':

T(v") = Uwe, Sw, getting a torus
— it is not hard to see, that we again get the Chekanov torus from
the previous slide, if we put v = /7.



Let us repeat the construction for for the projective plane:
- consider pencil of quadrics {Qp}, p+— [ : ] C (C]P’iﬁ
Qp ={aznz = Bzg} c CP?

2 2
- - zZ Z
- consider real Morse function F = M

Siolzl?’
- note that its Hamiltonian vector field Xg preserves each

element of the pencil;

- choose a smooth contractible loop v C (CIP’%Y”B\{[l :0],[0: 1]}

- on each quadric Qp, p € v take the level set

Sp = {F =0} N Qp which is a smooth loop;

- collect the level sets S, along the loop «y

T(y) = Up€7 Sp getting again a lagrangian torus.
The resulting torus is exactly the Chekanov torus, given by the
identification of symplectic ball in R* and CIP?\ /ine.
Another remark:if v ¢ CP} «,p s non contractible, then the resulting
torus is equivalent to a C//fford torus.
Thus equivalence classes = m1(CP}, ;\{[0: 1],[1: 0]}).



What is the difference between toric and pseudo toric
considerations?

R
real Morse function f

C
Lefschetz pencil {Qp}

f:X >R ¢ X\B — CP,Q, = ¢ 1(p)
1 \

(fi,f) on CP? (f,{Q,}) on CP?
such that {fi,h}, =0 such that  X¢ || Qp
f t

|

|

|

|

|

toric case ] pseudtoric case

|

|

|

standard commutation rel. | new commutation rel.

New commutation relation: pencil {Q,} commutes with real
function f if the Hamiltonian vector field X¢ is parallel to each
element @, of the pencil at each point.




In other words, pseudotoric structure (of rank one) is a
combination of
- real data (f1, ..., f,—1) — first integrals in involution
- complex data {Qp} — a pencil of symplectic divisors, covering
whole X s.t.
Y : X\B — CP!

has generically smooth symplectic fibers

Q=v¢"1p)=v N (p)UB

and H is parallel to Qp at each point (for all i, p)
Distinguished points py, ..., px € CP! - singular fibers - form
DSing C CP?

- B C X is the base set of pencil {Qp}

- Qp, (fil@,) — toric manifold with the same convex polytop.



Now we have
Theorem (S. Belyov, N.T.)Let (f1,...,f—1,%) be a regular
pseudotoric structure of rank one on a compact symplectic
manifold X. Let S C CP' be a smooth lagrangian torus which
doesn't pass through p;. Then the choice of non critical values
(c1,...cn—1) of f1,..., fn_1 defines a smooth lagrangian torus
T(S, Clyeeny C,,_1) c X.

- Thus we get a correspondence

H1((CP!\ Dsing), Z) — different types of lagrangian tori
For example, coming back to CIP?, Clifford and Chekanov tori:

Clifford type = primitive elem.

a
Hi(CP\([1 : 0], [0 : 1]), %)

pY

Chekanov type = trivial elem.



This hints how to construct non standard lagrangian tori in toric
symplectic manifolds in view of the following
Theorem (S. Belyov, N.T.):

- Any smooth compact toric symplectic manifold admits regular
pseudotoric structure (f1, ..., f,_1, %, CP) of rank one.

- For this structure the singular divisor Dg;p, g C CP! consists of
exactly two distinct points, pn, ps C CP!.

- The primitive and the trivial elements of H1(CP!\(py U ps),Z)
generates lagrangian tori of the standard type and of the Chekanov
type respectively.

Suppose additionaly that our given toric (X,wx) is monotone, so

Kx = klwx] C H*(X,Z) — f.e. Fano varieties in AG — then

- if there is a standard monotone lagrangian torus then there
exists a monotone lagrangian torus of the Chekanov type.

Main conjecture: these monotone tori are not Hamiltonian
isotopic.



Outline of the proof:

- take for a given toric X the set of commuting Morse moment
maps (fi, ...fp), which give the action map by “action coordinates”
F=(f,..,f): X = Px to convex moment polytop Px C R";

- for the components D; of the boundary divisor D = F~1(9Px)
find an integer combination > \;D; equals to zero;

- rearrange this to the form 3, o AiDi =325 o [Aj[D;,

D; # D;, thus we have two divisors from the same linear system

Dy =3 550 iDis Do =325 0 INIDj € [ 325 50 AiDil;

- take the pencil < Dy, D_ > with the base set B= D, N D_
— it is our pencil ¢, and for generic point p € CP?,

p #[1:0](— D), [0:1](— D-), the divisor »=1(p) C X is
smooth outside the base set B;

- the same linear combination Y A;D; after substitution of linear
forms /; which correspond to D; in R" gives a linear relation on x;
— and this relation derive our real data f{,...f,_; from fi, ..., f,.




Example: CPZ — del Pezzo surface of degree 6 can be realized
in the direct product CP2 x C]P’§ DU = {xo0 = x1y1 = x2y2}
with the projection py : U — CP2,  py(xi,y;) = [x0 : x1 : x2].
P : U\three lines ~ CP2\three points,
but (p2)~*(Tcp) C U is not lagrangian — we cann't lift the
Chekanov torus, but we can lift the corresponding pseudotoric
structure!
- take the pencil {Qu 3} = {axox1y3 = Bx3yoy1} C CPZ x CP?,
and the intersections Q, g NU gives the Lefschetz pencil ¥ on U;
X0 2_ X1 2 1 2_ 2
F= o+ s
preserves by the Hamiltonian action ¢/ and each element Q, g of
the pencil, and the restriction f = F|;; gives the real data;
- the choice of a smooth loop v € CP!\([1: 0], [0 : 1]) gives a
lagrangian torus T(0,7) = Upev{f’m =0}, and if v is
contrctible, we get a Chekanov torus in (CIP%.

- the real Morse function



Another usage of pseudotoric structure — in construction of
special lagrangian fibrations on Fano varieties.
D. Auroux, an approach to Mirror Symmetry conjecture:
(X,1,w, g) — Kahler manifold, |Kx!| > D
D — ©p — holomorphic form with pole along D.
Lagrangian fibration 7 : X\D — B is said to be special if the
proportionality coefficient p from
Oplr-1(p) = pPVol(glr-1(p)
has the same phase: Argp = const for each p € B.
Example: standard toric fibration.
X with collection of Morse commuting moment maps (fi, ..., f,)
with the degeneration locus A(fi, ..., f,) = D € |Kp?|
The corresponding form ©p is preserved by the moment maps, so
O©p(Xf A ...Xg,) = const on X\D
but essentially this constant is our p.
Question: what about another elements from |K!|?
Auroux’s conjecture for CP?: each D € [3H| is realizable.




Example: the flag variety. Take F3 — full flag in C3, realize it
as U C CPPZ x CP?, given by the equation S22 Xy = 0.
Pseudotoric structure on I/: two real Morse functions

£ o= bol=bal? + 20 7Y A Yl 0T + 2> =1yl

! 2o Ixil? SlP 2 > Ixil? lvil?

Lefschetz pencil v : L/ — CP! given by
P([x0 X1 x2] X [vo 1 yat ye]) = [xoyo : xaya : xeye], Yoo Xivi = 0.
The base set B C U is a hexagon, general element of the pencil is
toric del Pezzo surface CIP3; three singular elements correspond to
points [1: —1:0],[1:0: —1],[0:1: —1] € CP! have the form
CP% U CP3 with intersection along a diagonal of hexagon B.
Now take a Morse function h on CP! which preserve the Kahler
structure by the Hamiltonian action and which has critical points
atpp=[1:-1:0]and pp =[1:0:—1].




Then

- we get a lagrangian fibration on U\ Dy U D, where
D; = 1~1(p;) has the type CPP3 U CP3;

- in the fibration there is a 1- dimensional subfamily of singular
lagrangian tori while generic fiber is smooth;

- the bundary divisor D; U D5 lies in the anticanonical system
Lot

- and this fibration is special.

In contrast with the previous examples: F3 is not toric, but it
admits pseudotorci structure. It is natural to call such a manifold
pseudotoric since it carries a lagrangian fibration which looks
similiar to the standard toric lagrangian fibrations. Another
examples of pseudotoric manifolds are complex quadrics and
certain complete intersections in CPP”; it is reasonable to ask:
which symplectic manifolds are pseudotoric?



