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Motivation

Goal = Quantization of the AdSs x S° superstring

from first principles
—_—

Construct corresponding Quantum Integrable Lattice Model

Long-term goal...



e Non ultralocality :
(L. D) =[r2. L+ D06 + [512. L1 — L5066 + 25120 g7

delta prime leads to an ambiguity in the Poisson bracket of the
monodromy

T(A) = P%/f{cnl)dcr
It isdifficult to associate to the continuum model an integrable lattice
model.
+ Ultralocal model (512 =0)
L atti ce Poisson bracket {T{". T;"} = [r12. T{'T,"]8™"
M onodromy M=T"T""' . T°T'

TrM* in involution



Freidel-Maillet Quadratic Algebra

[Freidel-Maillet '91]

{Tln.' :;n} —qa ’?T] T,;”Ejm” Tf}mdlﬁamn
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Jacobi identity la12,a13| + [a13,a23) + [a13, a23] = 0
ayn,c13| + |ar, e23] +|c13,63] =0
Integrability a—d+b—c=0
TrM¥ in involution

l ]
Continuum limit : f":ﬂ+§(b—f) 5:§(b+f)

{fl.fg} = [F[g.f[ —ng](gjﬂ-gr —+ [S’]g_.ﬁﬂ E%](g)‘ o' —I—QSljﬁ)Uﬁr



Faddeev-Reshetikhin approach [Fr s
SU(2) Principal Chiral Model

Described by:
- Hamiltonian H = [ do Tl’((_fDJ2 +(J' )2)

- Canonical Poisson bracket
0 0 0
{ji(o) ( ’J = [C12, j3(0)] 860
{7 j2(0)]8667 — C128 561
{ji(o) !5( 1} =0

- Lax matrix Z(A) = —=(j' +2,°)
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— Satisifies a non-ultralocal r/s algebra

FR Strategy = To get rid of Non-ultralocality



First steps of FR approach

1. Keep the same Lax matrix

2. Replace canonical non-ultralocal PB by the ultralocal PB

{1(0). j5( ”)} =
{!1 (0). Jé o)} =
{!1 (0). J} o)} =

C1a. j5(0)

C2, j3(0)
C12, j3(0)]
)

5&' o’
O o'

O o'

3. Find Hamiltonian A’ such that (H',{-,-}') has same classical

dynamics as (H.{-,-})



Degeneracy of ultralocal bracket

- A priori, look for H s.t. Vf, {H'.f} ={H, [}
- But ultralocal PB is degenerate !

Tie =Tr[(j'+ j')?] are Casimirs i.e. {h,Tey} =0 Vh

'

1. Only possible to reproduce Reduction of PCM dynamics
defined by setting Casimirs to constants

2. Can be done 1n a consistent way because these
quantities are chiral/antichiral

Reduction of conformal symmetry

— Hamiltonian H' for reduced dynamics



Symmetric space F/G c-model

Phase Space : pair (A,II) of fieldstaking valuein f = Lie(G)
Automorphism o,6%=1, f= O+ 1 O = ¢ —1ie(G)

Lax matrix

belongs to the twisted loop dlgebra  /° = @, (27" @ @ a2+ (1)
Canonical Poisson bracket constructed from

-an R-matrix  R=P>p— P

- afunction P(A)=41/(1-2%)°



Thebracketisol (r,s) type, with
f'zé(R#—quqo_l)ﬁ SZé(R—@R@_I}

In the spirit of the Faddeev-Reshetikhin procedure : modify the
Poisson bracket

If one keeps the same R-matrix but take @(A) =1 | onewould find
s = 0, however thisleads to afully degenerate bracket.

The closest possibility is  @(A) =4~
which leads to a Poisson bracket with s = Py

This Poisson bracket is not ultralocal, but its non ultralocality is
confined to the part of the loop algebra which is independent of the
spectral parameter A

Mild non ultralocality



New bracket is already known :
M. Semenov-Tian-Shansky, A. Sevostyanov (1995)

have shown that this bracket is the continuum limit of a Freiddl -
Maillet (abcd) type lattice bracket.

Extradata:
Solution of MCYBE on fU =g denoted a

Then
a=r+o,b=—s—0, c=—s+ad.d=r—qa



New bracket

{AD(0), AP (@)} = —[C12, 245 (o) + 113 (0|80 + 2C}3 B,
(Ao }-4“}'-?’}’— Cy Ay (o II+H‘_”'[-:FIIIJWn

(e")
(")

{A (o), (")} =10,
(A (0,15 (@)Y = ~[Cia”, A7) (0) + T (0)] .
{A}(0), 43 (0")} = —[Cya ", 13 (o) ]am.f,
{A{(e). 5" (a")} = 0,
{A(0), ()} = [Chy”, 113" (0)1dser,
(10(0), 10y =0
{1y (e), 115 (")} = 0,

(o), T (")} = -

{0 (), 5 (")} = —[Cly ", 11} (0)] B



Reduction

1) [T isin the center of the new bracket
coset modd! : H{U} IS a gauge constraint

= MY =0
2) A 11111 becomes central
= Am—l—ﬂ(l):}']r 7, constant matrix in f“}.

coset model : partial gauge fixing + conformal invariance
3) tr(AY —11)"  are central
— AV _1ID = o707 oG
coset model : use of conformal invariance

— Pohlmeyer reduction



Pohlmeyer reduction
Oneendsupwithfidds g € G and A© ¢ O =Lie(G)

The new Poisson bracket becomes

{81(0),82(0")} =0,
(1(0),42(0")} = ~221(0)C1y oo
{A1(06),Az(0")} = —2[A (o LC%_S“)]@M:+2C§2 s
Final modedl - WZW model with a potential term
- Subgroup H C G isgauged
heH= hT.h™', g— hgh™!
Laxpar  #=A0+ g

- New Hamiltonian can be found



Extensions

Stringon AdSs x s> . coset model
SU(2,2[4)/SO(1,4) x SO(5)
- defined by an order 4 automorphism
- contains odd fields
The method fully extend to this case .

One chooses a Poisson bracket with mild non ultralocality

The reduced model is the Pohimeyer reduction first obtained by
Grigoriev and Tseytlin (2008)

The reduced model has the same number of degrees of freefom asthe
origina coset model



L attice bracket
Choose a to be the standard solution of the mCY BE

A =2Xgca+(EgQE_gp—E_gQEg)

Then the four objects (a,b,c,d) appearing in the lattice bracket are
related by

b=—a(A=0),c=a(A =), d=a+b—c

— Thereisonly one basicobject «a(A ) whichisaclassical r-
matrix associated with atwisted loop algebra

— Thematrices b and ¢ satisfy the classical Yang-Baxter equation

Thisalows for a quantization of the (a,b,c,d) structure

FD, M. Magro, B. Vicedo 1212.0894



Conclusion

Appealing structure which brings hope that one may be able

to quantize from first principles

at least the Pohimeyer reduction of the superstring !

Thereis still alot of work to be done.

Thefirst step would be to construct an explicit realization of the classical
|attice model
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