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Yang-Mills theory is the basis of QCD.

Perturbation theory is not the proper instrument for study

of QCD. Color confinement cannnot be explained in the

framework of perturbation theory ⇒ infrared problem.

Scattering theory for bound states does not exist.



Nevertheless we insist on the formal perturbative unitarity
of the scattering matrix in the Yang-Mills theory.

Even the quantization procedure for the Yang-Mills theory
is defined only in the framework of perturbation theory ⇒
Gribov ambiguity.

Any differential gauge suffers from Gribov ambiguity (Singer).
Any algebraic gauge is not manifestly Lorentz invariant.



Is it possible to construct the quantization procedure for
nonabelian gauge fields which:

1. May be applied beyond perturbation theory.

2. Is manifestly Lorentz invariant.

3. Produces formally unitary scattering matrix.

4. Allows gauge invariant infrared regularization.



The first three questions have been answered in the papers:
A.A.Slavnov, JHEP,08(2008)513; A.A.Slavnov, Theor.Math.
Phys.161 (2009)1497; A.Quadri, A.A.Slavnov, JHEP,1007
(2010)087, were such quantization was performed, and
renormalizability of this procedure was proven.

Perturbative infrared regularization was also constructed:
A.A.Slavnov, 154 (2008) 178.

In this talk I will describe a gauge invariant infrared regularization
of the Yang-Mills theory which may be used both in perturbation
theory and beyond it.



The model is described by the Lagrangian:

L = −
1

4
F aµνF

a
µν −m−2(D2φ̃)∗(D2φ̃) + (Dµe)

∗(Dµb) + (Dµb)
∗(Dµe)

+α2(Dµφ̃)∗(Dµφ̃)− α2m2(b∗e+ e∗b) (1)

where φ, b, e are two component complex doublet.

α = 0 corresponds to the nonregularized Yang-Mills theory.
Integrating out the fields φ, b, e, we get the usual Yang-
Mills theory.

The Lagrangian (1) contains additional unphysical excitations,
which however do not contribute to the physical amplitudes.



We shift the variable φ

φ̃ = φ− µ̂; µ̂ = (0, µ
√

2g−1) (2)

and use the following parametrization of the classical fields

in terms of Hermitean components:

φ = (
iφ1 + φ2
√

2
(1 +

g

2µ
φ0),

φ0 − iφ3(1 + g/(2µ)φ0)√
2

) (3)

This parametrization makes possible to choose algebraic,
completely relativistic gauge, free of Gribov ambiguity.
Unitarity in the physical subspace should be proven.



The Lagrangian (1) is obviously invariant with respect to
"shifted"gauge transformations

Aaµ → Aaµ + ∂µη
a − gεabcAbµηc

φa → φa +
g

2
εabcφbηc + ηaµ+

g2

4µ
φaφbηb

. . . (4)

For gauge transformations (4) the gauge φa = 0 is admissible
both in perturbation theory and beyond it. If φa = 0,
then under the gauge transformations (4) the variables
φa become

δφa = µηa; φa = 0⇒ ηa = 0 (5)



The Lagrangian (1)is also invariant with respect to the
supersymmetry transformations

φ→ φ− bε

e→ e−
D2(φ− µ̂)

m2
ε

(6)

This symmetry plays a crucial role in the proof of decoupling
of unphysical excitations.

It holds for any α, but for α = 0 these transformations
are also nilpotent. We need only the existence of the
conserved charge Q and nilpotency of the asymptotic charge
Q0, as the physical spectrum is determined by the asymptotic
dynamics.



The nilpotency of the asymptotic charge requires α = 0,
and the massive theory with α 6= 0 is gauge invariant but
not unitary.

Usually the gauge invariance is a sufficient condition of
unitarity, because one can pass freely from a renormalizable
gauge to the unitary one, where the spectrum includes
only physical excitations.

In the present case there is no "unitary"gauge. Even in
the gauge φa = 0, there are unphysical excitations.



The shift of the field φ produces the mass for the vector
field.

α2(Dµµ̂)∗(Dµµ̂) =
α2µ2

2
A2
µ (7)

Another term, produced by the shift

m−2(D2µ̂)∗(D2µ̂) =
µ2

2m2
[(∂µAµ)2 +

g2

2
(A2)2] (8)

makes the theory renormalizable for any α.



The shifted Lagrangian is invariant with respect to simultaneous
gauge transformations (4) and supersymmetry transformations.

Therefore the effective Lagrangian may be written in the
form

Lef = L+ s1c̄
aφa = L(x) + λaφa − c̄a(µca − ba) (9)

Here L is the shifted Lagrangian (1), and s1 is the nilpotent
operator, corresponding to the simultaneous
BRST transformation and supersymmetry transformation.



Integration over c̄, c leads to the substitution ca→ baµ−1.

For asymptotic theory the symmetry transformations are

δAaµ = ∂µb
aµ−1ε

δφa = 0

δφ0 = −b0ε
δea = ∂µA

a
µµ
−1

δe0 = −∂2φ0µ−2

δba = 0

δb0 = 0. (10)



This invariance generates a conserved charge Q and the
asymptotic states may be chosen to satisfy the condition

Q̂0|ψ >as= 0 (11)

We want to prove that the Lagrangian(9) really describes
the infrared regularization of the Yang-Mills theory. That
means for α 6= 0 it corresponds to a massive gauge invariant
theory and in the limit α = 0 it describes the usual three
dimensionally transversal excitations of the Yang-Mills field.
For simplicity we put µ = m.



In the limit α = 0 all the terms proportional to α disappear
. The remaining terms depend only on the fields A0, Ai and
corresponding canonical momenta, which coincide with
the usual Yang-Mills Hamiltonian in the diagonal Feynman
gauge, and the fields φ0, b0, e0.

The fields ba, ea play the role of the Faddeev-Popov ghosts.

By the usual arguments the longitudinal and temporal
components of the Yang-Mills field as well as the fields
ba, ea decouple, and the physical states may include only
transversal components of the Yang-Mills field and variables
corresponding to the fields φ0, b0, e0.



The part of the Hamiltonian, depending on the fields
φ0, b0, e0 is BRST exact. It can be presented as the
anticommutator of the BRST operator with some operator
Â.

Ĥ0 = [Q̂0, Â]+ (12)

Therefore the energy of any physical state, annihilated by
Q0 does not depend on these fields.



One may introduce the operator K̂ whose anticommutator
with Q̂0 is proportional to the number of unphysical modes,
generated by the operators φ0, b0, e0.

[K̂, Q̂0]+ ∼ N̂

Therefore any vector |ψ >phys, annihilated by Q̂0 may be
presented in the form

|ψ >phys= |ψ >tr +Q0|χ > (13)

and matrix element of any observable, calculated with the
help of |ψ >phys coincides with the corresponding matrix
element in the Yang-Mills theory.



CONCLUSION

Infrared regularization of the Yang-Mills theory applicable
beyond perturbation theory exists.

It may be used for the study of soliton mechanism of the
color confinement.


