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In 1972 during the mass spectrometry analysis of the samples in one of the laboratories
of CEA (France) a discrepancy  in the amount of the 235U in the samples from Oklo, Gabon 
was obtained. Normally the concentration is 0.720%, while these samples had 0.717 %.
Further investigations into this uranium deposit discovered uranium ore with a  235U 
concentration as low as 0.440 %.
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Strong neutron absorbers in reactor core

A.I. Shlyakhter, Nature 
264, 340 (1976)



Sample Fluence τ , 
кб-1

σ, кб Reference

KN50-3548 1,25 93 [9]

SC36-1408/4 0,81 73 [8]

SC36-1410/3 1,07 73 [8]

SC36-1413/3 1,43 83 [8]

SC36-1418 0,94 64 [8]

SC39-1383 0,68 66 [10, 19]

SC39-1385 0,80 69 [10, 19]

SC39-1387 1,01 36 [10, 19]

SC39-1389 1,02 64 [10, 19]

SC39-1390 0,87 82 [10, 19]

SC39-1391 1,02 82 [10, 19]

SC39-1393 0,77 68 [10, 19]

SC35bis-2126 0,92 57 [10, 19]

SC35bis-2130 1,44 81 [10, 19]

SC35bis-2134 1,21 71 [10, 19]

SC43-2421 0,85 48 [10]

SC63-1970 0,43 52 [10]

SC63-1972 0,83 58 [10]

SC63-1974 1,01 72 [10]

SC63-1976 0,88 87 [10]

SC63-1978 0,80 63 [10]

SC30-2035 0,49 70 [10]

SC30-2039 0,85 74 [10]

SC52-1472 0,23 75 [11]

69 ± 13

73 meV 62 meVrE− ≤ ∆ ≤   

Yu.V.Petrov, A.I. Nazarov, M.S. Onegin, V.Yu. 
Petrov, and E.G. Sakhnovsky. PRC 74, 064610 
(2006)
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If we increase the accuracy of 
determination up to 2% and more strictly 
determine the conditions under which the 
chain nuclear reaction had been occurring,
we can get better margin on the shift of 
the resonance.

149σ̂

For example in the work of G.R. Gould, E.I. Sharapov and S.K. Lamoreaux –
Phys.Rev. C74, 024607 (2006) the analysis of exp. data was performed. The 
authors used narrow interval of temperatures 473 – 573 К. They managed to 
narrow the allowed interval of the resonance shifting considerably:

11.6 meV    +26.0 meVrE− ≤ ∆ ≤



Sample ρH2O, g/cm3 Temperature
, K

SC 52-1472 0.67 330 – 380

SC 55-1852 0.5 320 – 410

KN 245-2674 1. 380 – 470

KN 250-2682 1. 250 – 325



SC 52-1472



-7.1 meV < ∆Er < 10.9 meV



rE

M

δα
α

∆= 1.1 MeVM = −

As a result:

8 80.7 10 / 1.0 10δα α− −− × < < ×

8 85.8 10 / 6.6 10δα α− −− × < < ×
Petrov Yu.V. et al  Phys.Rev. C74 (2006) 064610

M.S. Onegin, M.S. Yudkevich, E.A. Gomin. Mod. Phys. Lett. A 27 (2012) 1250232

Gould C.R. et al  Phys.Rev. C74 (2006) 024607

8 81.1 10 / 2.4 10δα α− −− × < < ×

Obtained from Oklo analisys α variation constraints 
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See: arXiv:1407.4099



Quintessence model of varying α

If we adopt the assumption that α depends on t, we immediately get:

2 2 2 2
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1 1 1 1
( ( ))

( ) ( ) FF F F F F F B x F F
g g t g x g

µν µν µν µν
µν µν µν µνφ→ → →

Usually function BF can be taken in the linear form:
where  

( ( )) 1 ,FB xφ ζκφ= −
2 8 .Gκ π=

The scalar field        needs to be a dynamical field with the Lagrangian density: φ

( )1
 .

2
L Vµ

µφ φ φ= ∂ ∂ −

As we have                         then 0 / ( ),FBα α φ= 0
0

0

( )
α αα ζκ φ φ

α α
−∆ ≡ = −

If affirmation of Murphy et al is right, we have  
510
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We have a great arbitrariness in choosing the form of potential V. For example,

4 ( )
0 0( ) exp( );     ( ) / ;     ( ) ( )n n nV V V M V V e

βλ κφφ λκφ φ φ φ κφ+= − = =



0( )V V e λκφφ −=

Solid line - λ = 100;
Dash line - λ = 10

Copeland E.J. et al  hep-th/0603057



Jacob D. Bekenstein theory of varying alpha

Phys. Rev. D 25 (1982) 1527

The theory was based on several postulates:

1. For constant α electromagnetism is Maxwellian and the coupling  of the vector 
potential to matter is minimal.

2. Variations of α result from dynamics.
3. Dynamics of electromagnetism and α are derivable from an invariant action.
4. The action is locally gauge invariant.
5. Electromagnetism is causal.
6. The electromagnetic action is time reversal invariant.
7. The shortest scale of length which can enter into physical theory is the Plank 

length.
8. Gravitation is described by the metric of spacetime which satisfies Einstein’s 

equations. 

2
 BH B
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l
= - 1972

C=1/4  - Hawking, 1974



0 ( )e e xµε=

Gauge invariance

Where            is the universal scale invariant function for all charged particles. ( )xµε

1/2
0( ) ( / )                       (1)L mc u u e c u Aα α

α αε= − − +

Gauge transformation law for Aµ:

,A Aα α αε ε χ→ +

From (1) the equation of motion follows:

( ) ( )2
, 0 ,,

( ) / ( / )d mu d m c e c A A uβ
α α β α βα

τ ε ε = − + −
 

( ) ( )1

,,
F A Aαβ β α βα

ε ε ε−  = −
 

then

( )1/2 41

16EMS F F g d xµν
µνπ

= − −∫

Lagrangian density                   is forbidden by the time reversal invariance
* F Fµν

µν



Dynamics of α

Lagrangian density has to be constructed from the metric and the logarithmic gradient:

1
,µε ε−

( )1/22 2 4
,

1
                     (2)

2
S c g d xµ

ε µε ε ε− −= − −∫ℏ ℓ

For dimensional reason Bekenstein proposed to use fundamental length      : ℓ

More general Lagrangian density                         is forbidden because it leads  to 
causality violation. 

2 2 ,
,f µ
µε ε ε−  ℓ

The natural restriction on     : it has to be larger than Plank length:ℓ

( )1/23 33/ 1.6 10  cm.pll G c −≥ = ≈ ⋅ℓ ℏ

As well as,     has to be smaller than 10-15 cm to pass tests of quantum   electrodynamics.ℓ

2 1 3 4
0( / ) ( )i i

mS mc e c u A x x d xµ
µε γ δ τ−   = − + −   ∑∫



Equations of motion

EM mS S S Sε= + +
Variation with respect to Aµ gives

( )1

;
4                        (3)F jµν µ

ν
ε π− =

with

( ) ( ) 1/2 3
0 /  ( )i ij e c u g x xµ µγ δ τ−

 = − − ∑

Because            is antisymmetric, we have the identity  
1Fµνε −

; 0jµ
µ =

So, the conserved charge is            which is distinct from the charge           which 
couple to Aµ in the action.

0
e∑

0e ε

The dynamics of ε is scale invariant, so we are free to make ε=1 for our present epoch. 
With this choice,        coincide  with the usual charges of particles. 0e



Running α
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Due to scale invariance of ε, scalar-field dynamic for lnε makes sense only:

2 1
ln                        (4)

8

d
F F

c d
µν

µν
σε ε
ε π

 = −  

ℓ
□

ℏ

where

( ) 1/22 1 3 ( )i imc g x xσ γ δ τ−−  = − − ∑

If we identify F0i, i=1,2,3 with the electric field E, equation (3) in the case the point located  far 
from the charges leads to:

1( ) 0Eε −∇ ⋅ =
�� ��

Which is solved by:

2/ ,                   (5)E r Q rε=
��
ɵ

Where Q could be identified with 0.e∑
Inserting (5) in (4) we can get the solution to  ε(r):

1/2 1

1
( )

cos( (4 ) )
r

Q c r
ε

π − −=
ℓ ℏ

So, we can see deviation from Coulomb law only for r ≪ ℓ



H. Sandvic, J. Barrow, J. Magueijo extension of Bekenstein theory
Phys.Rev.Lett. 88 (2002) 031302

ln ;     f Fµν µνψ ε ε= =

Total action becomes
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Varying ψ, we get the following equation:

22
eme Lψψ

ω
−=□

For pure radiation                                 .    So, during radiation domination 
epoch the variation of α was negligible. Only in matter epoch changes in α
occur. The only contribution to variation of ψ come mainly from pure 
electrostatic or magnetostatic energy. 

2 2( ) / 2 0emL E B= − =

It’s convenient to work in the following parameter:
1 1

4N Nm N F F Nµν
µνζ −=

According to J. Gasser and H. Leutwyler (Phys.Rep. 87 (1982) 77) 

0.0007,   0.00015p nζ ζ= − =



Varying the metric tensor and using Friedmann metric we get the following 
Friedmann equation:
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And the equation for ψ takes form:

2 2 2
0

2
3 ;        /m mH e e e cψ ψψ ψ ζ ρ α

ω
−+ = − =ɺɺ ɺ ℏ

We have also energy conservation equations:
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Conclusions

A theoretical framework under very general assumptions was worked out 
by Bekenstein to admit the variation of the fine structure constant. 
A characteristic length      enters into it. 
An experimental constraint rules out α variability of any kind if it is in clear 
conflict with predictions of the framework for       no shorter than the 
fundamental length lpl. 
The Oklo geophysical constraints strongly rule out all α variability.
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ℓ



Thank you for              
your attention!


