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Abstract

We describe the application of the continuous wavelet transform to
calculation of the Green functions in quantum field theory: scalar φ4

theory, quantum electrodynamics, quantum chromodynamics. The
method of continuous wavelet transform in quantum field theory pre-
sented by Altaisky [Phys. Rev. D 81, 125003 (2010)] for the scalar
φ4 theory, consists in substitution of the local fields φ(x) by those
dependent on both the position x and the resolution a. The substi-
tution of the action S [φ(x)] by the action S [φa(x)] makes the local
theory into nonlocal one, and implies the causality conditions related
to the scale a, the region causality [J.D.Christensen and L.Crane,
J.Math.Phys. (N.Y.) 46, 122502 (2005)]. These conditions make
the Green functions G (x1, a1, . . . , xn, an) = 〈φa1(x1) . . . φan(xn)〉 fi-
nite for any given set of regions by means of an effective cutoff scale
A = min(a1, . . . , an).
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Quantum Field Theory
Euclidean formulation

Let us consider a field theory with 4th power interaction

W [J] = N

∫

e
−

∫

ddx
[

1
2
(∂φ)2+m2

2
φ2+ λ

4!
φ4−Jφ

]

Dφ

The connected Green functions are given by variational derivatives
of the generating functional:

∆(n) ≡ 〈φ(x1) . . . φ(xn)〉c =
δn lnW [J]

δJ(x1) . . . δJ(xn)

∣
∣
∣
∣
J=0

In statistical sense these functions have the meaning of the n-point
correlation functions [ZJ99].
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Loop divergences
Two-point Green function

The divergences of Feynman graphs in the perturbation expansion
of the Green functions with respect to the small coupling constant
λ emerge at coinciding arguments xi = xk .
For instance, the bare two-point correlation function

∆
(2)
0 (x − y) =

∫
ddp

(2π)d
eıp(x−y)

p2 +m2

is divergent at x=y for d ≥ 2

. . .
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Measurement
Have the divergences ever been observed?

To localize a particle in an interval ∆x the measuring device
requests a momentum transfer of order ∆p∼~/∆x . φ(x) at a
point x has no experimental meaning. What is meaningful, is
the vacuum expectation of product of fields in certain region
around x
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To localize a particle in an interval ∆x the measuring device
requests a momentum transfer of order ∆p∼~/∆x . φ(x) at a
point x has no experimental meaning. What is meaningful, is
the vacuum expectation of product of fields in certain region
around x

If the particle, described by φ(x), have been initially prepared
on the interval (x − ∆x

2 , x + ∆x
2 ), the probability of registering

it on this interval is ≤ 1: for the registration depends on the
strength of interaction and the ratio of typical scales related
to the particle and to the equipment.
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Measurement
Have the divergences ever been observed?

To localize a particle in an interval ∆x the measuring device
requests a momentum transfer of order ∆p∼~/∆x . φ(x) at a
point x has no experimental meaning. What is meaningful, is
the vacuum expectation of product of fields in certain region
around x

If the particle, described by φ(x), have been initially prepared
on the interval (x − ∆x

2 , x + ∆x
2 ), the probability of registering

it on this interval is ≤ 1: for the registration depends on the
strength of interaction and the ratio of typical scales related
to the particle and to the equipment.

Statement of existence: if a measuring equipment with a given
resolution a fails to register an object, prepared on spatial
interval of width ∆x with certainty, then tuning the equipment
to all possible resolutions a′ would lead to the registration.
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Regularization

Implies the dependence on certain scale parameter
[tHV72, Wil73, Ram89]

1

p2
→

1

p2
−

1

p2 − Λ2
,

∫ Λ

Λe−δl

, gµ2ǫ

∫

d4−2ǫp . . .
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Covariance with respect to scale transformations is expressed
by renormalization group equation :
µ ∂
∂µ [Physical quantities] = 0
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each other in the same way as their sub-blocks [Kad66, Ito85]
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Regularization

Implies the dependence on certain scale parameter
[tHV72, Wil73, Ram89]

1

p2
→

1

p2
−

1

p2 − Λ2
,

∫ Λ

Λe−δl

, gµ2ǫ

∫

d4−2ǫp . . .

Covariance with respect to scale transformations is expressed
by renormalization group equation :
µ ∂
∂µ [Physical quantities] = 0

Kadanoff blocking assumes the larger blocks interact with
each other in the same way as their sub-blocks [Kad66, Ito85]

The theory based on the Fourier transform describes the
strength of the interaction of all fluctuations up to the scale
1/Λ, but says nothing about the interaction strength at a
given scale

g
∏

i

∫

|k|<Λ
e−ıkix φ̃(ki )

ddk

(2π)d
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Translation group and affine group

Translation group: G : x ′ = x + b

φ(x) = 〈x |φ〉 =

∫

〈x |k〉
ddk

(2π)d
〈k |φ〉
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Translation group and affine group

Translation group: G : x ′ = x + b

φ(x) = 〈x |φ〉 =

∫

〈x |k〉
ddk

(2π)d
〈k |φ〉

Arbitrary (locally compact) group [Car76, DM76] acting on
Hilbert space H:

1̂ =
1

Cg

∫

q∈G
U(g)|g〉dµL(q)〈g |U

∗(q)

g ∈ H is an admissible vector, such that

Cg =
1

‖g‖22

∫

G

|〈g |U(q)|g〉|2dµ(q) < ∞.
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Translation group: G : x ′ = x + b

φ(x) = 〈x |φ〉 =

∫

〈x |k〉
ddk

(2π)d
〈k |φ〉

Arbitrary (locally compact) group [Car76, DM76] acting on
Hilbert space H:

1̂ =
1

Cg

∫

q∈G
U(g)|g〉dµL(q)〈g |U

∗(q)

g ∈ H is an admissible vector, such that

Cg =
1

‖g‖22

∫

G

|〈g |U(q)|g〉|2dµ(q) < ∞.

Affine group G : x ′ = ax + b, |g ; a, b〉 = U(a, b)|g〉
(coordinate representation with L1-norm)

dµL(a, b) =
daddb

a
, U(a, b)g(x) =

1

ad
g

(
x − b

a

)
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Resolution-dependent fields

We define the resolution-dependent fields

φa(x) ≡ 〈g ; a, x |φ〉,

also referred to as scale components of φ, where 〈g ; a, x | is the
bra-vector corresponding to localization of the measuring device
around the point x with the spatial resolution a; g labels the
apparatus function of the equipment, an aperture.
If the measuring equipment has the best resolution A, i.e. all
states 〈g ; a ≥ A, x |φ〉 are registered, but those with a < A are not,
the regularization of the fields in momentum space, with the cutoff
momentum Λ = 2π/A corresponds to the UV-regularized functions

φ(A)(x) =
1

Cg

∫

a≥A

〈x |g ; a, b〉dµ(a, b)〈g ; a, b|φ〉.

The regularized n-point Green functions are

G(A)(x1, . . . , xn) ≡ 〈φ(A)(x1), . . . , φ
(A)(xn)〉c .
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Continuous Wavelet Transform

To keep the scale-dependent fields the same physical dimension as
the ordinary fields we use the CWT in L1-norm
[FPAA90, Chu92, HM98]:

φ(x) =
1

Cg

∫
1

ad
g

(
x − b

a

)

φa(b)
daddb

a
,

φa(b) =

∫
1

ad
g

(
x − b

a

)

φ(x)ddx , φ̃a(k) = g̃(ak)φ̃(k)

For isotropic wavelets g the normalization constant Cψ is readily
evaluated using Fourier transform:

Cg =

∫ ∞

0
|g̃(ak)|2

da

a
=

∫

|g̃(k)|2
ddk

Sd |k |
< ∞,

where Sd = 2πd/2

Γ(d/2) is the area of unit sphere in R
d .
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Continuous Wavelet Transform in D dimensions

G : x ′ = aR(θ)x + b, x , b ∈ R
d , a ∈ R+, θ ∈ SO(d),

where R(θ) is the rotation matrix. We define unitary
representation of the affine transform:

U(a, b, θ)g(x) =
1

ad
g

(

R−1(θ)
x − b

a

)

.

The wavelet coefficients of the function φ(x) ∈ L2(Rd) with
respect to the basic wavelet g(x) are

φa,θ(b) =

∫

Rd

1

ad
g

(

R−1(θ)
x − b

a

)

φ(x)ddx .

The function φ(x) can be reconstructed from its wavelet
coefficients:

φ(x) =
1

Cg

∫
1

ad
g

(

R−1(θ)
x − b

a

)

φaθ(b)
daddb

a
dµ(θ)
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Feynman Diagram Technique

CWT in Fourier representation

φ(x) =
1

Cg

∫ ∞

0

da

a

∫
ddk

(2π)d
e−ıkx g̃(ak)φ̃a(k)

The Feynman rules [Alt03],[Alt10]:

13 Mikhail V. Altaisky Continuous Wavelet Transform for Gauge Theories



Feynman Diagram Technique

CWT in Fourier representation

φ(x) =
1

Cg

∫ ∞

0

da

a

∫
ddk

(2π)d
e−ıkx g̃(ak)φ̃a(k)

The Feynman rules [Alt03],[Alt10]:

each field φ̃(k) will be substituted by the scale component
φ̃(k) → φ̃a(k) = g̃(ak)φ̃(k).
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Feynman Diagram Technique

CWT in Fourier representation

φ(x) =
1

Cg

∫ ∞

0

da

a

∫
ddk

(2π)d
e−ıkx g̃(ak)φ̃a(k)

The Feynman rules [Alt03],[Alt10]:

each field φ̃(k) will be substituted by the scale component
φ̃(k) → φ̃a(k) = g̃(ak)φ̃(k).
each integration in momentum variable is accompanied by
corresponding scale integration:

ddk

(2π)d
→

ddk

(2π)d
da

a
.
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Feynman Diagram Technique

CWT in Fourier representation

φ(x) =
1

Cg

∫ ∞

0

da

a

∫
ddk

(2π)d
e−ıkx g̃(ak)φ̃a(k)

The Feynman rules [Alt03],[Alt10]:

each field φ̃(k) will be substituted by the scale component
φ̃(k) → φ̃a(k) = g̃(ak)φ̃(k).
each integration in momentum variable is accompanied by
corresponding scale integration:

ddk

(2π)d
→

ddk

(2π)d
da

a
.

each interaction vertex is substituted by its wavelet transform;
for the N-th power interaction vertex this gives multiplication

by factor
N∏

i=1

g̃(aiki ).
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Scalar field example of SDP

Substitution of the CWT into field theory W [J] gives a theory for
the fields φa(x) [Alt07]:

WW [Ja] = N

∫

exp
[

−
1

2

∫

φa1(x1)D(a1, a2, x1 − x2)φa2(x2)
da1d

dx1

a1
×

×
da2d

dx2

a2
−

λ

4!

∫

V a1,...,a4
x1,...,x4 φa1(x1) · · ·φa4(x4)

da1d
dx1

a1
×

×
da2d

dx2

a2

da3d
dx3

a3

da4d
dx4

a4
+

∫

Ja(x)φa(x)
daddx

a

]

Dφa,

with D(a1, a2, x1 − x2) and V
a1,...,a4
x1,...,x4 denoting the wavelet images

of the inverse propagator and that of the interaction potential.
The Green functions for scale component fields are given by
functional derivatives

〈φa1(x1) · · ·φan(xn)〉c =
δn lnWW [Ja]

δJa1(x1) . . . δJan(xn)

∣
∣
∣
∣
J=0

.
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Diagrams: scale-dependent φ4 theory

Let us consider the contribution of the tadpole diagram to the
two-point Green function G (2)(a1, a2, p) shown in a) below. The
bare Green function is

G
(2)
0 (a1, a2, p) =

g̃(a1p)g̃(−a2p)

p2 +m2
.

a1 a1 a1a2 a2 a2

p p
q

p a3 a4
= + + ...

p

= + +

a5 a6

a)

b)
2

1 3

4 2

1

4 2

a

a5 a7

6 a8

q

+ permutations + ...

3

4

31

Feynman diagrams for the Green functions G (2) and G (4) for the resolution-

dependent fields
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Tadpole and one-loop vertex for φ4 in d = 4

g1 wavelet g(x) = − xe−x2/2

(2π)d/2
, g̃(k) = ıke−k2/2

T 4
1 (α

2) =
−4α4e2α

2
Ei1(2α

2) + 2α2

64π2α4
m2,

lim
s2≫4m2

X4(α
2) =

λ2

256π6

e−2α2

2α2

[
eα

2
− 1− α2e2α

2
Ei1(α

2)

+ 2α2e2α
2
Ei1(2α

2)
]
,

Dimensionless scale factor α≡Am, A is the minimal scale of all external

lines
Scale-decay factors for the two-point
and four-point Green functions. The
bottom curve is the graph of the tad-
pole and one-loop vertex as a func-
tion of A2; the top curve is the graph

of the vertex divided by λ
2

256π6 as a
function of A2. m = s2 = 1 is set for
both curves. Redrawn from Altaisky
PRD 81(2010)125003
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Causality and commutation relations

In standard quantum field theory the operator ordering is performed
according to the non-decreasing of the time argument in the
product of the operator-valued functions acting on vacuum state

A(tn)A(tn−1) . . .A(t2)A(t1)
︸ ︷︷ ︸

tn≥tn−1≥...≥t2≥t1

|0〉.

The quantization is performed by separating the Fourier transform
of quantum fields into the positive- and the negative-frequency
parts

φ = φ+(x) + φ−(x),

defined as follows

φ(x) =

∫
ddk

(2π)d
[
eıkxu+(k) + e−ıkxu−(k)

]
,

where the operators u±(k) = u(±k)θ(k0) are subjected to
canonical commutation relations

[u+(k), u−(k ′)] = ∆(k , k ′).
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Causality for scale-dependent fields

In case of the scale-dependent
fields, because of the presence of
the scale argument in new fields
φa,η(x), where a and η label the
size and the shape of the re-
gion centered at x , the prob-
lem arises how to order the op-
erators supported by different re-
gions. This problem was solved in
(Altaisky PRD 81(2010)125003)
on the base of the region causality

assumption [CC05].

a)

X ∆X

Y
∆Y

X

∆X

Y

b)
∆Y

Causal ordering of scale-dependent
fields. Space-like regions are drawn
in Euclidean space: a) The event re-
gions do not intersect; b) Event X is
inside the event Y
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Region Causality in Minkowski Space

t

x

X Y

Disjoint events in (t, x) plane in
Minkowski space

t

x

Y
X

Nontrivial intersection of two
events X ⊂ Y in (t, x) plane in
Minkowski space

19 Mikhail V. Altaisky Continuous Wavelet Transform for Gauge Theories



Causality for scale-dependent fields

Causality principle

The coarse acts on vacuum first

d0
0 d0

1

d1
00 d1

01 d1
10 d1

11

Table: Binary tree of operator-valued functions. Vertical direction
corresponds to the scale variable. The causal sequence of the
operator-valued functions shown in the table above is:
d0
0 , d

1
00, d

1
01, d

0
1 , d

1
10, d

1
11. As it is shown the underlined regions of different

scales do not intersect

Green’s functions are not singular at coinciding arguments – they
are projections from coarser scale to finer scale:

G
(2)
0 (a1, a2, b1 − b2 = 0) =

∫
d4p

(2π)4
g̃(a1p)g̃(−a2p)

p2 +m2
e−ıp·0,

since |g̃(p)| vanish at p → ∞.
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Dyson-Schwinger Equation

The Dyson-Schwinger equation relating the full prop-
agator with the bare propagator is symbolically drawn in the diagram

���
���
���
���

���
���
���
���

���������� �������� ���������� ������= +
a a aay ax ay ax y a x1 2

The corresponding integral equation can be written as

G(x − y , ax , ay ) = G (x − y , ax , ay ) +

∫
da1

a1

∫
da2

a2

∫

dx1dx2×

× G (x − x2, ax , a2)P(x2 − x1, a2, a1)G(x1 − y , a1, ay ),

where P(x2 − x1, a2, a1) denotes the vacuum polarization operator
if G is the massless boson, or the self-energy diagram otherwise.

G̃ax ,ay (p) = G̃ax ,ay (p) +

∫
da1

a1

∫
da2

a2
G̃ax ,a2(p)P̃a2,a1(p)G̃a1,ay (p).
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Wavelet transform in Minkowski space

Light-cone coordinates (x+, x−, x , y)

x± = t±z√
2
, x⊥ = (x , y)

The rotation matrix has a block-diagonal form

M(η, φ) =







eη 0 0 0
0 e−η 0 0
0 0 cosφ sinφ
0 0 − sinφ cosφ







,

so that M−1(η, φ) = M(−η,−φ).
We can define the wavelet transform in light-cone coordinates in
the same way as in Euclidean space using the representation of the
affine group

x ′ = aM(η, φ)x + b
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Definition of basic wavelets in Minkowski space

In contrast to wavelet transform in Euclidean space, where the
basic wavelet g can be defined globally on R

d , the basic wavelet in
Minkowski space is to be defined separately in four domains
impassible by Lorentz rotations:

A1 : k+ > 0, k− < 0;A2 : k+ < 0, k− > 0;

A3 : k+ > 0, k− > 0;A4 : k+ < 0, k− < 0,

where k is wave vector, k± = ω±kz√
2
. Whence we have four separate

wavelets in these four domains.
Thus the wavelet coefficiens are

W i
abηφ =

∫

Ai

eık−b++ık+b−−ık⊥b⊥ f̃ (k−, k+, k⊥)

g̃(aeηk−, ae
−ηk+, aR

−1(φ)k⊥)
dk+dk−d2k⊥

(2π)4
.
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Choice of basic wavelet

Let us introduce a localized wave packet in Fourier space
g̃(t, k) = e−ıtk−k2/2. It is a gaussian wave packet at initial time
t=0. At finite t it can be approximated by

g̃(t, k) = g̃0(k) +
t

1!
g̃1(k) +

t2

2!
g̃2(k) + O(t3),

where g̃n(k) = dn

dtn
g̃(t, k)

∣
∣
t=0

are responsible for the shape of the
packet at the times at which 1, 2 or n excitations are significant;
with g1 being the first excitation.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-4 -2  0  2  4

g1(x)

The only restriction is the
finiteness of the wavelet cutoff
function

f (x) =
1

Cg

∫ ∞

x

|g̃(a)|2
da

a
, f (0) = 1
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Quantum electrodynamics: one loop

In one-loop approximation the radiation corrections in QED come
from three primitive Feynman graphs: fermion self-energy

Σ(p) = −e2
∫

d4q

(2π)4
γµ

−ı

/p − /q +m
γν

δµν
q2

,

gives the corrections to the bare electron mass m0 related to
irradiation of virtual photons;
vacuum polarization operator

Πµν(p) = −e2
∫

d4q

(2π)4
Sp[γµ

1

/p + /q +m
γν

1

/q +m
]

contributes to the Lamb shift of the atom energy levels;
and the vertex function

Γρ(p, q) = −ıe3
∫

d4f

(2π)4
γτ

1

/p + 6f +m
γρ

1

6f + /q +m
γσ

δτσ
f 2

determines the anomalous magnetic moment of the electron
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Electron self-energy in scale-dependent theory

p/2+q

p/2−qp,a p,a’A = min(a, a′).

Σ(A)(p)

g̃(ap)g̃(−a′p)
= −ıe2

∫
d4q

(2π)4

FA(p, q)γµ

[
/p

2 − /q −m
]

γµ
[(

p
2 − q

)2
+m2

] [
p
2 + q

]2
,

For the isotropic wavelet FA(p, q) = f 2(A(p2 − q))f 2(A(p2 + q))

Σ(A)(p)

g̃(ap)g̃(−a′p)
= −ıe2

∫
d4y

(2π)4
FA(p, |p|y)×

×
/p + 4m − 2|p|/y

[

y2 + 1
4 − y cos θ − m2

p2

] [
y2 + 1

4 + y cos θ
] .

where θ = ∠(p,q) is the Euclidean angle; y = q/|p|
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Electron self-energy, g1 wavelet

In high energy limit, p2 ≫ 4m2, the contribution of last term in
the numerator vanishes for the symmetry, and the diagram can be
easily integrated in angle variable:

Σ(A)(p)

g̃(ap)g̃(−a′p)
= −

ıe2

4π2
R1(p)(/p + 4m) where:

R1(p) =

∫ ∞

0
dyyFA(p, |p|y)

[

1−

√

1−
1

β2(y)

]

,

β(y) = y +
1

4y
.

The integral R1(p) is finite for any wavelet cutoff function. For the
g1 wavelet we get

R1(p) =
1

8A2p2

(
2A2p2Ei1(A

2p2)− 4A2p2Ei1(2A
2p2)

− e−A2p2 + 2e−2A2p2
)

27 Mikhail V. Altaisky Continuous Wavelet Transform for Gauge Theories



Vacuum polarization diagram

p,a p,a’

q+p/2

q−p/2

Π
(A)
µν (p)

g̃(ap)g̃(−a′p)
= −e2

∫
d4q

(2π)4
FA(p, q)×

×
Sp(γµ(/q + /p/2−m)γν(/q − /p/2−m))

[(q + p/2)2 +m2] [(q − p/2)2 +m2]

= −4e2
∫

d4q

(2π)4
FA(p, q)×

×
2qµqν −

1
2pµpν + δµν(

p2

4 − q2 −m2)
[
(q + p

2 )
2 +m2

] [
(q − p

2 )
2 +m2

] .
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Π
(A)
µν (p)

g̃(ap)g̃(−a′p)
=

(

δµν −
pµpν

p2

)

π
(A)
T + X (A) pµpν

p2

where

π
(A)
T = −

e2

3π2
m2p2

∫ ∞

0
dyyFA(mp,mpy)

[

y2+

+




1−

√
√
√
√
√

1
16 + y4 + 1

p4
− y2

2 + 1
2p2

+ 2y2

p2

(
1
4 + y2 + 1

p2

)2






×

(
5

8
−

4

p2
−

2

p4
− 2y2

(

1 +
2

p2

)

− 2y4
)]

X (A) =
e2m2p2

π2

∫ ∞

0
dyyFA(mp,mpy)

×
[

y2 −




1−

√
√
√
√
√

1
16 + y4 + 1

p4
− y2

2 + 1
2p2

+ 2y2

p2

(
1
4 + y2 + 1

p2

)2






(

4 y2 2 1
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Result for g1 wavelet at large p2 ≫ 4

For g1 wavelet the regularizing function

FA(p, q) = exp
(
− A2p2 − 4A2q2

)
.

Hence for large p2 ≫ 4 the integral can be evaluated by
substitution y2 = t

π
(A)
T = −

e2

6π2
m2p2

{e−a2p2

8a6p6
(
4a4p4 − a2p2 − 1

)
+

e−2a2p2

8a6p6

×
(
1− 4a4p4 + 2a2p2

)
−

1

2
Ei1

(
a2p2

)
+ Ei1

(
2a2p2

)}

.

Similarly, for the longtitudinal term

XA =
e2m2p2

16π2

e−a2p2(a2p2 − 1 + e−a2p2)

a6p6
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Vertex function

q,r

k−fp−f

f

k,ap,a’

α

µ

β

−ıe
Γ
(A)
µ,r

g̃(−pa′)g̃(−qr)g̃(ka)
= (−ıe)3

∫
d4l

(2π)4
γαG (p − f )γµ×

×G (k − f )γβDαβFA(p − f )FA(k − f )FA(f ).

The explicit substitution with photon propagator taken in Feynman
gauge gives

ıe
Γ
(A)
µ,r

g̃(−pa′)g̃(−qr)g̃(ka)
= (−ıe)3

∫
d4f

(2π)4
γα

/p − 6f −m

(p − f )2 +m2

×γµ
/k − 6f −m

(k − f )2 +m2
γα

1

f 2
FA(p − f )FA(k − f )FA(f )
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Ward-Takahashi Identities

The standard procedure of the variation of action with a gauge
fixing term leads to the equations (Albeverio,Altaisky, 2009):

qµΓµa4a3a1(p, q, p + q) =

∫
da2

a2
G−1
a1a2

(p + q)M̃a2a3a4(p + q, q, p)

−

∫
da2

a2
M̃a1a3a2(p + q, q, p)G−1

a2a4
(p),

where

M̃a1a2a3(k1, k2, k3) = (2π)dδd(k1 − k2 − k3)g̃(a1k1)g̃(a2k2)g̃(a3k3).
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Quantum chromodynamics
Vacuum polarization operator – gluon loop

Π
(A)
AB,µν(p) = −

g2

2
f ABC f BDC

∫
d4l

(2π)4
Nµν(l , p)FA(l + p, l)

l2(l + p)2
,

This integral can be easily evaluated in infrared limit [AK13] where
ordinary QCD is divergent:

Π
(A,g1)
AB,µν(p → 0) = −g2f ACD f BDC

∫
d4q

(2π)4
e−4A2q2

q4
[5qµqν+q2δµν ].

Making use of isotropy we get

Π
(A,g1)
AB,µν(p → 0) = −

9g2f ACD f BDCδµν
32

∫ ∞

0
qdqe−4A2q2

= −
9g2f ACD f BDCδµν

256A2
.
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Gauge invariance

Abelian theory

Aµ(x) → Aµ(x) + ∂µω(x)

In view of linearity of CWT:
Aµ(x);a → Aµ(x);a + ∂µωa(x)

Non-Abelian Theory

Aµ(x) → U(x)Aµ(x)U
+(x)− ıU(x)∂µU

+(x)

Nonlinear terms give commutator between different scales and we
cannot set the gauge invariance over given scale

f ACBTB

∫
1

ad
g

(
x − b

a

)

ωA
a (b)

dadb

a

1

a′d
g

(
x − b′

a′

)

AC
µ;a′(b

′)
da′db′

a′
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Instantons

Pure gauge Aµ(x) = ıU∂µU
+

Instanton solution

Aµ(x) =
2ρ2

x2 + ρ2
xνΛµν

Cannot be used as basic wavelet for the nonvanishing behavior of
its Fourier image at k → 0. However the integration over affine
group is the same as for wavelets.
Quantization with constraints: Bulut and Polyzou. 2013; J.-P.
Gazeau et al. 2013;
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Applications: Scale-dependent corrections to Casimir force

This gives the Casimir energy

E(a, δ) = −
~cπ2

720a3

[

1 +
2

7

(
2πδ

a

)2

+

+
3

28

(
2πδ

a

)4

+ . . .
]

,

and the Casimir force

F(a, δ) = −
~cπ2

240a4

[

1 +
10

21

(
2πδ

a

)2

+

+
1

4

(
2πδ

a

)4

+ . . .
]

,

Deviation of Casimir force between two plates
of unit area in vacuum. The solid line denotes
the “exact” Casimir force (δ = 0), the dashed
line denotes the scale-dependent Casimir force
with δ/a = 0.1
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