

Searches for dark matter in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS experiment at the LHC

Workshop on Precision Physics and Fundamental Physical Constants, I-5 December 2014, Dubna, Russia

Lidia Smirnova M.V. Lomonosov Moscow State University, Moscow, Russia

Top result at the LHC

New particle discovery in 2012 and its identification with Higgs boson of Standard model is the top achievement of experiments ATLAS and CMS at the Large Hadron Collider in Run I Nobel prize 2013 in physics demonstrates this

statement :

François Englert (left) and Peter Higgs at CERN on 4 July 2012, on the occasion of the announcement of the discovery of a Higgs boson by the ATLAS and CMS experiments (Image: Maximilien Brice/CERN)

What could be the next step

- Search for new particles is the direct search for new physics beyond the standard model
- Dark matter is the part of this search program
- Experiments at the LHC may provide more direct clues about dark matter

Dark matter in universe

Estimated distribution of dark matter and dark energy in the universe. Image Credit: NASA

Many theories say the dark matter particles would be light enough to be produced at the LHC. This image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520. The result could present a challenge to basic theories of dark matter.

ATLAS detector

- tracker: $\sigma(p_T)/p_T \sim 5 \cdot 10^{-4} p_T + 0.01$
- ECal: $\sigma_{_{\rm E}}/{\rm E} \sim 10\%/{\rm \sqrt{E[GeV]}} \oplus 0.7\%$
- HCal: $\sigma_{_{\rm E}}/{\rm E} \sim 50\%/\sqrt{{\rm E}[{\rm GeV}] \oplus 3\%}$
- trk+Mu: 2%@50GeV-10%@1TeV

Missing energy measurement

Distribution of Etmiss as measured in a data sample of Z(ee) –left, and Z(μμ) – right, in comparison with MC. Collider searches for dark matter Popular dark matter candidate – Weakly Interacting Massive Particle (WIMP, χ) Production and detection at LHC:

Reaction
$$pp \rightarrow \chi \overline{\chi} + X$$

These studies are sensitive to low DM masses (m $\chi \le 10$ GeV), and therefore provide information complementary to direct DM searches, which are most sensitive to larger DM masses.

<u>Outlines</u>

Results in pp collisions at $\sqrt{s} = 8$ TeV:

- Search with photon and E_{tmiss} (arXiv:1411.1559, 6 Nov.2014)
- Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum – Phys.Rev.Lett. 112, 041802 (2014)
- Search for dark matter in events with a Z boson and missing transverse momentum – Phys.Rev.D 90,012004 (2014)
- Search for dark matter in events with heavy quarks and missing transverse momentum – arXiv:1410.4031, subm. to EPJC
- Search for new particles in events with one lepton and missing transverse momentum – JHEP 09 (2014) 037
- Searches with SUSY

Events with photon and E_{tmiss} (arXiv:1411.1559, 6 Nov.2014)

Hadronically decaying W or Z boson and missing

transverse momentum

m_{iet} [GeV]

Distribution of m_{jet} in the data and for BG in the SR with $E_T^{miss} > 350 \text{ GeV}$ (top) and $E_T^{miss} > 500$ GeV (bottom). Also shown are the combined mono-W-boson and mono-Z-boson signal distributions with $m_x=1$ GeV and $M_*=1$ TeV for the D5 destructive and D5 constructive cases, scaled by factors defined in the legends.

Observed limits on the effective theory mass scale M_{*} as a function of m_x at 90% CL from combined mono-W-boson and mono-Z-boson signals for various operators. For each operator, the values below the corresponding line are excluded.

Dark matter in events with a Z boson and

Simulated samples of ZZ background, effective field theories of dark-matter interaction with a qq initial state (D1, D5, and D9 and interaction with a Z/gamma* intermediate state, and the scalar-mediator theory.

WZ ZZ→llvv ATLAS W/Z+jets WW/Top quark //// Systematic Unc င္ဟ 10⁶ ____ D1, M=0.050 TeV ZZχχ max. γ, M=0.7 TeV ⁵√10⁵ Entries 10⁴ 10³ -----η Mediator, m_=1 TeV, f=6 L=20.3 fb⁻¹ \s=8 TeV 10 m_v=200 GeV 10 10 10-2 Data/MC 1.2 0.8 0.6 100 150 200 250 300 350 400 450 500 Ō 50 E^{miss}_T [GeV]

🔶 Data

M ET distributions after all event selections other than the MET thresholds for the observed data;

90% C.L. lower limits on the mass scale, M* of considered EFTs as a function of $m\chi$ For each operator, the values below the corresponding line are excluded.

_م⊸10⁻³¹ L 10⁻³² L 10⁻³³ L 10⁻³³ L 10⁻³⁴ S 10⁻³⁵ E 10⁻³¹ ATLAS ATLAS D9 ATLAS 8 TeV W/Z had.(γχ D5 ATLAS 8 TeV W/Z had.(χχ) D1 ATLAS 7 TeV jet(χχ) D5 ATLAS 7 TeV jet(χχ) CoGeNT 2010 D9 ATLAS 7 TeV jet(xx) L=20.3 fb 01 u 10 10 L=20.3 fb⁻¹ COUPP 2012 SIMPLE 2011 s=8 TeV 90% C.L s=8 TeV 90% C.L Picasso 2012 CDMS 2014 ຊູ 10 ວິນ 10 ----- IceCube W⁺W XENON100 2012 IceCube b b 111X 2014 u0 10⁻³⁸ 10⁻³⁹ 10⁻⁴⁰ 10 10⁻⁴¹ 10 spin dependent 10 10⁻⁴³, spin independent 10 10^{2} 10 0ُ [GeV] ش 10 10 m [GeV] b а

Observed 90% C.L. upper limits on the chi-nucleon scattering cross section as a function of m_{chi} for the spin-dependent (a) and spin-independent (b) D9 effective operators mediating the interaction of the dark-matter particles with the go initial state.

Events with heavy quarks and missing transverse momentum

Search for new particles in events with one lepton and missing transverse momentum

Direct pair-production

Leptonically decaying W recoiling against dark matter

Pros:

Lepton allows highly efficient triggering Low and reasonably well understood SM background

Alaettin Serhan Mete UC Irvine

25-27 September 2014, Merton College, Oxford

Strategy for searching:

• Select events with exactly one high p_T/E_T lepton (muon or electron)

[HEP 09 (2014) 037

- ATLAS : E_T (p_T) > 125 (45) GeV in the e (μ)-channel
- Exploit pT^{lepton} vs ET^{miss} balance by requiring:
 - ATLAS : E_T^{miss} > 125 (45) GeV in the e (μ)-channel
- Use transverse mass, m_T = [2·p_T^{lepton}·E_T^{miss}(1-cosφ_{lν})]^{1/2}, as the main discriminator:
 - ATLAS : Perform "single-bin counting experiment" using events with m_T ≥ m_{T,min}
 - m_{T,min} is optimized for each model separately for best expected sensitivity
 - Same thresholds are used in both e/μ-channels

Experimental data with muons (right) and electrons (left) for $m_T > 252 \text{ GeV}$ Open histograms are W' $\rightarrow \ell v$ signals added to the background

Results (I)

Expected and observed mass limits for W' and W*

	$m_{W'}$	[TeV]	m_{W^*} [TeV]		
Decay	Exp.	Obs.	Exp.	Obs.	
$e\nu$	3.13	3.13	3.08	3.08	
μu	2.97	2.97	2.83	2.83	
Both	3.17	3.24	3.12	3.21	

No significant excess above SM expectations

Results (2)

Figure 4. Observed limits on the DM-nucleon scattering cross-section as a function of m_{χ} at 90% CL for spin-independent (left) and spin-dependent (right) operators in the EFT. Results are compared with the previous ATLAS searches for hadronically decaying W/Z [19], leptonically decaying Z [20], and $j + \chi \chi$ [15], and with direct detection searches by CoGeNT [75], XENON100 [76], CDMS [77, 78], LUX [79], COUPP [80], SIMPLE [81], PICASSO [82] and IceCube [83]. The comparison between direct detection and ATLAS results is only possible within the limits of the validity of the EFT [84].

Experimental summary of SUSY Dark Matter searches at the LHC

Dark Matter @ LHC 2014 25-27/09/2014, Merton College, Oxford

Yu Nakahama (CERN/KEK) for ATLAS and CMS collaborations

- Search for LSP at the LHC
 - Direct LSP pair production is not accessible due to low cross-sections.
 - The LSP is typically produced at the end of cascade decays of heavier sparticles.

Constrains on the LSP mass depends on the considered mass spectrum.

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHEP 2014

01									$v^{3} = r, 0 + 0 v$
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} dt [\mathbf{f}]$	b ⁻¹]	Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{10}^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{11}^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{11}^1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu \tilde{\chi}_{11}^0 \\ GMSB (\ell NLSP) \\ GMSB (\ell NLSP) \\ GGM (bino NLSP) \\ GGM (bino NLSP) \\ GGM (mino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GFavitino LSP \\ \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 4.8 4.8 5.8 10.5	\tilde{q}, \tilde{g} \tilde	- 1	1.7 TeV $m(\tilde{q})=m(\tilde{g})$ eV any $m(\tilde{q})$ a ny $m(\tilde{q})$ a ny $m(\tilde{q})$ a ny $m(\tilde{q})$ b $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ 3 TeV $m(\tilde{\chi}_{1}^{0})=0$ GeV eV $m(\tilde{\chi}_{1}^{0})=0$ GeV t $an\beta < 15$ 1.6 TeV $tan\beta > 20$ TeV $m(\tilde{\chi}_{1}^{0})=50$ GeV $m(\tilde{\chi}_{1}^{0})=50$ GeV	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
<i>§ med.</i>	$\tilde{s} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ $\tilde{s} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$ $\tilde{s} \rightarrow t \bar{t} \tilde{\chi}_{1}^{1}$ $\tilde{s} \rightarrow b \bar{t} \tilde{\chi}_{1}^{1}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	25 25 26 29 29	1.25 1.1 Te\ 1.3 1.3	TeV $m(\tilde{\xi}_1^0) < 400 \text{ GeV}$ / $m(\tilde{\xi}_1^0) < 350 \text{ GeV}$ 4 TeV $m(\tilde{\xi}_1^0) < 400 \text{ GeV}$ TeV $m(\tilde{\xi}_1^0) < 300 \text{ GeV}$	1407.0600 1308.1841 1407.0600 1407.0600
direct production	$\begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^\pm \\ \tilde{t}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^\pm \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow \tilde{\chi}_1^\pm \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{neavy}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{neavy}) \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}) \\ \tilde{t}_1 \tilde{t}_1 \rightarrow \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}) \\ \tilde{t}_1 \tilde{t}_1 \rightarrow \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 b 1 b 2 b nono-jet/c-1 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3	$ \vec{b}_1 \\ \vec{b}_1 \\ \vec{c}_1 \\ \vec{c}_2 \\ $	100-620 GeV 275-440 GeV 110 <mark>-167 GeV</mark> 130-210 GeV 215-530 GeV 210-640 GeV 260-640 GeV 90-240 GeV 150-580 GeV 290-600 GeV	$\begin{split} & m(\tilde{\chi}_{1}^{0}) < 90 \; \text{GeV} \\ & m(\tilde{\chi}_{1}^{+}) = 2 \; m(\tilde{\chi}_{1}^{0}) \\ & m(\tilde{\chi}_{1}^{+}) = 2 \; m(\tilde{\chi}_{1}^{0}) \\ & m(\tilde{\chi}_{1}^{0}) = 5 \; \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = m(\tilde{\iota}_{1}) \cdot m(W) - 50 \; \text{GeV}, \; m(\tilde{\iota}_{1}) < < m(\tilde{\chi}_{1}^{\pm}) \\ & m(\tilde{\chi}_{1}^{0}) = 1 \; \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \; \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \; \text{5GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \; \text{5GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 150 \; \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \; \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \; \text{GeV} \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
E W direct	$ \begin{array}{c} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{0}^{\dagger} \rightarrow \tilde{\chi}_{1}^{\dagger} \nu \tilde{\ell}_{L} (\ell \tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{0}^{0} \rightarrow W \tilde{\chi}_{0}^{0} Z \tilde{\chi}_{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{0}^{0} \rightarrow W \tilde{\chi}_{0}^{0} L \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{\dagger} \tilde{\chi}_{0}^{0} \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \tilde{\ell} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{0$	90-325 GeV 140-465 GeV 100-350 GeV 700 GeV 420 GeV 285 GeV 620 GeV	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}0 \text{ GeV} \\ & m(\tilde{\chi}_{1}^{0}){=}0 \text{ GeV}, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}){=}0 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, sleptons decoupled \\ & m(\tilde{\chi}_{1}^{0}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0})) \\ \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-Ilveo particles	$ \begin{array}{l} \text{Direct}\tilde{\chi}_1^+\tilde{\chi}_1^-\text{prod., long-lived}\tilde{\chi}_1^+\\ \text{Stable, stopped}\tilde{g}\text{R-hadron}\\ \text{GMSB, stable}\tilde{\tau},\tilde{\chi}_1^0{\rightarrow}\tilde{\tau}(\tilde{e},\tilde{\mu}){+}\tau(e,\\ \text{GMSB},\tilde{\chi}_1^0{\rightarrow}\gamma\tilde{G},\text{long-lived}\tilde{\chi}_1^0\\ \tilde{q}\tilde{q},\tilde{\chi}_1^0{\rightarrow}qq\mu(\text{RPV}) \end{array} $	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	$ \begin{array}{c} \tilde{x}_{1}^{\pm} \\ \tilde{g} \\ \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{0} \\ \tilde{q} \end{array} $	270 GeV 832 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^{0}) = 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) = 0.2 \; \mathrm{ns} \\ m(\tilde{\chi}_1^{0}) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; \mathrm{s} \\ 10 < \tan \beta < 50 \\ 0.4 < \tau(\tilde{\chi}_1^{0}) < 2 \; \mathrm{ns} \\ 1.5 < c\tau < 156 \; \mathrm{mm}, \; BR(\mu) = 1, \; m(\tilde{\chi}_1^{0}) = 108 \; GeV \end{array}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{l}_1 t, \tilde{l}_1 \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	$ \vec{\tilde{v}}_{\tau} $ $ \vec{\tilde{v}}_{\tau} $ $ \vec{\tilde{q}}, \vec{\tilde{g}} $ $ \vec{\tilde{\chi}}_{1}^{\pm} $ $ \vec{\tilde{\chi}}_{1}^{\pm} $ $ \vec{\tilde{g}} $ $ \vec{\tilde{g}} $ $ \vec{\tilde{g}} $	1.1 Te\ 1.3 750 GeV 450 GeV 916 GeV 850 GeV	1.61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ 5 TeV $m(\hat{q})=m(\hat{g}), c\tau_{LSP}<1 \text{ mm}$ $m(\tilde{\chi}_{1}^{0})>0.2\timesm(\tilde{\chi}_{1}^{1}), \lambda_{121}\neq0$ $m(\chi_{1}^{0})>0.2\timesm(\tilde{\chi}_{1}^{1}), \lambda_{133}\neq0$ BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> ,μ (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 350-800 GeV 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data P	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} =$ full	8 TeV data		<u> </u>	10 ⁻¹ 1	Mass scale [TeV]	18

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminar

 $\sqrt{s} = 7, 8 \text{ TeV}$

Summary of ATLAS searches for electroweak production of charginos and neutralinos (left)

Exclusion limits at 95% CL for 8 TeV analyses in the (m(gluino), m(neutralino I)) plane for the *Gtt*simplified model where a pair of gluinos decays promptly via offshell stop to four top quarks and two lightest neutralinos (LSP) (right)

19

Model independent general search for new phenomena ATLAS-CONF-2014-006 4 March, 2014

The data collected with the ATLAS experiment during the year 2012 in *pp* collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 20.3 fb⁻¹, have been used to search for deviations from the SM prediction at high *p*_T with a model independent approach. Event topologies involving isolated electrons, muons, photons, jets, *b*-jets and E_{T}^{miss} have been systematically classified. All event classes have been scanned looking for deviations from the SM prediction in the effective mass, the visible invariant mass and the missing transverse momentum distributions. No significant excess above the SM prediction has been observed.

We look forward for new data at energy 13-14 TeV in Run 2!