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MOTIVATION

Recent studies of Cosmic Microwave Background (CMB). Experimental accuracy

0.1%

Cosmological recombination epoch: ∼ 400000 years after BB (Early Universe)

Radiation escape from the matter

One-photon transition do not allow ESCAPE

Two-photon decay of the 2s level

Ya. B. Zel’dovich, V. G. Kurt and R. A. Syunyaev, Zh. Eksp. Teor. Fiz. 55, 278

(1968)

P. J. E. Peebles, Astrophys. J. 153, 1 (1968)

Two-photon decay of ns(n > 2), nd levels

V. K. Dubrovich and S. I. Grachev, Astronomy Letters 31, 359 (2006)

J. Chluba and R. A. Sunyaev, Astronomy and Astrophysics 480, 629 (2008)

C. M. Hirata, Phys. Rev. D 78, 023001 (2008)

In total 0.4% from the contribution of 2s



PROBLEMS AND CONTROVERSIES

ns (n > 2) → 1s + 2γ, nd → 1s transitions unlike 2s → 1s + 2γ always

contain CASCADES.

CASCADES do not allow for the ESCAPE

1st PROBLEM: separation of CASCADE contribution.

Whether the CASCADE contribution to ns → 1s, nd → 1s transitions is

separable?

Answer: YES

U. D. Jentschura, J. Phys. A40, F223 (2007)

U. D. Jentschura and A. Surzhykov, Phys, Rev. A77, 042507 (2008)

Answer: NO

L. Labzowsky, D. Solovyev and G. Plunien, Phys. Rev. A80, 062514 (2009)

Separation of CASCADES is AMBIGUOUS

One has to evaluate the probability of ESCAPE without this separation



2nd PROBLEM: regularization of CASCADE contribution

Example: 3s → 1s + 2γ transition

Cascade: 3s → 2p + γ → 1s + 2γ

Total transition rate:

W 2γ
3s−1s =

1

2

ω0∫

0

dW 2γ
3s−1s(ω)

dW3s−1s(ω) - differential transition rate, ω0 = E3s − E1s

Contributions:

W 2γ
3s,1s = W

(cascade)
3s,1s + W

(pure2γ)
3s,1s + W

(interference)
3s,1s

Two links of the cascade (two resonances):

W
2γ(cascade)
3s,1s = W

2γ(resonance1)
3s−2p−1s + W

2γ(resonance2)
3−2p−1s

ωres1 = E3s − E2p

ωres2 = E2p − E1s



Numerical results:
1

α
6dW(ω) (a.u.)

[ω] - windows

[ω] − lΓ, l = 105 − 107, Γ - width of the resonance

Order of magnitude:

Cascade contribution: ∼ mα(αZ)4 r.u., mα2 r.u. = a.u

”Pure two-photon” contribution: ∼ mα2(αZ)6 r.u.

Interference contribution: ∼ mα2(αZ)6 r.u.



Estimates for the cascade contributions

[ω] = ∞
Then analytical expressions can be obtained

QED approach [Labzowsky, Solovyev and Plunien 2009]

dW
2γ(resonance1)
3s−2p−1s (ω) =

(Γ3s + Γ2p)

Γ2p

W 1γ
3s−2pW

1γ
2p−1sdω

(ω − ωres1)2 + 1
4
(Γ3s + Γ2p)2

dW
2γ(resonance2)
3s−2p−1s (ω) =

W 1γ
3s−2pW

1γ
2p−1sdω

(ω − ωres2)2 + 1
4
Γ2

2p

QM approach (Quantum Mechanical Phenomenological Approach)

J. Chluba and R. A. Sunyaev, Astronomy and Astrophysics 480, 629 (2008)

S.G. Karshenboim, V.G. Ivanov and J.Chluba, arxiv:1104.486v1 [physics.atom-ph]

26 Apr. 2011

dW
2γ(resonance1)
3s−2p−1s (ω) =

W 1γ
3s−2pW

1γ
2p−1sdω

(ω − ωres2)2 + 1
4
Γ2

2p

numerical difference: Γ3s/Γ2p ∼ 0.01, Γ3d/Γ2p ∼ 0.1



Total transition rate [ω] = ∞ (pole approximation)

1
2

ω0∫
0

dW 2γ(resonance1) ≃ 1
2

∞∫
0

W 1γ
3s−2p = 1

2
W 1γ

3s−2p ≃ 1
2
Γ3s

W
2γ(cascade)
3s−1s ≃ Γ3s

The same result follows from the QM approach

W 2γ
3s−1s(QED) = W 2γ

3s−1s(QM)

However:

1. This result in approximate

2. ESCAPE follows from the ”pure” and ”interference” contributions, ”interference”

also depends on Γ3s + Γ2p

3. In astrophysical equations dW 2γ can be converted with something, then

W 2γ
3s−1s(QED) 6= W 2γ

3s−1s(QM)



QED derivation of the Lorentz profile for 1-photon transition

We start with process of the the RESONANCE photon scattering on the RESO-

NANCE photon scattering on the ground state.

Approximation for hydrogen atom: nonrelativistic, only E1 photons included

Consider only np − 1s transitions

The Feynman graph

S = −2πiUδ(ω − ω′), ωres = Enp − E1s

In the resonance approximation the scattering amplitude can be factorized to the

emission and absorption parts.



If we are interested in emission process, we attach the energy denominator to the

emission part.

U
(2)sc
1s =

(Aem
ω )1snp(A

ab
ω )np1s

ω + E1s − Enp

U
(2)em
1s =

(Aem
ω )1snp

ω + E1s − Enp



Insertions of the electron self-energy corrections

F. Low, Phys. Rev. 88, 53 (1952)

U
(4)sc
1s = U

(2)sc
1s

(Σ̂(ω + E1s))npnp

ω + E1s − Enp

The infinite sum of the insertions can be converted to the geometric progression

U sc
1s =

(Aem
ω )1snp(A

ab
ω )np1s

ω + E1s − Enp − (Σ̂(ω + E1s))npnp



In the resonance approximation

Σ̂(ω + E1s)) = Σ̂(Enp)

(Σ̂(Enp))np,np = LSE
np −

i

2
Γnp

Uem
np−1s =

(Aem
ω )1snp

ω + E1s − Enp − i
2
Γnp

,

neglecting the Lamb shift

After integration over the photon emission directions and summation over photon

polarizations

dW
(1γ)
np−1s(ω) =

1

2π

W 1γ
np−1sdω

(ω + E1s − Enp)2 + 1
4
Γ2

np

Γnp =
∑
n′<n

W 1γ
np−n′p

∞∫

0

W 1γ
np−1s(ω) = bnp−1s =

W 1γ
np−1s

Γnp



Insertions in the outer electron lines:

These insertions produce singularities, not connected with the frequency reso-

nances.

These singularities can be regularized by the introduction of Gell-Mann and Low

adiabatic S-matrix

[M. Gell-Mann and F. Low, Phys. Rev. 84, 350(1951)]

Hint → Hinte
−λ|t|

λ → 0 in the end of calculations Then the infinite sequence of insertions can be

converted to the exponent.

[O. Yu. Andreev, L.N. Labzowsky and G, Plunien Phys. Rev. A 032515 (2009)]

lim
λ→0

U sc
1s(λ) =

(Aem
ω )1snp(A

ab
ω )np1s

ω + E1s + LSE
1s − Enp − LSE

np + i
2
Γnp

e− i
λ(Σ̂(E1s))1s1s)

with this limit the Lamb shift for the ground state enters the energy denominator. For

the ground state Σ̂(E1s))1s1s is pure real. Then

lim
λ→0

|e− i
λ(Σ̂(E1s))1s1s)| = 1

For the excited states lim
λ→0

|U sc
1s(λ)|2 = 0



Two-photon 3s − 1s transition

Two photon resonance scattering process (should occur during the cosmological

recombination epoch)

Energy conservation: ω1i + ω2i = ω1f + ω2f

Resonance condition: ω1i + ω2i = E3s − E1s

Resonance approximation: n2 = 3s



Emission amplitude in the resonance approximation

Uem
3s−1s(ωωf1

, ωωf2
) =

∑
n1

(Aem
ωf2

)1sn1(A
em
ωf1

)n13s

(ωf2 + E1s − En1)(ωf2 + ωf1 + E1s − E3s)
+ (f1 ⇆ f2)

after insertions of the electron self-energy in the central propagator

Uem
3s−1s(ωωf1

, ωωf2
) =

∑
n1

(Aem
ωf2

)1sn1(A
em
ωf1

)n13s

(ωf2 + E1s − En1)(ωf2 + ωf1 + E1s − E3s − i
2
Γ3s)

+

+(f1 ⇆ f2)

cascade contribution: n1 = 2p
Resonance frequencies:

ωres1 = E3s − E2p upper link

ωres2 = E2p − E1s lower link



Electron self-energy insertions in the upper propagator

Cascade contribution

Uem,cascade
3s−1s (ωωf1

, ωωf2
) =

(Aem
ωf2

)1s2p(A
em
ωf1

)2p3s

(ωf2 + E1s − E2p)(ωf2 + ωf1 + E1s − E3s + i
2
Γ3s)

+

+(f1 ⇆ f2)

3̃s means that the insertions are already made in 3s

Uem,cascade
3s−1s (ωωf1

, ωωf2
) =

(Aem
ωf2

)1s2p(A
em
ωf1

)2p3s

(ωf2 + E1s − E2p + i
2
Γ2p)(ωf2 + ωf1 + E1s − E3s + i

2
Γ3s)

+(f1 ⇆ f2)



Taking Uem,cascade
3s−2p−1s by square modulus, integrating over the photon emission direc-

tions, summing over the photon polarizations and integrating over one of the fre-

quencies ωf1,ωf2 in the complex plain ([ω] = ∞ approximation) we obtain the con-

tribution of the two resonances to the DIFFERENTIAL BRANCHING RATIO:

db
2γ(resonance1)
3s−2p−1s (ω) =

1

2π

(Γ3s + Γ2p)

Γ3sΓ2p

W 1γ
3s−2pW

1γ
2p−1sdω

(ω − ωres1)2 + 1
4
(Γ3s + Γ2p)2

db
2γ(resonance2)
3s−2p−1s (ω) =

1

2π

1

Γ3s

W 1γ
3s−2pW

1γ
2p−1sdω

(ω − ωres2)2 + 1
4
Γ2

2p

db2γ
3s−1s(ω) =

dW 2γ
3s−1s

Γ3s

dW
2γ(resonance1)
3s−2p−1s = dW 1γ

3s−2p(ω)

dW
2γ(resonance2)
3s−2p−1s = dW 1γ

2p−1s(ω)
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Comment on Two-photon approximation in the theory of electron recombination in

hydrogen (D. Solovyev and L. Labzowsky, Phys. Rev. A 81, 062509 (2010))

S. G. Karshenboim∗

Pulkovo Observatory, St.Petersburg, 196140, Russia and

Max-Planck-Institut für Quantenoptik, Garching, 85748, Germany

V. G. Ivanov
Pulkovo Observatory, St.Petersburg, 196140, Russia

J. Chluba
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The results for the total multi-photon decay rates of the 3p and 4s levels of hydrogen, presented
by D. Solovyev and L. Labzowsky within the cascade approximation, are revisited. The corrected
results for certain decay channels differ from original ones of those authors sometimes by order of
magnitude. Some aspects with respect to the cosmological recombination process are clarified. An
extended version of this comment is presented in [1].

Paper [2] is devoted to the calculation of the contribu-
tion of various multi-photon decay modes to the lifetime
of free hydrogenic energy levels. In particular, the multi-
photon decays of the 3p and 4s state were considered.
Their result for the 3p radiative width, which includes

three-photon decay modes (e.g. 3p → 2s → 1s) within
the cascade approximation, is given by Eq. (33) of [2]:

W total
3p−1s = W

(1γ)
3p−1s +

3

4
W

(2γ)
3p−2p +

3

4

W
(1γ)
3p−2s

Γ3p
W

(2γ)
2s−1s .

Here WX is the probability of the related decay channel
X , and ΓA is the total radiative width (i.e. the total de-
cay probability) of state A. Clearly, the radiative width,
being calculated for a free atom, satisfies the condition

ΓA = W total
A−1s ,

since any excited states should eventually decay into the
ground state after emitting an appropriate number of
photons.
Later on, equation (47) of [2] presents their result for

the 4s radiative width, which includes four-photon modes
(e.g., 4s → 3p → 2s → 1s) in the cascade approximation:

W total
4s−1s = W

(2γ)
4s−1s +

3

2

W
(1γ)
3s−2p

Γ3s
W

(2γ)
4s−3s +

3

2

W
(1γ)
4s−3p

Γ4s
W

(2γ)
3p−2p

+
3

2

W
(1γ)
4s−3p

Γ4s

W
(1γ)
3p−2s

Γ3p
W

(2γ)
2s−1s .

Although expression (33) of [2] has the correct order of
magnitude, i.e., ∝ α(Zα)4mec

2/~, we argue below that
its numerical value is incorrect. Furthermore, the result
given by Eq. (47) of [2] is even off by order of magnitude.
The problem is that a conceptual mistake occurred in the

∗Electronic address: savely.karshenboim@mpq.mpg.de

calculation of the cascade terms involving three or four
photons.
The appropriate results for 3p and 4s are well-known

within the cascade approximation. (The cascade approx-
imation for the dynamics of the decay implies a reso-
nance approximation for the calculation of the related
quantum-mechanical expressions. The description of var-
ious atomic-state decays resulting from the resonance ap-
proximation can be found in standard textbooks.) The
results for all the decay channels, which contribute in or-
der α(Zα)4mec

2/~, are summarized in Table I (for the
3p state) and in Table II (for the 4s state).

Channel Partial width Partial width in [2]

1γ : 3p→ 1s W
(1γ)
3p−1s W

(1γ)
3p−1s

3γ : 3p→ 2s→ 1s W
(1γ)
3p−2s

3
4

W
(1γ)
3p−2s

Γ3p
W

(2γ)
2s−1s

TABLE I: The 3p decay channels and their partial width to
order α(Zα)4mec

2/~

Channel Partial width Partial width in [2]

2γ : 4s→ 3p→ 1s W
(1γ)
4s−3p

W
(1γ)
3p−1s

Γ3p
not specified

2γ : 4s→ 2p→ 1s W
(1γ)
4s−2p not specified

4γ : 4s→ 3p→ 2s→ 1s W
(1γ)
4s−3p

W
(1γ)
3p−2s

Γ3p

3
2

W
(1γ)
4s−3p

Γ4s

W
(1γ)
3p−2s

Γ3p
W

(2γ)
2s−1s

TABLE II: The 4s decay channels and their partial width to
order α(Zα)4mec

2/~. The 2γ modes are not specified in more
detail by the authors of [2]. However, a related comment in
[2] indicates that some conceptual differences with our under-
standing of these channels exist (see [1] for details).

We note that the expressions Eqs. (29) and (38) of
[2] introduce the total width of the 3p and 4s state, re-
spectively. In the cascade approximation, which is suf-
ficient for calculation of the leading order contributions
and which is supposedly applied in [2], the width of any



2

excited state (except for the 2s state) is the sum over E1
one-photon decays to all appropriate lower levels. This
value is presented in various textbooks and summarized
in the tables above. Apparently, once the state under
question decays into lower-lying excited states, any fur-
ther development due to a subsequent decay of those
levels does not change the width of the initial state, a
conceptual aspect that is different in the analysis of [2].

For the 3p state there are only two dominant chan-
nels, namely a 1γ decay (3p → 1s) and a 3γ decay
(3p → 2s → 1s). The probability of the second chan-
nel, which involves three photons, is indeed the same as
a naive E1 1γ probability of the 3p → 2s decay, because
for a free-atom case 100% of the atoms in the 2s state
decay afterward into the 1s state with emission of two
photons. All other channels and any corrections beyond
the cascade approximation are of higher order in (Zα)
and thus can be neglected. This implies that in partic-
ular the last term in Eq. (33) of [2] is incorrect, since it
suggests that the total width of the 3p state is affected
by the subsequent decay of the 2s state via two photons.

Technically, the difference originates from the regular-
ization in Eq. (29) of [2]. Any cascade decay, calculated
by means of Schrödinger’s equation with a Hermitian
quantum-mechanical Hamiltonian, leads to an expres-
sion with a denominator (or few denominators), value
of which vanishes when the photon frequency is at res-
onance. The regularization should involve the non-zero
width of the resonant intermediate state (states) as a
regulator (regulators), as e.g. discussed in [3]. However,
neither the width of the initial state (as is done in [2])
nor of the final state should be introduced. Once we sub-
stitute Γ2s for Γ3p in the denominator, the third term
becomes of correct order. Still it has an incorrect coeffi-
cient of (3/4), which should be replaced by unity.

The second term in Eq. (33) describes the 3p → 2p →

1s channel and obviously its width should be equal to the
width of the 3p → 2p decay which appears in 2γ approx-
imation and is of order α2(Zα)6mec

2/~. Apparently, the
coefficient 3/4 in (33) is again incorrect and should be
replaced by unity. However, although it is clear that a
contribution of order α2(Zα)6mec

2/~ may be of interest
for the differential probabilities of the decay process, it
should be neglected in the total width, since many other
corrections of this order (or even some larger contribu-
tions) are not accounted for (see [3, 4] for more detailed
discussion).

The consideration of the 4γ contributions into the 2s
decay contains in [2] similar mistakes and their analysis
is presented in [1] in detail.

In general, the cascade approximation cannot help to
take into account ‘real’ multi-photon decay modes. The
integral cascade width is completely determined by the
first decay in the chain and does not involve any informa-
tion on further subsequent decays. Calculations of such
effects within the cascade approximation was one of the
purposes of [2].

There are also problems outside of main consideration

of [2], which, however, are important for the interpreta-
tion of the results. As we can see, the regularization of
quantum-mechanical expressions (29) and (38) plays a
crucial role in calculations. Paper [2] is devoted to a free
hydrogen atom, but it was motivated by study of cosmic
recombination of hydrogen, which occurred some 380 000
years after the big bang, when the Universe had cooled to
a temperature of about ∼ 3000K. During cosmological
recombination, the atoms existed within an intense bath
of the cosmic blackbody radiation. Under these condi-
tions, the cascade chains should not only include spon-

taneous decays , but also excitations and induced decays ,
mediated by the cosmic radiation background. This can
change the total width of the 3p state by ∼ 1% (see [5] for
more details). Thus the decay width, used as a regulator,
should include effects beyond the free-atom approxima-
tion. Notably, in the case of the cosmic recombination
the 2s and 1s states receive a width induced by the black-
body CMB radiation [6].
Next, we have to check whether the width of the initial

and final states are important for the consideration. Once
we want to consider the dynamics beyond the cascade ap-
proximation or wish to derive the cascade approximation
from rigorous quantum-mechanical expressions, we have
to start with a certain expression similar to Eqs. (29) and
(38) of [2]. However, we have to start such an evaluation
with ‘quasi-stable’ initial and final levels. The conditions

Γinitial

Γintermediate
≪ 1 and

Γfinal

Γintermediate
≪ 1

are necessary to validate such an approach.
The cascade approximation means that all the levels

are created, propagate and decay in a factorized way.
E.g. the lifetime of an ‘initial’ or ‘intermediate’ state,
and details of their decay do not depend on a way they
have been created. Meantime, the expressions such as
Eqs. (29) and (38) pretend to go beyond such a factor-
ized description. However, the very formulation of the
problem, such as a decay of the 3p or 4s state, means
that we already partly consider a cascade approximation,
because the very existence of those states as initial states
means that we ignore details of their creation.
As is well-known, off-resonance corrections are larger

for broad levels than for narrow ones, and it is reasonable
to consider several most narrow levels in a pure resonance
approximation. The very consideration of a decay of a
certain state into a set of final states within an approach
given by Eqs. (29) and (33) of [2] is meaningful only if
the initial state together with all possible final states of
the decay chains is more narrow than any intermediate
state.
For example, if we consider a frequency distribution of

emission lines, the line width of a particular resonance
photon is determined by the width of both initial and
final states. That means that in a chain of transitions
we need to take into account both widths, and thus both
the states should be treated as metastable (unstable) for
the same reason. We cannot really consider any of them
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as an ‘initial’ or ‘final’ state of a cascade chain. We need
to introduce creation of the initial state and decay of the
final state, unless one of them lives much longer than the
other and its width can be neglected.
For the consideration of the 3p − 1s three-photon de-

cay with a resonance at 2s the width of resonance 3p−2s
photon is determined by the ambiguity in the very for-
mulation of the problem of decay of 3p state, while the
width of sum of two frequencies of the 2s− 1s resonance
is determined by the 2s width. The uncertainty in energy
of the initial state is more important than the width of
the 2s state. That invalidates the very consideration of
decay of any state (such as 3p or 4s) into the 1s state via
the 2s state. In principle, such a consideration should
consider the 2s state as a stable one.
However, if we are to eventually arrive at a pure reso-

nance approximation it is not important in which order
we ‘break’ the chain and which levels we already con-
sider in the cascade approximation. Finally, all accessi-
ble intermediate states become resonances. Since paper
[2] presumes to derive the results in a pure resonance ap-
proximation, the formulation of the problem of the decay
of the 3p and 4s state is not quite correct, but should
eventually produce correct results. That is because of
the fact that there are two kinds of parameters. One is
for the ratio of a width and a characteristic frequency,
and the other is ratios of different widths. The latter

are important to partially consider dynamics beyond the
cascade descriptions. The former are always small by a
factor α(Zα)2 or less and they are sufficient to derive the
cascade results.

Consideration of any modes beyond the leading con-
tributions, which are with one-photon decays of any ini-
tial state to lower states, are meaningless for the integral
line width, but may be important for a differential width
as explained in [3]. Indeed, there is no real separation
between tail of the ‘resonance’ terms and ‘off-resonance
modes’ and interference terms and for the differential ef-
fects one has to deal with a complete width.

This aspect of the problem is also important for recent
computations of the cosmological recombination process
[5, 7], where deviations of the differential cross-sections
from the normal Lorentzian profile [8, 9] are accounted
for, in both two-photon decay channels (e.g., 3d → 2p →

1s) and Raman-events (e.g. 2s → 3p → 1s). No explicit
separation in cascade or off resonance contributions is
made, but the total interaction of atoms with the ambi-
ent cosmic radiation background, including photon pro-
duction, photon absorption, and photon scattering, are
taken into account consistently.
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