Spatial variations of the electron-toproton mass ratio: bounds obtained from high-resolution radio spectra of molecular clouds in the Milky Way

S.A. Levshakov

Dept. Theoretical Astrophyscis A.F. Ioffe Physical-Technical Institute St. Petersburg

Contents

- **Short Introduction**
- Part I. What is known
- **♦** Part II. What is new
- Conclusions

fine-structure levels:

$$\frac{\Delta\omega}{\omega} = 2\frac{\Delta\alpha}{\alpha}$$

molecular rotational transitions:

$$\frac{\Delta\omega}{\omega} = \frac{\Delta\mu}{\mu}$$

atomic levels, in general:

$$\omega' = \omega + qx + \dots$$
$$\frac{\Delta\omega}{\omega} = 2Q\frac{\Delta\alpha}{\alpha}$$

$$\Delta \alpha = \alpha' - \alpha$$
 either spatial
or temporal
differences

$$x = (\alpha' / \alpha)^2 - 1$$

Q = q/ω dimensionless sensitivity coefficient q-factor [cm⁻¹] individual for each atomic transition

Part I. Cosmological Temporal Variations

Single ion $\Delta \alpha / \alpha$ measurements

QSO HE 0001-2340

neutral iron FeI resonance transitions at <u>z=0.45</u>

Doppler width ≤ 1 km/s (!) Simple one-component profiles

 $\Delta \mathbf{v} = -200 \pm 200 \text{ m/s}$

$$\Delta \alpha / \alpha = 7 \pm 7 \text{ ppm}$$

Q 1101-264

the highest resolution spectrum, FWHM = 3.8 km/s

0.1

frequency

0.1

0 -3

Markov chain

FeII resonance transitions at <u>z=1.84</u>

3 6 Δα/α (ppm)

brightest QSO HE 0515-4414

FeII resonance transitions	34 FeII pairs {1608,X}
at z=1.15	X =
··· 1	2344
	2374
	2580

Current estimate:

1) updated sensitivity coefficients (Porsev et al.'07)

2) Accounting for correlations between different pairs {1608,X}

 $\Delta \alpha / \alpha = -0.12 \pm 1.79 \text{ ppm}$

The most stringent limit: $|\Delta \alpha / \alpha| < 2$ ppm

Calibration uncertainty of ~ 50 m/s translates into the error in $\Delta\alpha/\alpha$ of ~ 2 ppm cf. pixel size ~ 2-3 km/s

Conclusions (Part I)

No cosmological temporal variations of α at the level of 2 ppm have been found

(same for μ)

Part II. <u>Spatial Variations</u> (search for scalar fields)

Chameleon-like scalar field models:

dependence of masses and coupling constants on environmental matter density

> $\alpha = \alpha(\rho)$ $\mu = \mu(\rho)$

 ρ - ambient matter density

 ρ_{lab} / ρ_{ISM} $\sim 10^{14}$ - 10^{16}

Khoury & Weltman'04

Bax et al.'04

Feldman et al.'06

Olive & Pospelov'08

Ammonia Method to probe m_e/m_p

vibrational, and rotational intervals in molecular spectra $E_{vib}: E_{rot} \sim \mu^{1/2}: \mu$ $\Delta \omega_{\rm vib} / \omega_{\rm vib} = 0.5 \Delta \mu / \mu$

 $\Delta \omega_{\rm rot} / \omega_{\rm rot} = 1.0 \Delta \mu / \mu$

the inversion vibrational transition in ammonia, NH_3 , $\omega_{inv} = 23.7 GHz$

 $\Delta \omega_{inv} / \omega_{inv} = (4.5) \Delta \mu / \mu$ Flambaum & Kozlov'07

 $Q_{inv} / Q_{vib} = 9$

Quantum mechanical tunneling

 $\label{eq:one_inv} \omega_{inv} \sim exp(-S)$ the action $~S \sim \mu^{-1/2}$

double-well potential of the inversion vibrational mode of NH₃

By comparing the observed inversion frequency of NH_3 with a rotational frequency of another molecule arising *co-spatially* with ammonia, a limit on the spatial variation of $\Delta \mu/\mu$ can be obtained :

$$\mu/\mu = 0.3(V_{rot} - V_{inv})/c \equiv 0.3 \Delta V/c$$

$$\Delta V = \Delta V_{noise} + \Delta V_{\mu}$$

$$\overline{\Delta V}_{noise} = 0$$

$$\overline{\Delta V} = \overline{\Delta V}_{\mu}$$

$$Var(\Delta V) = Var(\Delta V_{noise}) + Var(\Delta V_{\mu})$$

Hyper-fine splittings in NH₃, HC₃N & N₂H⁺

15

Molecular differentiation within a low-mass core

Preliminary obtained results

(Levshakov, Molaro, Kozlov 2008, astro-ph/0808.0583)

Perseus molecular cores

Rosolowsky et al. 2008 ammonia spectral atlas of 193 molecular cores in the Perseus cloud

Observations: 100-m Green Bank Telescope (GBT)

GBT beam size at 23 GHz is **FWHM** = 31arcsec (0.04 pc)

Spectral resolution = 24 m/s (!)

Single-pointing, simultaneous observations of NH₃ and CCS lines

Pipe Nebula

Rathborne et al. 200846 molecular cores in Pipe Nebula

Observations: 100-m Green Bank Telescope (GBT)

GBT beam size at 23 GHz is **FWHM** = 30arcsec (0.02 pc)

Spectral resolution = 23 m/s (!)

Single-pointing, simultaneous observations of NH₃ and CCS lines

CCS vs NH₃

 $\Delta V_{n=8} = 69 \pm 11 \text{ m/s}$

New results

(Astron.Astrophys., astro-ph/0911.3732)

Nov 24-28, 2008 32m MEDICINA (Bologna) Italy

Feb 20-22, 2009 100m EFFELSBERG

(Bonn) Germany

; ;

Apr 8-10, 2009

45m NOBEYAMA (NRAO) Japan

NH₃ & HC₃N

 $NH_3 \& N_2H^+$

Collaboration with

Alexander Lapinov Christian Henkel Takeshi Sakai Paolo Molaro Dieter Reimers

41 cold and compact molecular cores in the Taurus giant molecular complex

55 molecular pairs in total

Observations:

32-m	Medicina Telescope:	two digital spectrometers ARCOS (ARcetri COrrelation Spectrometer) and MSpec0 (high resolution digital spectrometer)			
Spectral res. = 62 m/s (NH ₃), 80 m/s (HC ₃ N) ARCOS Spectral res. = 25 m/s (NH ₃), 32 m/s (HC ₃ N) MSpec0 beam size at 23 GHz, FWHM = 1.6 arcmin position switching mode					
100-m	Effelsberg Telescope:	K-band HEMT (High Electron Mobility Transistor) receiver, backend FFTS (Fast Fourier Transform Spectrometer) Spectral res. = 30 m/s (NH ₃), 40 m/s (HC ₃ N) beam size at 23 GHz, FWHM = 40 arcsec frequency switching mode			
45-m	Nobeyama Telescope:	HEMT receiver (NH ₃), and SIS (Superconductor-Insulator- Superconductor) receiver (N ₂ H ⁺) Spectral res. = 49 m/s (NH ₃), 25 m/s (N ₂ H ⁺) beam size at 23 GHz, FWHM = 73 arcsec position switching mode			

Independent Doppler tracking of the observed molecular lines

Effelsberg 100-m

Nobeyama 45-m

Results

total sample, n=55	$mean \ \Delta V = 14.1 \pm 4.0 \ m/s$ scale = 29.6 m/s (standard deviation) median \ \Delta V = 17 \ m/s		
co-spatially distributed, n=23 (red & black points)	$mean \Delta V = 21.5 \pm 2.8 m/s$ scale = 13.4 m/s median $\Delta V = 22 m/s$		
thermally dominated, n=7 (red points)	$mean \Delta V = 21.2 \pm 1.8 m/s$ scale = 3.4 m/s median $\Delta V = 22 m/s$		
effelsberg, n=12 NH ₃ & HC ₃ N	$mean \Delta V = 23.2 \pm 3.8 m/s$ scale = 13.3 m/s median $\Delta V = 22 m/s$		
nobeyama, n=9 NH ₃ & N ₂ H ⁺	$mean \Delta V = 22.9 \pm 4.2 m/s$ scale = 12.7 m/s median $\Delta V = 22 m/s$		

Poor accuracy in lab frequencies - main source of uncertainties

$$NH_3 \longrightarrow \epsilon_{sys} = 0.6 m/s$$

 $HC_3N \longrightarrow \epsilon_{sys} = 2.8 m/s$

 $N_2H^+ \longrightarrow \epsilon_{sys} = 14 \text{ m/s}$

Effelsberg:

$$\Delta V = 23.2 \pm 3.8_{stat} \pm 2.8_{sys} \text{ m/s}$$

$$\Delta \mu/\mu = (2.2 \pm 0.4_{stat} \pm 0.3_{sys}) \times 10^{-8}$$

new precise lab freqencies badly needed !

 $\varepsilon_{lab} \approx 1 \text{ m/s}$

Constraint on α-variation

fine-structure transition of carbon [CI] 609 μm

low-lying rotational lines of ¹³CO J=1-0 (2.7 mm), J=2-1 (1.4 mm)

$\mathbf{F} = \boldsymbol{\alpha}^2 / \boldsymbol{\mu}$	$\Delta \mathbf{F}/\mathbf{F} = 2\Delta \alpha/\alpha - \Delta \mu/\mu = \Delta \mathbf{v}/c$			
observations of cold molecular clouds	TMC-1	Schilke et al.'95 Stark et al.'96	FWHM = 200-400 m/s	
	Ori A,B	Ikeda et al.'02	FWHM = 100 m/s	
sample size n=13mean $\Delta V = 0 \pm 60$ m/sscale = 215 m/s (standard deviation)median $\Delta V = 0$ m/s				
$ \Delta \mathbf{F}/\mathbf{F} < 0.3$	ppm	$ \Delta \alpha / \alpha < 0.$	15 ppm	

Conclusions (Part II)

reproduced > velocity offset $\Delta V = 23 \pm 4_{stat} \pm 3_{sys}$ m/s \longrightarrow at different **facilities**

- no known systematic at the level of 20 m/s $\Delta \mu/\mu = (2.2 \pm 0.4_{stat} \pm 0.3_{svs}) \times 10^{-8}$ comes other molecules
 - verification new targets

 \succ conservative upper limits at z=0: $|\Delta \mu/\mu| \le 3 \times 10^{-8} \& |\Delta \alpha/\alpha| < 1.5 \times 10^{-7}$

> at high-z, $\rho_{ISM}(z=0) \approx \rho_{ISM}(z>0) \longrightarrow$ expected $\Delta \mu/\mu \sim 10^{-8}$ if no temporal dependence of $\mu(t)$ is present