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LEl'TER TO THE EDITOR 

Suitable coordinates for the three-body problem in the 
adiabatic representation 

E A Solovievt and S I Vinitsky 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141 980 
Head Post Office, PO Box 79, 101 000 Moscow, USSR 

Received 22 May 1985 

Abstract. A set of coordinates suitable for the three-body problem is introduced. In this 
case the three-body wavefunction possesses the remarkable property of being compatible 
with the physical boundary conditions in the adiabatic representation. 

The adiabatic representation of the three-body problem is widely used in research on 
slow atomic and mesonic atomic collisions (Bates and Reid 1968, Komarov et a1 1976, 
Delos 1981, Vinitsky and Ponomarev 1982, Ponomarev 1983). However, for a correct 
solution of the scattering problem in this approach it is necessary to use a large number 
of basis adiabatic wavefunctions even if the number of opened channels is small 
(Ponomarev and Vinitsky 1979, Ponomarev et a1 1981). For the case of slow mesonic 
atomic collisions this complicated problem was solved straightforwardly by specially 
constructed algorithms (Melezhik et al 1983, 1984, Melezhik 1984). A more conven- 
tional approach consists in the construction of the adiabatic basis which is as compatible 
as possible with the physical boundary conditions corresponding to an infinite distance 
between scattering fragments. Usually this construction is made by some modification 
of the traditional basis of the Coulomb two-centre problem (Ponomarev et al 1980, 
Delos 1981). One may also try to find the compatible adiabatic basis (CAE) directly. 
This promising approach was adopted by Matveenko (1983, 1984), but his procedure 
of regrouping the total Hamiltonian into fast and slow parts was rather cumbersome. 

In this letter we would like to propose some new coordinates for the three-body 
problem, which facilitate the construction of the CAE. These coordinates can be 
considered as suitable as they asymptotically transform into standard Jacobi coordin- 
ates of all three corresponding channels in terms of which the physical boundary 
conditions are normally formulated (see figure 1). 

Let us consider a system of three particles a, b and c with masses Ma, M b  and M,, 
respectively, and in addition let M a , b  > M ,  = 1 (e.g. the heavy particles a, b are nuclei 
and the light particle c is a muon or electron). For simplicity we shall assume that 
the total angular momentum of the system J = 0. However, the results will be valid in 
the general case as well. In the adiabatic representation of the three-body problem 
the independent variables are usually the vectors R connecting nuclei a and b and 

r ' = r / R  (1) 

t Permanent address: Department of Theoretical Physics, Institute of Physics, Leningrad State University, 
198904, Leningrad, USSR. 
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Figure 1. Three Jacobi coordinate systems for relative coordinates of two heavy particles 
a ,  b and a light particle c. 

where the vector r connects the centre of mass of the nuclei (CMN) with the light 
particle c. The components of r' are defined in the body-fixed frame with 2' axis 
directed along the internuclear vector R. The origin of such a frame may be placed 
at any point of R, e.g. at the CMN, at the geometrical centre, or at nuclei. This 
translational freedom is due to the scale transformation (1) and will be used in the 
analysis of the boundary conditions. 

In the coordinates R, r' the Schrodinger equation for the three-body system, after 
separation of the motion of the centre of mass of the whole system, takes the form 
(Vinitsky and Ponomarev 1974, 1982) in the units M,  = h = 1: 

i i a  a 1 
R 2  -+ 7 ( r '  

2 M  R 2 a R  aR MR 

where M-' = M-lM- ' ,  a b  = l+(hfa+Mb)- ' ,  p = 1 + m r t 2 / M ,  v =  vac+ vb,+vab, yj 
being the pair interaction energy. Equation (2) contains the cross derivative with 
respect to r' and R, which for R + cc gives a constant component of the non-diagonal 
matrix elements of the total Hamiltonian in the traditional adiabatic basis (Faifman 
et a1 1976). This leads to intertwining of a large number of basis functions even in 
the asymptotic regions of the configuration space and thus to the artificial extension 
of the R-integration region. 

Instead of R let us introduce the new variable 

% = J J p R  (3) 

and represent the wavefunction in the form 

= B-'/~JP x. (4) 

The normalisation of V to unity in the initial coordinates R, r leads to the same 
normalisation of x in the new coordinates %, r' with the volume element 

d r  = 4 ~ 9 2 ~  d% p-2 dr'. 

After the transformations (3) and (4) the Schrodinger equation (2) takes the form 

This equation has no cross derivative, but contains all those specific properties of the 
initial equation (2), which make the adiabatic separation of variables in the coordinates 
2, r' justifiable. Indeed, in this case we have the new slow variable 92, whereas the 
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changed Hamiltonian of the fast subsystem may be written as follows 

The CAB is defined by the total set of the eigenfunctions f k  of the new two-centre problem 

hfk(r’, 9) = E k ( s ) f k ( r ’ ,  3) (7) 

where Ek(94)  are the energy terms of the fast subsystem characterised by a set of 
quantum numbers k for the fixed 94. After averaging the total Hamiltonian X over 
the basis functions fk the terms Ek(94)  play the role of new effective potentials. It is 
clear that the above mentioned intertwining problem does not arise in this approach. 

Now let us consider the properties of the coordinates 9, r’ in asymptotic regions 
of the configuration space corresponding to different reaction channels. We shall 
examine the case when the particle b goes to infinity, while the particles a and c remain 
in a bound state, i.e. the channel (ac)+b (for the channel a+(bc)  indices a and b 
should be interchanged). Let us place the origin of the body-fixed frame for r’ at the 
nucleus a and factorise into two parts the factor m-’p2/94’ of the Laplace operator 
Arc in the Hamiltonian h of the fast subsystem (6), namely, m-lp2/%’= 
(l/mp-’)(p/942). The factor p / 9 ’ =  R-2  combined with the variable r’ of Ar, gives 
the initial scale of length (1) and so permits the change from r’ to the Jacobi vector 
r, connecting nucleus a and light particle c. The remaining factor mp-’ gives the 
correct reduced mass of the atomic complex (ac): 

mp-l- ( I  + M;’)-’ = ma. 
R r ,  -tw 

The variable 9 in this limit becomes proportional to the modulus of the Jacobi vector 
R, connecting the centre of mass of the atomic complex (ac) with the nucleus b: 

% - alR - (1 + Ma)-’ra( = aR, 
Rr,’+U2 

where a = (m/m,)”2. Then in the Hamiltonian (5) we obtain the correct reduced mass 
of the complex (ac) + b: 

pa = M a 2  = Mb( 1 + Ma)/ ( 1 + Ma + Mb) 

as the reciprocal factor of the second derivative with respect to R,. It can be easily 
verified that at finite R and r + 00 the coordinates 3, r’ turn into the Jacobi coordinates 
r, R of the corresponding third channel (ab) + c. Thus, in all three asymptotic regions 
of the configuration space the coordinates 94, r’ transform into corresponding standard 
Jacobi coordinates. 

At first glance the Hamiltonian ( 5 )  almost exactly coincides with that obtained 
by Matveenko (1983,1984), a slight discrepancy is explained by a different wavefunction 
normalisation. However, in those papers the new variable 94 was erroneously identified 
with the old variable R, thus making interpretation of the results obtained there 
impossible. 

The approach developed here is a quantum analogue of the method of non- 
stationary scale of length (MNSL) elaborated for the case of the classical treatment of 
the nuclear motion. This method was used by Soloviev (1976) for a thorough study 
of the exactly solvable model of a particle in a field of two uniformly moving S 
potentials, and also by the same author (Soloviev 1982) for establishing a simple 



L560 Letter to the Editor 

relation between non-stationary wavefunctions of a free particle and of an oscillator. 
To make this analogy more evident, let us call the basic points of the MNSL. 

When the motion of the nuclei is treated classically, for the light particle the 
non-stationary Schrodinger equation in the CMN ( m  = h = 1) holds: 

[-fAr,+ Vac(Jr+yaRl)+ Vbc(Ir+ybRl)]$=i a $ / a t  (9) 

where ya=  Mb/(Ma+Mb) ,  yb= -Ma/(Ma+Mb), R ( t ) =  R is the distance between 
nuclei a and b, which is assumed tobe  a given function of time. For the case considered 
here ( J = O )  we shall assume that the nuclei are moving along a straight line, e.g., 
along the 2 axis. Introducing the variable 

r ’ =  r / R ( t )  (10) 

we rewrite the Schrodinger equation (9) in the form 

[-fR-2A,,+ Vac(Rlr’+ Yakl)+ Vb,(Rlr’+ y,kl)+iR-’d(r’ .  V,s)]$=i  a $ / a t  (11) 

where k is the unit vector of the 2 axis, and the dot means the time derivative. As a 
consequence of using the moving body-fixed frame (10) in equation (1 1) there appears 
the product of the relative momentum of nuclei and that of a light particle (cf equation 
(2)). To eliminate this product, one should explicitly separate, in the wavefunction, 
the general translation factor that takes into account the change of kinematics (10) 

4‘/ = R - 3 / 2  exp(fir2R-’( t )d(  t ) ) x ( r ‘ ,  t )  = R-3’2 exp($r’2R( t )d(  f ) ) x ( r ’ ,  t )  (12) 

this factorisation being suggested by analogy with the Galilean transformation (see, 
e.g. Delos 1981). The factor R-3/2 in (12) provides the normalisation of the wavefunc- 
tion x in the new coordinates r‘ (cf equation (4)). Substituting (12) into (11) we get 
for the function x the following equation 

h,,X = i a x / d  t 
(13) 

hcl= -fR-’Ah,,+ Vac(Rjr’+ yak])+ vbc(Rlr‘+ ybkl)+;Riiir”. 

The reduction of I) to x is analogous to introducing in the quantum case the variable 
92 instead of R. In both the cases there occurs a partial extraction of the motion of 
a light particle from the Hamiltonian of the fast subsystem, leading to the elimination 
of the product of momenta. 

When the adiabatic basis is used for solving equation (9), there also appear 
difficulties due to incompatibility of the asymptotic behaviour of the adiabatic 
wavefunction with the exact boundary conditions at R + a3 (Bates and McCarroll 
1958). The reason is that the adiabatic wavefunctions do not contain the Galilean 
translation factor that takes account of the motion of the potential centres. The 
transformations (10) and (12) remove this drawback. In the modified Schrodinger 
equation (13) the centres are fixed, therefore, here we have the CAB. Indeed, in the 
asymptotic region the general translational factor which relates x to I) becomes the 
standard Galilean translation factor, namely, near the i centre i = a, b as R + CO we have 

where ui = -y iAk is the velocity of the i centre. Equation (14) has been derived under 
the assumptions that at R +CO the value of U, tends to be constant and lyilR = q t .  



Letter to the Editor L561 

Note that the Hamiltonian h,, (13) has only a discrete spectrum when I? > 8. As 
will be seen later, in a quantum case the Hamiltonian of the fast subsystem (6) also 
possesses this useful property. The coordinates 3, r' introduced above are connected 
with other coordinates used in the three-body problem. The slow coordinate % is 
related by J M  % = %G with the hyperradius 9, of the sphere on a four-dimensional 
space, in which the three-body problem may be treated (Demiralp and Suhubi 1977). 
From our variables one may pass to the hyperspherical coordinates by introducing 
angular variables a, 6, cp: 

cot a / 2  = (m/ M)'l2r' cos 6 = z'/r' tan cp = y'/x' 

and returning to the initial wavefunction 9. Then the Schrodinger equation for 9 
acquires the form (Fock 1954) 

where 

a l a  
-sin2 a-+- -sin a-+- - 

aa sin 6 a 6  a 6  s i n 2 6  acp2 

is the angular part of the Laplace operator in the four-dimensional space {%,, a, 6, cp}. 
In general, to construct the adiabatic representation of the three-body problem one 
may use a wide set of coordinates on the four-dimensional sphere: spherical, toroidal, 
elliptic-cylindrical, generalised elliptic coordinates (Klein 1966, Kalnins et aI 1976), 
allowing the separation of variables in the kinetic-energy operator, i.e. in 0" of the 
fast subsystem Hamiltonian h, = -2RL2U* + V. Then the adiabatic wavefunctions 
depend on these angular variables for any fixed value of PI?, and the Hamiltonian h, 
has only a discrete spectrum. For systems of type e+H, e-H, e-e-e+ the adiabatic basis 
is usually formed in hyperspherical coordinates (Macek 1968, Fano 1976, Pelikan and 
Klar 1983). However, for the systems like mesonic molecules ddp, d tp  or molecular 
ions HD+ it is more natural to use the spheroidal coordinates (6, r ] ,  cp} (Komarov et 
a1 1976) connected with r'= {x', y' ,  z'} by relations 

2 1/2 y '=~[(62-1) (1- r ]  2 )] 1 / 2  sincp X'=+[([2-1)(1-r] ) ]  coscp 

Z' = $[ 6~ - (Mb-  Ma)/ (Mb + Ma)]. 

In the given case the coordinates (6, r],  cp} are preferable, since due to the smallness 
of parameter m / M  the Hamiltonian (6) differs slightly from that of the Coulomb 
two-centre problem, and as a result, nodal surfaces of the adiabatic wavefunctions fk 
tend to the coordinate surfaces 5 = constant, r ]  = constant, cp = constant. 

The logarithmic singularities in the three-body problem are well known at the point 
of triple collision (Fock 1954) and are related only with the motion over 3,. Therefore 
in the adiabatic separation of variables in (5) these singularities cannot influence the 
CAB itself and will be described by the wavefunction of the slow subsystem in terms 
of the variable 3. 

The authors are grateful to Drs A V Matveenko, L I Ponomarev and V N Pokrovsky 
for stimulating and helpful discussions. 
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