

Pions in the quark matter phase diagram

Daniel Zabłocki

Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical Physics, Joined Institute for Nuclear Research Dubna, Russia

HISS Dubna 2008 - Dense Matter

Dubna, 21 July 2008

in collaboration with David Blaschke and Roberto Anglani

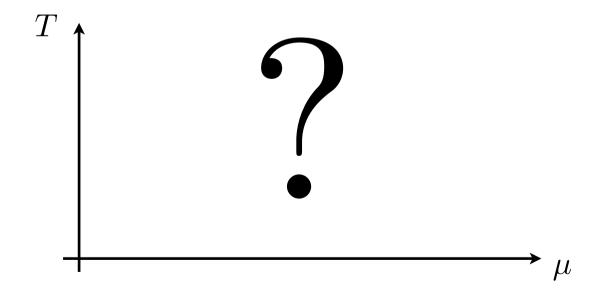
Aim of the talk

investigation of the phase diagram of QCD beyond mean field level in NJL framework

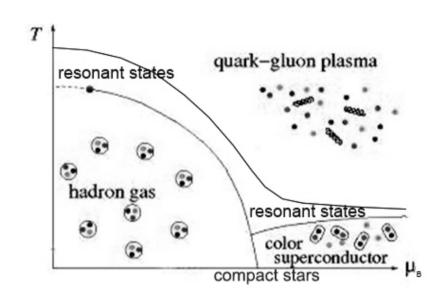
1. introduction to the problem

one challenging problem of quantum chromodynamics is

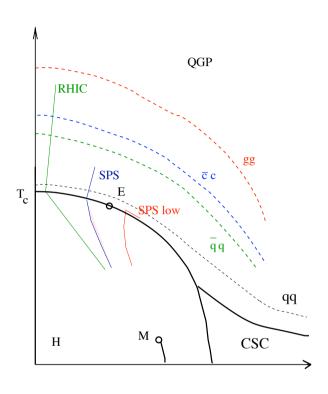
the study of phase diagram



1.1. what we know about phase diagram



Zhuang, P.F. et al. 0710.3634 [hep-ph]



Shuryak and Zahed hep-ph/0403127

2. the effective model

how to give a reliable description in the region around the critical values of chemical potential?

perturbation theory cannot be applied in this region

we have to accept a good compromise.

an effective model:

the Nambu--Jona-Lasinio

2.1 Nambu--Jona-Lasinio

The NJL model of QCD mimics the quark-quark interaction mediated by gluons with an effective point-like four fermion interaction

cons

absence of gluon in the Lagrangian; quarks are not confined; etc.

pro

a simple approach to the description of chiral symmetry breaking and phase transitions; analytical calculations possible

2.2 the starting point: the NJL Lagrangian

For the description of hot, dense Fermi-systems, with strong short-range interactions we consider a Lagrangian with internal degrees of freedom (2-flavor, 3-color), with a current-type four-Fermion interaction

$$\mathcal{L} = \mathcal{L}_{0} + \mathcal{L}_{qq} + \mathcal{L}_{q\bar{q}}$$

$$\mathcal{L}_{0} = \bar{q}(i\partial \!\!\!/ - m_{0} + \mu \gamma_{0})q$$

$$\mathcal{L}_{q\bar{q}} = G_{S} \left[(\bar{q}q)^{2} + (\bar{q}i\gamma_{5}\boldsymbol{\tau}q)^{2} \right]$$

$$\mathcal{L}_{qq} = G_{D} \sum_{A=2,5,7} \left[\bar{q}i\gamma_{5}C\tau_{2}\lambda_{A}\bar{q}^{T} \right] \left[q^{T}iC\gamma_{5}\tau_{2}\lambda_{A}q \right]$$

$$q = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \otimes \begin{pmatrix} u \\ d \end{pmatrix} \otimes \begin{pmatrix} r \\ g \\ b \end{pmatrix} \qquad \begin{array}{l} m_{0,u} = m_{0,d} = m_0 \\ \mu_u = \mu_d = \mu \\ \\ G_S \text{ Scalar and pseudoscalar coupling strength} \\ \boldsymbol{\tau} = (\tau_1, \tau_2, \tau_3) \quad C = i\gamma_2\gamma_0 \qquad \qquad G_D \text{ Scalar diquark coupling strength} \end{array}$$

2.3 the partition function

the partition function
$$\mathcal{Z} = \int \left[dq\right] \left[d\bar{q}\right] \exp\left[\int_0^\beta d\tau \int d^3x \ \mathcal{L}\right]$$

$$\Omega = -T \ln Z$$

Hubbard-Stratonovich auxiliary fields

$$\mathcal{Z} = \int [dq] [d\bar{q}] [d\Delta_A] [d\Delta_A^*] [d\sigma] [d\pi] \exp \left[\int_0^\beta d\tau \int d^3x \, \mathcal{L} \right]$$

$$\mathcal{L}_{\text{eff}} = -\frac{\sigma^2 + \pi^2}{4G_S} - \frac{\Delta_A^* \Delta_A}{4G_D} + \bar{q}(i\partial \!\!\!/ - m_0 + \mu \gamma_0)q - \bar{q}(\sigma + i\gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi})q + i\frac{\Delta_A^*}{2}q^T iC\gamma_5 \tau_2 \lambda_A q - i\frac{\Delta_A}{2}\bar{q}i\gamma_5 C\tau_2 \lambda_A \bar{q}^T$$

Nambu–Gorkov formalism
$$\Psi \equiv \frac{1}{\sqrt{2}} \left(\begin{array}{c} q \\ q^c \end{array} \right) \quad \bar{\Psi} \equiv \frac{1}{\sqrt{2}} \left(\begin{array}{c} \bar{q} \end{array} \bar{q}^c \right) \quad q^c(x) \equiv C \bar{q}^T(x)$$

$$\mathcal{Z} = \int \left[d\Delta_A \right] \left[d\Delta_A^* \right] \left[d\sigma \right] \left[d\pi \right] \exp \left[\int_0^\beta d\tau \int d^3x \, \left(-\frac{\sigma^2 + \pi^2}{4G_S} - \frac{\Delta_A^* \Delta_A}{4G_D} \right) \right] \int \left[d\Psi \right] \left[d\bar{\Psi} \right] \exp \left[\int_0^\beta d\tau \int d^3x \, \bar{\Psi} \, S^{-1} \Psi \right]$$

$$S^{-1} \equiv \begin{pmatrix} i \partial \!\!\!/ + \mu \gamma_0 - m_0 - \sigma - i \gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi} & \Delta_A \gamma_5 \tau_2 \lambda_A \\ -\Delta_A^* \gamma_5 \tau_2 \lambda_A & i \partial \!\!\!/ - \mu \gamma_0 - m_0 - \sigma - i \gamma_5 \boldsymbol{\tau}^t \cdot \boldsymbol{\pi} \end{pmatrix}$$

$$\mathcal{Z} = \int \left[d\Delta_A \right] \left[d\Delta_A^* \right] \left[d\sigma \right] \left[d\boldsymbol{\pi} \right] \left\{ \exp \left[\int_0^\beta d\tau \int d^3x \, \left(-\frac{\sigma^2 + \boldsymbol{\pi}^2}{4G_S} - \frac{\Delta_A^* \Delta_A}{4G_D} \right) \right] \exp \left[\operatorname{Tr} \left(\ln S^{-1} \right) \right] \right\}$$

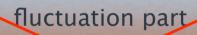
3. the mean field approximation

how to calculate this?

$$\mathcal{Z} = \int \left[d\Delta_A \right] \left[d\Delta_A^* \right] \left[d\sigma \right] \left[d\boldsymbol{\pi} \right] \left\{ \exp \left[\int_0^\beta d\tau \int d^3x \, \left(-\frac{\sigma^2 + \boldsymbol{\pi}^2}{4G_S} - \frac{\Delta_A^* \Delta_A}{4G_D} \right) \right] \exp \left[\operatorname{Tr} \left(\ln S^{-1} \right) \right] \right\}$$

the mean field approximation (MFA) decompose bosonic collective fields into a

homogeneous MF part



correlations

order parameter: characterization of phase structure

$$\Delta \to \Delta_{MF} + \delta \ \sigma \to \sigma_{MF} + \sigma$$

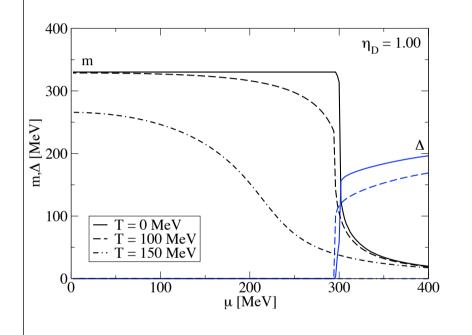
$$\frac{\partial \Omega}{\partial m} = \frac{\partial \Omega}{\partial \Delta} = 0 \quad \mathcal{Z}_{MF} = \exp \left[\beta V \left(-\frac{\sigma_{MF}^2 + \pi_{MF}^2}{4G_S} - \frac{\Delta_{MF}^* \Delta_{MF}}{4G_D} \right) \right] \exp \left[\text{Tr} \left(\ln S_{MF}^{-1} \right) \right]$$

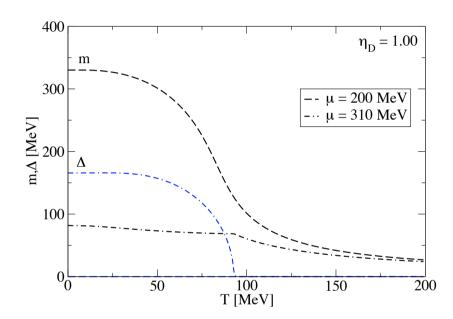
$$m - m_0 = 8G_S m \int \frac{d^3 p}{(2\pi)^3} \frac{1}{E_{\mathbf{p}}} \left\{ \left[1 - 2n_F(E_{\mathbf{p}}^-) \right] \frac{\xi_{\mathbf{p}}^-}{E_{\mathbf{p}}^-} + \left[1 - 2n_F(E_{\mathbf{p}}^+) \right] \frac{\xi_{\mathbf{p}}^+}{E_{\mathbf{p}}^+} + n_F(-\xi_{\mathbf{p}}^+) - n_F(\xi_{\mathbf{p}}^-) \right\}$$

$$\Delta = 8G_D \int \frac{d^3 p}{(2\pi)^3} \left[\frac{1 - 2n_F(E_{\mathbf{p}}^-)}{E_{\mathbf{p}}^-} + \frac{1 - 2n_F(E_{\mathbf{p}}^+)}{E_{\mathbf{p}}^+} \right]$$

$$E_{\mathbf{p}}^{\pm} = \sqrt{(\xi_{\mathbf{p}}^{\pm})^2 + \Delta^2} \text{ with } \xi_{\mathbf{p}}^{\pm} = E_{\mathbf{p}} \pm \mu, E_{\mathbf{p}} = \sqrt{m^2 + \mathbf{p}^2}$$

3.1 results of MFA



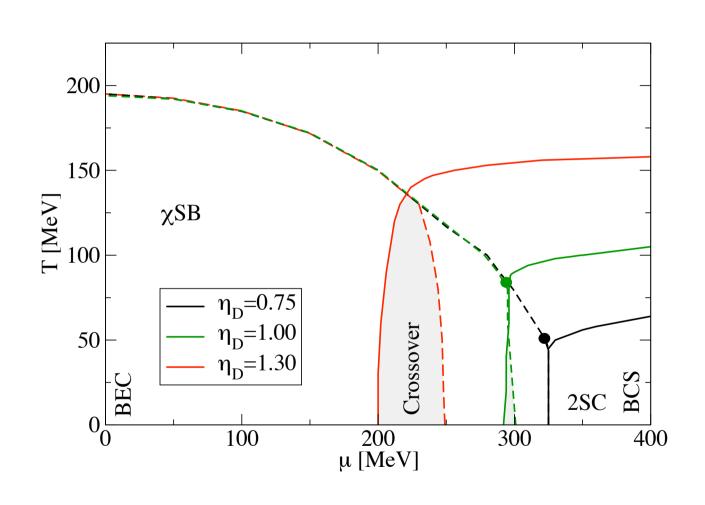


 $\Lambda = 629.540 \text{ MeV}$

 $m_0 = 5.27697 \text{ MeV}.$

 $G_S\Lambda^2 = 2.17576$

H. Grigorian, Phys. Part. Nucl. Lett. 4, 223 (2007) [arXiv:hep-ph/0602238].



4 what about fluctuations?

$$\mathcal{Z} = \int \left[d\Delta_A \right] \left[d\Delta_A^* \right] \left[d\sigma \right] \left[d\boldsymbol{\pi} \right] \left\{ \exp \left[\int_0^\beta d\tau \int d^3x \left(-\frac{\sigma^2 + \boldsymbol{\pi}^2}{4G_S} - \frac{\Delta_A^* \Delta_A}{4G_D} \right) \right] \exp \left[\operatorname{Tr} \left(\ln S^{-1} \right) \right] \right\}$$

$$S^{-1} = S_{MF}^{-1} + \Sigma$$

In-expansion around MF values

$$\Sigma \equiv \left(egin{array}{ccc} -\sigma - i \gamma_5 oldsymbol{ au} \cdot oldsymbol{\pi} & \delta_A \gamma_5 au_2 \lambda_A \ -\delta_A^* \gamma_5 au_2 \lambda_A & -\sigma - i \gamma_5 oldsymbol{ au}^t \cdot oldsymbol{\pi} \end{array}
ight)$$

$$\operatorname{Tr}[\ln(S^{-1})] = \operatorname{Tr}[\ln(S_{MF}^{-1} + \Sigma)]$$

$$= \operatorname{Tr}\{\ln[S_{MF}^{-1}(1 + S_{MF}\Sigma)]\}$$

$$= \operatorname{Tr}\ln S_{MF}^{-1} + \operatorname{Tr}\ln[1 + S_{MF}\Sigma]$$

$$= \operatorname{Tr}\ln S_{MF}^{-1} + \operatorname{Tr}[S_{MF}\Sigma - \frac{1}{2}S_{MF}\Sigma S_{MF}\Sigma + \dots]$$

$$\operatorname{Tr}\left(S_{MF}\Sigma S_{MF}\Sigma\right) = (\boldsymbol{\pi}, \sigma, \delta_{2}^{*}, \delta_{2}, \delta_{5}^{*}, \delta_{7}^{*}) \begin{pmatrix} \Pi_{\pi\pi} & 0 & 0 & 0 & 0 & 0 \\ 0 & \Pi_{\sigma\sigma} & \Pi_{\sigma\delta_{2}} & \Pi_{\sigma\delta_{2}^{*}} & 0 & 0 \\ 0 & \Pi_{\delta_{2}^{*}\sigma} & \Pi_{\delta_{2}^{*}\delta_{2}} & \Pi_{\delta_{2}^{*}\delta_{2}^{*}} & 0 & 0 \\ 0 & \Pi_{\delta_{2}\sigma} & \Pi_{\delta_{2}\delta_{2}} & \Pi_{\delta_{2}\delta_{2}^{*}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \Pi_{\delta_{5}^{*}\delta_{5}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \Pi_{\delta_{7}^{*}\delta_{7}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\pi} \\ \boldsymbol{\sigma} \\ \delta_{2} \\ \delta_{2}^{*} \\ \delta_{5} \\ \delta_{7} \end{pmatrix}$$

4.1 meson polarization functions and masses

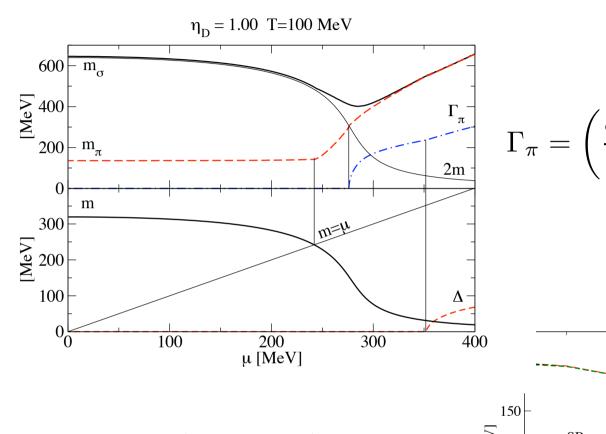
$$\Pi_{\pi\pi}(q_{0},\mathbf{q}) = 2 \int \frac{d^{3}p}{(2\pi)^{3}} \sum_{s_{p},s_{k}} \mathcal{T}^{+}(s_{p},s_{k}) \left\{ \frac{n_{F}(s_{p}\xi_{\mathbf{p}}^{s_{p}}) - n_{F}(s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}})}{q_{0} - s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}} + s_{p}\xi_{\mathbf{p}}^{s_{p}}} - \frac{n_{F}(s_{p}\xi_{\mathbf{p}}^{s_{p}}) - n_{F}(s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}})}{q_{0} + s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}} - s_{p}\xi_{\mathbf{p}}^{s_{p}}} \right. \\
+ \sum_{t_{p},t_{k}} \frac{t_{p}t_{k}}{E_{\mathbf{p}}^{s_{p}}E_{\mathbf{p}+\mathbf{q}}^{s_{k}}} \frac{n_{F}(t_{p}E_{\mathbf{p}}^{s_{p}}) - n_{F}(t_{k}E_{\mathbf{p}+\mathbf{q}}^{s_{k}})}{q_{0} - t_{k}E_{\mathbf{p}+\mathbf{q}}^{s_{k}} + t_{p}E_{\mathbf{p}}^{s_{p}}} \left(t_{p}t_{k}E_{\mathbf{p}}^{s_{p}}E_{\mathbf{p}+\mathbf{q}}^{s_{k}} + s_{p}s_{k}\xi_{\mathbf{p}}^{s_{p}}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}} - |\Delta|^{2}\right) \right\}$$

$$\Pi_{\sigma\sigma}(q_{0},\mathbf{q}) = 2 \int \frac{d^{3}p}{(2\pi)^{3}} \sum_{s_{p},s_{k}} \mathcal{T}(s_{p},s_{k}) \left\{ \frac{n_{F}(s_{p}\xi_{\mathbf{p}}^{s_{p}}) - n_{F}(s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}})}{q_{0} - s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}} + s_{p}\xi_{\mathbf{p}}^{s_{p}}} + \frac{n_{F}(s_{p}\xi_{\mathbf{p}}^{s_{p}}) - n_{F}(s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}})}{q_{0} + s_{k}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}} - s_{p}\xi_{\mathbf{p}}^{s_{p}}} \right. \\
+ \sum_{t_{p},t_{k}} \frac{t_{p}t_{k}}{E_{\mathbf{p}}^{s_{p}}E_{\mathbf{p}+\mathbf{q}}^{s_{k}}} \frac{n_{F}(t_{p}E_{\mathbf{p}}^{s_{p}}) - n_{F}(t_{k}E_{\mathbf{p}+\mathbf{q}}^{s_{k}})}{q_{0} - t_{k}E_{\mathbf{p}+\mathbf{q}}^{s_{k}} + t_{p}E_{\mathbf{p}}^{s_{p}}} \times \left(t_{p}t_{k}E_{\mathbf{p}}^{s_{p}}E_{\mathbf{p}+\mathbf{q}}^{s_{k}} + s_{p}s_{k}\xi_{\mathbf{p}}^{s_{p}}\xi_{\mathbf{p}+\mathbf{q}}^{s_{k}} - |\Delta|^{2}\right) \right\}$$

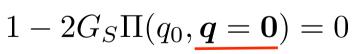
Similar equations can be derived for the other matrix elements

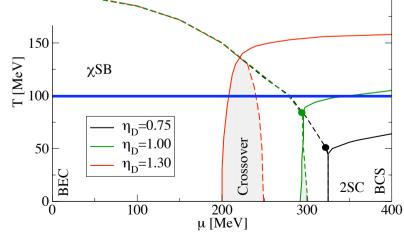
Sun et al. Phys. Rev. D **75** 096004 (2007) in the 2-color limit Ebert et al. Phys. Rev. C **72** 015201 (2005) $\mathcal{T}_{\mp}^{\pm}(s_p,s_k)=1 \text{ as } p \cdot \mathbf{k} \mp m^2 \\ E_{\mathbf{p}}E_{\mathbf{k}}$ in the T=0 limit

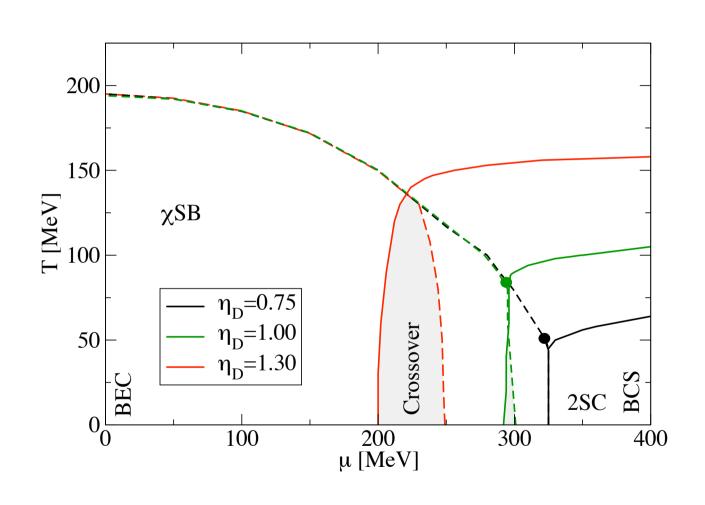
4.2 the pion mass



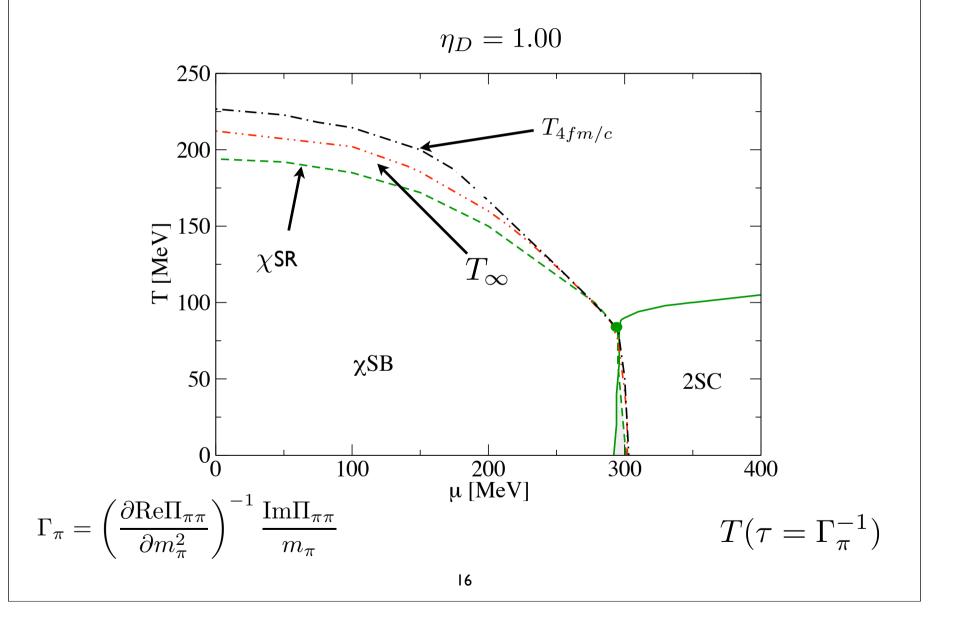
$$\Gamma_{\pi} = \left(\frac{\partial \text{Re}\Pi_{\pi\pi}}{\partial m_{\pi}^{2}}\right)^{-1} \frac{\text{Im}\Pi_{\pi\pi}}{m_{\pi}}$$



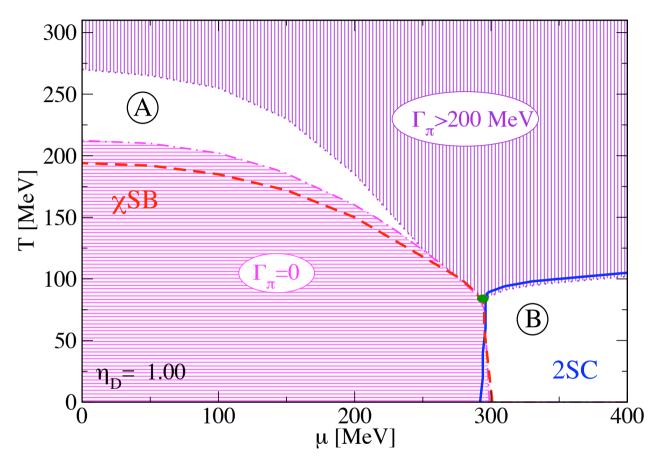




the phase diagram revisited



RHIC phenomenology



QGP probed in RHIC is far to be a perfect liquid; an explanation: strong correlations in the plasma

Shuryak and Zahed (PRL, 2003)

Region dominated by strong correlated states with a lifetime > 1 fm/c

summary and outlook

fluctuations are included in Gaussian approximation beyond MF; systematical treatment in the non-perturbative regime possible

some properties of mesons are studied diquark calculations almost finished new insight for phase diagram; important for HIC and CSs

investigate $\sigma - \delta$ -mixing

constraints of color and electrical neutrality and beta-equilibrium to be implemented (HIC and CSs) investigation of BEC-BCS crossover (strong coupling); see lectures of P.F. Zhuang

the same formalism can be applied to Nuclear MF theory under investigation together with G. Röpke and D. Blaschke

acknowledgments

Thanks for your attention