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Aim of the talk

2

investigation of the 
phase diagram of QCD 
beyond mean field level

in NJL framework



1. introduction to the problem

one challenging problem of quantum 
chromodynamics is

the study of phase 
diagram

T

µ

?
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1.1. what we know about phase diagram
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2. the effective model

how to give a reliable description in the region 
around the critical values of chemical potential?

5

perturbation theory cannot 
be applied in this region

we have to accept a good compromise. 
an effective model: 

the Nambu--Jona-Lasinio



2.1 Nambu--Jona-Lasinio

The NJL model of QCD mimics the quark-quark 
interaction mediated by gluons with an effective 

point-like four fermion interaction
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cons
 absence of gluon in the Lagrangian;

quarks are not confined; etc.

pro
a simple approach to the 

description of chiral symmetry 
breaking and phase transitions; 
analytical calculations possible



2.2 the starting point: the NJL Lagrangian
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color), with a current-current-type four-Fermion interaction inspired by one-gluon exchange (OGE). The Lagrangian
including diquark, scalar and pseudoscalar coupling has the following form

L = L0 + Lqq + Lqq̄ (1)

where the different terms are given by

L0 = q̄(i/∂ − m0 + µγ0)q (2)

Lqq̄ = GS

[

(q̄q)2 + (q̄iγ5τq)2
]

(3)

Lqq = GD

∑

A=2,5,7

[

q̄iγ5Cτ2λAq̄T
] [

qT iCγ5τ2λAq
]

(4)

where the quark field q is made of the direct product of a flavor doublet, a color triplet and a four component Dirac
spinor. Moreover the quarks are isotopic doublet, m0,u = m0,d = m0 and the chemical potential µ is the same for
the two flavors, µ = µu = µd. The γµ are the Dirac matrices, τ = (τ1, τ2, τ3) is the vector made of the three Pauli
matrices and λA (A = 2, 5, 7) are the antisymmetric Gell-Mann matrices acting respectively on the flavor and color
space. The operator C = iγ2γ0 is the charge conjugation matrix and GS , GD are the coupling strengths corresponding
respectively to the scalar and diquark channels. For symmetry reasons there should also be a pseudoscalar diquark
term in the Lagrangian. This term would be important to describe Goldstone boson condensation in the Color-
Flavor-Locked (CFL) phase [14]. In this work, however, we drop this term as we deal with a 2 flavor model. For the
numerical analysis we adopt parameters from [15] and consider GD as a free parameter of the model and it does not
depend on µ.

The partition function, which is a fundamental quantity for the description of a thermodynamic system, in the
imaginary time formalism of field theory at finite temperature, can be written as

Z =

∫

[dq] [dq̄] exp

[

∫ β

0

dτ

∫

d3x L

]

. (5)

After introducing the Hubbard-Stratonovich auxiliary fields, given by ∆A(x) = 2iGD

[

qT iCγ5τ2λAq
]

, ∆∗
A(x) =

−2iGD

[

q̄iγ5Cτ2λAq̄T
]

, π(x) = −2Gs [q̄iγ5τq] and σ(x) = −2Gs [q̄q], the partition function becomes

Z =

∫

[dq] [dq̄] [d∆A] [d∆∗
A] [dσ] [dπ] exp

[

∫ β

0

dτ

∫

d3xL

]

(6)

with

Leff = −
σ2 + π2

4GS
−

∆∗
A∆A

4GD
+ q̄(i/∂ − m0 + µγ0)q − q̄(σ + iγ5τ · π)q + i

∆∗
A

2
qT iCγ5τ2λAq − i

∆A

2
q̄iγ5Cτ2λAq̄T (7)

where the sum over repeated indices is implied. In the Nambu-Gorkov formalism, it is possible to get a more compact
form introducing the spinors as follows

Ψ ≡
1√
2

(

q
qc

)

Ψ̄ ≡
1√
2

(

q̄ q̄c
)

(8)

with qc(x) ≡ Cq̄T (x). Indeed the partition function now is

Z =

∫

[d∆A] [d∆∗
A] [dσ] [dπ] exp

[

∫ β

0

dτ

∫

d3x

(

−
σ2 + π2

4GS
−

∆∗
A∆A

4GD

)

]

∫

[dΨ]
[

dΨ̄
]

exp

[

∫ β

0

dτ

∫

d3x Ψ̄ S−1Ψ

]

(9)

with the inverse propagator defined as

S−1 ≡
(

i/∂ + µγ0 − m0 − σ − iγ5τ · π ∆Aγ5τ2λA

−∆∗
Aγ5τ2λA i/∂ − µγ0 − m0 − σ − iγ5τ

t · π

)

. (10)

The Hubbard-Stratonovich transformations allow to integrate out the quark degrees of freedom so that

Z =

∫

[d∆A] [d∆∗
A] [dσ] [dπ]

{

exp

[

∫ β

0

dτ

∫

d3x

(

−
σ2 + π2

4GS
−

∆∗
A∆A

4GD

)

]

exp
[

Tr
(

lnS−1
)]

}

, (11)

the partition function is now completely bosonized. It has to be pointed out that (11) is an exact transformation of
(5), where no further assumptions have been made.

For the description of hot, dense Fermi-systems, 
with strong short-range interactions we consider a Lagrangian 
with internal degrees of freedom (2-flavor, 3-color), 
with a current -current-type four-Fermion interaction
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q =





ψ1

ψ2

ψ3

ψ4



⊗
(

u
d

)
⊗




r
g
b




m0,u = m0,d = m0
µu = µd = µ

τ = (τ1, τ2, τ3) C = iγ2γ0

Scalar and pseudoscalar coupling strengthGS

GD Scalar diquark coupling strength



2.3 the partition function
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Hubbard-Stratonovich auxiliary fields

Nambu-Gorkov formalism
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the partition function is now completely bosonized. It has to be pointed out that (11) is an exact transformation of
(5), where no further assumptions have been made.

how to calculate this?

the mean field approximation (MFA)
decompose bosonic collective fields into a

homogeneous MF part fluctuation part+

order parameter:
characterization of phase structure correlations

σ → σMF + σ∆→ ∆MF + δ
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The task of evaluating the bosonized form of the partition function (5) requires the use of approximation methods.
In this paper we will decompose the bosonic collective fields into a homogeneous mean field part and a fluctuation
part. The mean field values represent the order parameters of the system and they characterize the phase structure,
while the fluctuations give rise to correlations. The properties of the partition function will be analyzed expanding
the action functional at the quadratic order in the fluctuations (Gaussian approximation) and the integration over
the fluctuating parts of the collective fields will result in a quantization of the system within path integral formalism.

We will start evaluating the thermodynamic potential in the mean field approximation (MFA) replacing the fields
by their mean field values and neglecting all the fluctuations. In MFA the partition function simplifies to
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where
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and σMF = −4GsTr (SMF ) ≡ m−m0, πMF = −4iGsTr (γ5τSMF ) = 0 and ∆MF ≡ +4GDTr (γ5τ2λ2SMF ). Rotating
the basis of diquark fields we can choose a direction in the color space in order to simplify the problem without any
loss of generality. In our case ∆2 ≡ ∆MF #= 0, ∆5 = ∆7 = 0. After the evaluation of the trace in the Nambu-Gorkov
(ng), Dirac (d), flavor (f) and color (c) spaces (Tr ≡ trngtrdtrf trc) and the sum over the Matsubara frequencies one
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∫

d3p

(2π)3

[

E+
p + E−

p + Ep + 2T ln(1 + e−βE+
p )
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p )
]

(14)

where we have defined the particle dispersion relation E±
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ξ±p
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+ ∆2 with ξ±p = Ep ± µ, Ep =
√

m2 + p2 and

nF (E) = (1 + eβE)−1. The ∆ #= 0 dispersion law is associated to the red-green quark (E−
p ) and antiquarks (E+

p ),
instead the blue ungapped quarks (antiquarks) are just related to ξ−p (ξ+

p ). The order parameters m, ∆ shall be chosen

to minimize the thermodynamical potential. This gives rise to gap equations ∂Ω
∂m

= ∂Ω
∂∆

= 0 which have to be solved
self-consistently. From (14) we get

m − m0 = 8GS m
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p )

] ξ−p
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p
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1 − 2nF (E+
p )

] ξ+
p

E+
p
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∫
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p )
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p
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1 − 2nF (E+

p )
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p
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and for zero temperature they take the simple form
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E−
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p

E+
p

+ Θ(ξ−p )
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∫
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(2π)3
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E−
p

+
1

E+
p

]

. (18)

The solutions of the system given by Eqs. (17) and (18) are two and they are associated to the normal phase (∆ = 0)
and to the 2SC phase (∆ #= 0). The parameters used to evaluate the integrals are: the cutoff Λ = 629.540 MeV, the
scalar coupling GSΛ2 = 2.17576 and the current mass m0 = 5.27697 MeV. The behaviour of m and ∆ as functions
of µ and η = GD/GS = 1.00 is plotted in Fig. 1. The critical value of µ for the first order transition to the 2SC
phase is 295 MeV with an endpoint temperature of 86 MeV. The order parameters m and ∆ bring the information
of chiral symmetry breaking (χSB). As we can see from the left panel of Fig. 1 the costituent quark mass decreases
rapidly for high values of µ. However the condition of perfect chiral symmetry restoration (χSR) is never reached due
to non-vanishing current quark mass m0. We will see later that this physical condition gives rise to a particular effect
around the χSB − χSR border.
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FIG. 1: (Color online).(Left panel) Behaviour of quark mass m (black online) and ∆ (blue online) as a function of µ for different
values of temperature T and η = GD/GS = 1.00. (Right panel) Behaviour of quark mass m (black online) and ∆ (blue online)
as a function of T for different values of µ and η = GD/GS = 1.00.

IV. BEYOND THE MEAN-FIELD: GAUSSIAN APPROXIMATION OF EFFECTIVE ACTION

Let us expand now the bosonic fields around their mean field values as ∆A → ∆MF,A + δA and σ → σMF + σ.
As we already noticed the pion does not cotribute to the mean field. Hence it is possible to decompose the inverse
propagator S−1 defined in Eq. (10) into a mean field part defined in Eq. (13), and a part due to fluctuations as follows

S−1 = S−1
MF + Σ ,

where the Σ term defined as

Σ ≡
(

−σ − iγ5τ · π δAγ5τ2λA

−δ∗Aγ5τ2λA −σ − iγ5τ
t · π

)

(19)

is associated to the quark-σ, quark-π and quark-diquark vertices. In this way we can expand the action functional at
the second order in the fluctuations and evaluate the partition function in the gaussian approximation. The expansion
of the propagator of Eq. (11) in the momentum space, transforms the functional determinant as

det
(

S−1
)

= det
(

S−1
MF

)

exp

{

−
1

2

∫

d4q

(2π)4

∫

d4p

(2π)4
Tr [SMF (p)Σ(q)SMF (p + q)Σ(q)]

}

(20)

where S−1
MF is defined in Eq. (13) and SMF is given by the matrix

SMF ≡
(

G+ F−

F+ G−

)

(21)

whose elements are

G±
p =

∑

sp

∑

tp

tp

2E
±sp
p

tpE
±sp
p − spξ

±sp
p

p0 − tpE
±sp
p

Λ
−sp
p γ0Prg +

∑

sp

1

p0 + spξ
±sp
p

Λ
−sp
p γ0Pb , (22)

F±
p = i

∑

sp

∑

tp

tp

2E
±sp
p

∆±
MF

p0 − tpE
±sp
p

Λ
sp
p γ5τ2λ2 , (23)

where sp, tp = ±1, (∆+
MF , ∆−) = (∆∗

MF , ∆MF ), Prg = diag(1, 1, 0), Pb = diag(0, 0, 1) and

Λ±
p =

1

2

[

1 ± γ0

(

γ · p + m̂

Ep

)]

.
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We will start evaluating the thermodynamic potential in the mean field approximation (MFA) replacing the fields
by their mean field values and neglecting all the fluctuations. In MFA the partition function simplifies to
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Tr
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MF
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MF γ5τ2λ2 i/∂ − µγ0 − m0 − σMF

)

. (13)

and σMF = −4GsTr (SMF ) ≡ m−m0, πMF = −4iGsTr (γ5τSMF ) = 0 and ∆MF ≡ +4GDTr (γ5τ2λ2SMF ). Rotating
the basis of diquark fields we can choose a direction in the color space in order to simplify the problem without any
loss of generality. In our case ∆2 ≡ ∆MF #= 0, ∆5 = ∆7 = 0. After the evaluation of the trace in the Nambu-Gorkov
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p )
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(14)
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p =

√
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ξ±p
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+ ∆2 with ξ±p = Ep ± µ, Ep =
√

m2 + p2 and

nF (E) = (1 + eβE)−1. The ∆ #= 0 dispersion law is associated to the red-green quark (E−
p ) and antiquarks (E+

p ),
instead the blue ungapped quarks (antiquarks) are just related to ξ−p (ξ+

p ). The order parameters m, ∆ shall be chosen

to minimize the thermodynamical potential. This gives rise to gap equations ∂Ω
∂m

= ∂Ω
∂∆

= 0 which have to be solved
self-consistently. From (14) we get
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p )
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1 − 2nF (E+

p )
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p
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p
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p
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p
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p
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The solutions of the system given by Eqs. (17) and (18) are two and they are associated to the normal phase (∆ = 0)
and to the 2SC phase (∆ #= 0). The parameters used to evaluate the integrals are: the cutoff Λ = 629.540 MeV, the
scalar coupling GSΛ2 = 2.17576 and the current mass m0 = 5.27697 MeV. The behaviour of m and ∆ as functions
of µ and η = GD/GS = 1.00 is plotted in Fig. 1. The critical value of µ for the first order transition to the 2SC
phase is 295 MeV with an endpoint temperature of 86 MeV. The order parameters m and ∆ bring the information
of chiral symmetry breaking (χSB). As we can see from the left panel of Fig. 1 the costituent quark mass decreases
rapidly for high values of µ. However the condition of perfect chiral symmetry restoration (χSR) is never reached due
to non-vanishing current quark mass m0. We will see later that this physical condition gives rise to a particular effect
around the χSB − χSR border.
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FIG. 1: (Color online).(Left panel) Behaviour of quark mass m (black online) and ∆ (blue online) as a function of µ for different
values of temperature T and η = GD/GS = 1.00. (Right panel) Behaviour of quark mass m (black online) and ∆ (blue online)
as a function of T for different values of µ and η = GD/GS = 1.00.

IV. BEYOND THE MEAN-FIELD: GAUSSIAN APPROXIMATION OF EFFECTIVE ACTION

Let us expand now the bosonic fields around their mean field values as ∆A → ∆MF,A + δA and σ → σMF + σ.
As we already noticed the pion does not cotribute to the mean field. Hence it is possible to decompose the inverse
propagator S−1 defined in Eq. (10) into a mean field part defined in Eq. (13), and a part due to fluctuations as follows

S−1 = S−1
MF + Σ ,

where the Σ term defined as

Σ ≡
(

−σ − iγ5τ · π δAγ5τ2λA

−δ∗Aγ5τ2λA −σ − iγ5τ
t · π

)

(19)

is associated to the quark-σ, quark-π and quark-diquark vertices. In this way we can expand the action functional at
the second order in the fluctuations and evaluate the partition function in the gaussian approximation. The expansion
of the propagator of Eq. (11) in the momentum space, transforms the functional determinant as

det
(

S−1
)

= det
(

S−1
MF

)

exp

{

−
1

2

∫

d4q

(2π)4

∫

d4p

(2π)4
Tr [SMF (p)Σ(q)SMF (p + q)Σ(q)]

}

(20)

where S−1
MF is defined in Eq. (13) and SMF is given by the matrix

SMF ≡
(

G+ F−

F+ G−

)

(21)

whose elements are

G±
p =

∑

sp

∑

tp

tp

2E
±sp
p

tpE
±sp
p − spξ

±sp
p

p0 − tpE
±sp
p

Λ
−sp
p γ0Prg +

∑

sp

1

p0 + spξ
±sp
p

Λ
−sp
p γ0Pb , (22)

F±
p = i

∑

sp

∑

tp

tp

2E
±sp
p

∆±
MF

p0 − tpE
±sp
p

Λ
sp
p γ5τ2λ2 , (23)

where sp, tp = ±1, (∆+
MF , ∆−) = (∆∗

MF , ∆MF ), Prg = diag(1, 1, 0), Pb = diag(0, 0, 1) and

Λ±
p =

1

2

[

1 ± γ0

(

γ · p + m̂

Ep

)]

.

1

Tr[ln(S−1)] = Tr[ln(S−1

MF
+ Σ)] (1)

= Tr{ln[S−1

MF
(1 + SMF Σ)]} (2)

= Tr lnS
−1

MF
+ Tr ln[1 + SMF Σ] (3)

= Tr lnS
−1

MF
+ Tr[SMF Σ −

1

2
SMF ΣSMF Σ + . . . ] (4)

2

color), with a current-current-type four-Fermion interaction inspired by one-gluon exchange (OGE). The Lagrangian
including diquark, scalar and pseudoscalar coupling has the following form

L = L0 + Lqq + Lqq̄ (1)

where the different terms are given by

L0 = q̄(i/∂ − m0 + µγ0)q (2)

Lqq̄ = GS

[

(q̄q)2 + (q̄iγ5τq)2
]

(3)

Lqq = GD

∑

A=2,5,7

[

q̄iγ5Cτ2λAq̄T
] [

qT iCγ5τ2λAq
]

(4)

where the quark field q is made of the direct product of a flavor doublet, a color triplet and a four component Dirac
spinor. Moreover the quarks are isotopic doublet, m0,u = m0,d = m0 and the chemical potential µ is the same for
the two flavors, µ = µu = µd. The γµ are the Dirac matrices, τ = (τ1, τ2, τ3) is the vector made of the three Pauli
matrices and λA (A = 2, 5, 7) are the antisymmetric Gell-Mann matrices acting respectively on the flavor and color
space. The operator C = iγ2γ0 is the charge conjugation matrix and GS , GD are the coupling strengths corresponding
respectively to the scalar and diquark channels. For symmetry reasons there should also be a pseudoscalar diquark
term in the Lagrangian. This term would be important to describe Goldstone boson condensation in the Color-
Flavor-Locked (CFL) phase [14]. In this work, however, we drop this term as we deal with a 2 flavor model. For the
numerical analysis we adopt parameters from [15] and consider GD as a free parameter of the model and it does not
depend on µ.

The partition function, which is a fundamental quantity for the description of a thermodynamic system, in the
imaginary time formalism of field theory at finite temperature, can be written as

Z =

∫

[dq] [dq̄] exp

[

∫ β

0

dτ

∫

d3x L

]

. (5)

After introducing the Hubbard-Stratonovich auxiliary fields, given by ∆A(x) = 2iGD

[

qT iCγ5τ2λAq
]

, ∆∗
A(x) =

−2iGD

[

q̄iγ5Cτ2λAq̄T
]

, π(x) = −2Gs [q̄iγ5τq] and σ(x) = −2Gs [q̄q], the partition function becomes

Z =

∫

[dq] [dq̄] [d∆A] [d∆∗
A] [dσ] [dπ] exp

[

∫ β

0

dτ

∫

d3xL

]

(6)

with

Leff = −
σ2 + π2

4GS
−

∆∗
A∆A

4GD
+ q̄(i/∂ − m0 + µγ0)q − q̄(σ + iγ5τ · π)q + i

∆∗
A

2
qT iCγ5τ2λAq − i

∆A

2
q̄iγ5Cτ2λAq̄T (7)

where the sum over repeated indices is implied. In the Nambu-Gorkov formalism, it is possible to get a more compact
form introducing the spinors as follows

Ψ ≡
1√
2

(

q
qc

)

Ψ̄ ≡
1√
2

(

q̄ q̄c
)

(8)

with qc(x) ≡ Cq̄T (x). Indeed the partition function now is

Z =

∫

[d∆A] [d∆∗
A] [dσ] [dπ] exp

[

∫ β

0

dτ

∫

d3x

(

−
σ2 + π2

4GS
−

∆∗
A∆A

4GD

)

]

∫

[dΨ]
[

dΨ̄
]

exp

[

∫ β

0

dτ

∫

d3x Ψ̄ S−1Ψ

]

(9)

with the inverse propagator defined as

S−1 ≡
(

i/∂ + µγ0 − m0 − σ − iγ5τ · π ∆Aγ5τ2λA

−∆∗
Aγ5τ2λA i/∂ − µγ0 − m0 − σ − iγ5τ

t · π

)

. (10)

The Hubbard-Stratonovich transformations allow to integrate out the quark degrees of freedom so that

Z =

∫

[d∆A] [d∆∗
A] [dσ] [dπ]

{

exp

[

∫ β

0

dτ

∫

d3x

(

−
σ2 + π2

4GS
−

∆∗
A∆A

4GD

)

]

exp
[

Tr
(

lnS−1
)]

}

, (11)

the partition function is now completely bosonized. It has to be pointed out that (11) is an exact transformation of
(5), where no further assumptions have been made.

Tr (SMF ΣSMF Σ) = (π, σ, δ∗2 , δ2, δ
∗
5 , δ∗7)





Πππ 0 0 0 0 0
0 Πσσ Πσδ2 Πσδ∗2 0 0
0 Πδ∗2σ Πδ∗2δ2 Πδ∗2δ∗2 0 0
0 Πδ2σ Πδ2δ2 Πδ2δ∗2 0 0
0 0 0 0 Πδ∗5δ5 0
0 0 0 0 0 Πδ∗7δ7









π
σ
δ2

δ∗2
δ5

δ7





Σ ≡
(
−σ − iγ5τ · π δAγ5τ2λA

−δ∗Aγ5τ2λA −σ − iγ5τ t · π

)

ln-expansion around MF values



4.1 meson polarization functions and masses
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Πππ(q0,q) = 2
∫

d3p

(2π)3
∑

sp,sk

T +
− (sp, sk)

{
nF (spξ

sp
p )− nF (skξsk

p+q)
q0 − skξsk

p+q + spξ
sp
p

−
nF (spξ

sp
p )− nF (skξsk

p+q)
q0 + skξsk

p+q − spξ
sp
p

+
∑

tp,tk

tptk
E

sp
p Esk

p+q

nF (tpE
sp
p )− nF (tkEsk

p+q)
q0 − tkEsk

p+q + tpE
sp
p

(
tptkE

sp
p Esk

p+q + spskξ
sp
p ξsk

p+q − |∆|2
)





T ±∓ (sp, sk) = 1 ± spsk
p · k∓m2

EpEk

Πσσ(q0,q) = 2
∫

d3p

(2π)3
∑

sp,sk

T −− (sp, sk)
{

nF (spξ
sp
p )− nF (skξsk

p+q)
q0 − skξsk

p+q + spξ
sp
p

+
nF (spξ

sp
p )− nF (skξsk

p+q)
q0 + skξsk

p+q − spξ
sp
p

+
∑

tp,tk

tptk
E

sp
p Esk

p+q

nF (tpE
sp
p )− nF (tkEsk

p+q)
q0 − tkEsk

p+q + tpE
sp
p

×
(
tptkE

sp
p Esk

p+q + spskξ
sp
p ξsk

p+q − |∆|2
) }

Similar equations can be derived for the other matrix elements
Sun et al. Phys. Rev. D 75 096004 (2007)
in the 2-color limit
Ebert et al. Phys. Rev. C 72 015201 (2005) 
in the T=0 limit



4.2 the pion mass
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1− 2GSΠ(q0, q = 0) = 0
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the phase diagram MF
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RHIC phenomenology

17

QGP probed in RHIC is far to be a 
perfect liquid; an explanation: 
strong correlations in the plasma

Shuryak and Zahed (PRL, 
2003)

Region dominated by strong 
correlated states with 
a lifetime > 1 fm/c



summary and outlook
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fluctuations are included in Gaussian approximation beyond MF; 
systematical treatment in the non-perturbative regime possible

some properties of mesons are studied
diquark calculations almost finished

new insight for phase diagram; important for HIC and CSs

constraints of color and electrical neutrality and beta-equilibrium to be 
implemented (HIC and CSs)

investigation of BEC-BCS crossover (strong coupling);
see lectures of P.F. Zhuang

the same formalism can be applied to Nuclear MF theory
under investigation together with G. Röpke and D. Blaschke

investigate         -mixingσ − δ
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