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Introduction

Hydrodynamics as applied to heavy-ion collisions gives us possibilities for
extracting information about global properties of compressed and hot nuclear
matter. In this talk | consider a hydrodynamic approach to description of evolution
of system produced in heavy-ion central collisions.

Nuclear matter may be in different phase states and suffers a phase transition.

How can this phenomena influence
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In the first steps of the research we use the simple model of first order phase
transition in nuclear matter with zero chemical potential. This model let us get
to know, what we should expect in more complicated cases.

It based on the developed 1+1 dimensional hydrodynamic model with
dynamics of phase transition. Assuming an existence of hadron, quark-gluon
and mixed phases in nuclear matter we describe the phase transition taking

into account thermal nonequilibrium in the system.



The relaxation approximation for phase transition
IN nuclear matter

Conservation laws: 0, T*" =0, (1)
o ,N{=0.
In perfect fluid approximation  T#" = (g + P)u“u” — Pg*",
NZ =ngu”.

Mixed phase is a mixture of hadron and quark-gluon phases.

If both phases have the same collective velocity U’ we can use
following expressions for each of them:

T = (& +P)u“u” - Pg",
Ngi =ngu”, where j=1,1| defines the phase.

T4 = AT," + (- A)T,",
Ng =ANg, + (1-A)Ng,; A=V, IV



We assume the existence of mechanical equilibrium for mixed phase (P| — P” — P)

and consider the system with zero chemical potentials (g, = g, =0)

Thenwe have T =(4g, +(1-A)g, + P)u“u”" —g“'P (2
e=de, +(1-21)e, @
Rewrite equation (1) as a set of equations, taking into account (2) and (3) :
uo,e+(e+P)ou” =0,
(¢ + P)u“o u, +uu“o,P-0,P=0.

(4)

To simulate thermal non-equilibrium we define 4 in relaxation time approximation:
FoA=4,-4. (5
Here 4 . is given by the Gibbs conditions: P, = P, T, =T, , ¢, = ¢,,. (6)

Obviously in mixed phase A changes in the range from 0 to 1

If the relaxation timeI'=0 then 4 = 1. and phase transition proceeds in a way

defined by the Gibbs conditions (6). (Maxwell construction)



Hadron EoS: Quark-gluon EoS: .
2

T
P.=aT.4,a=g”%,gﬂ=3. PllzﬂTlf_B’ﬂ:gg%’gg:]ﬁ-

B =0.1946 GeV/fm®.
dP

- Fy —BﬂTu +B.

Gibbs conditions (6) define the temperature of phase transition

T, =4 ,BB ~0.18GeV. AUNE ;“B ~ 0.1347 GeV/fm 3,
3B
Ao (€) = l (ZptB) £ ©) en(Ty) = ﬂ'B — B ~ 0.9131 GeV/fm°.

We solve system (4) completed by (7) or (8) in case of pure hadron or
guark-gluon phase, respectively.

In the mixed phase case we solve system (4) completed by relaxation
eqguation (5) and expression (9) for A eq



Application to Bjorken expansion with phase

transition
de D . B Initial conditions:
a+?(5+ P)=0, assuming D=1. . = 1fmic
10 ,) = 2.75 GeV/fm °
r 4 4o i)
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Fig.1: Energy density vs. the proper time Fig.2: Pressure dependence on the
for various values of the relaxation time I’ proper time for various relaxation times )
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Fig. 3: Pressure as a function of energy density Fig. 4: Ratio P/ ¢ as a function of energy
for various relaxation times I'. (Effective EoS) density for various values of the

Black triangles illustrate the proper time steps. relaxation time

The value of step is equal to 1 fm/c.

Fig.3 illustrate that in caseI’ — 0 EoS
obtained by solving (10) corresponds to
Maxwell construction.

We can see also that the evolution of system delays with increasing of
proper time.



Application to 1+1 D hydrodynamic model in the
Cartesian coordinates

In case of 1+1 hydrodynamic model system (4) is reduced to

VO,P+0,P+y*(g+P)(0y+Vvo, V) =0,

0,6+V0, e+y°(e+P)(VOoyv+0,v)=0; where Vzﬁ,yz —
—V

Initial conditions:  t, = 0 fml/c,

&o] 1 - tanh( ky|x - k,|)]
4
1+ tanh( k,|x - k,|)
> .

yA
)

e(x,t,) =

v(X,t) = sgn( x)

g, = 2GeV/fm’ accords to E,,, = 40AGeV

k, and k,are coefficients which are taken in agreement with initial radius of system
at E_, =40AGev.
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Space distributions of energy density at fixed times t .

Fig. 5,6,7 correspond to phase transitions with various values of the relaxation time I,
Fig. 8 illustrates the expansion of fireball without phase transition.
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Fig. 9: time-dependence of one dimensional Fig. 10: dependence of 1D volume-

volume of whole system for various relaxation averaged energy density on time for various
times I’ values of the relaxation time I

The total volume of expanding system weakly depends on
relaxation time (Fig. 9)
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Fig.11: dependence of 1D volume-averaged Fig. 12: 1D volume-averaged pressure as

pressure on time for various relaxation a function of 1D volume-averaged energy

times I’ density for various values of the
relaxation time I

When relaxation time 1" goes to 0, effective EoS is similar to
Maxwell construction (Fig. 12).
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Fig. 15: little 1D volume-averaged pressure as
a function of little 1D volume-averaged energy

density for various values of the relaxation time I’ .

Obtained as implicit functlon by using
time-dependencies (& )(t) (Fig.13)
and Pst) (Fig.14).



Fig.16:. Freeze out profiles for various values of the relaxation time I

Freeze out energy density &, = 0.5GeV/fm®




Summary

Dynamical model of the first order phase transition
In the relaxation time approximation has been
constructed.

Existence of phase transition delays evolution of
system.

The experimental observables which may be

sensitive to the dynamics of phase transition:
Dileptons and direct photons (dileptons from mixed

phase, see V.D. ToneeV’s lecture).

Finite baryon chemical potential,
3D calculations with a realistic EoS are to
be done.
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