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Introduction

Hydrodynamics as applied to heavy-ion collisions gives us possibilities for 

extracting information about global properties of compressed and hot nuclear 

matter. In this talk I consider a hydrodynamic approach to description of evolution 

of  system produced in heavy-ion central collisions. 

Nuclear matter may be in  different phase states and suffers a phase transition. 

http://www.gsi.de/

How can this phenomena  influence 

on hydrodynamics of expanding 

fireball ?

The main goal of our research is to 

investigate the first order phase 

transitions in mixed phase region 

and apply obtained knowledge to 

hydrodynamic description of system.



In the first steps of the research we use the simple model of first order phase 

transition in nuclear matter with zero chemical potential. This model let us get 

to know, what we should expect in more complicated cases.

It based on the  developed 1+1 dimensional hydrodynamic model with 

dynamics of phase transition. Assuming an existence of hadron, quark-gluon 

and mixed phases in nuclear matter we describe the phase transition taking 

into account thermal nonequilibrium in the system. 



The relaxation approximation for phase transition 
in nuclear matter
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Conservation laws:

If both phases have the same collective velocity      ,  we can use 
following expressions for each of them: 
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Mixed phase is a mixture of hadron and quark-gluon phases.
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We assume the existence of mechanical equilibrium for mixed phase      )( PPP III ==

and consider the system with zero chemical potentials           . )0(   == IIBIB μμ

Then we have PguuPT III
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Rewrite equation (1) as a set of equations, taking into account (2) and (3) :
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To simulate thermal non-equilibrium we define     in relaxation time approximation:λ

. λλλ −=∂Γ eqt

Here       is given by the Gibbs conditions: eqλ .,, IIIIIIIII TTPP μμ ===
(5)

(4)

(6)

If  the relaxation time          then 0=Γ eqλλ = and phase transition proceeds  in a way

defined by the Gibbs conditions (6). (Maxwell construction)

Obviously in mixed phase       changes in the range from 0 to 1λ



Hadron EoS:
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Quark-gluon EoS:

Gibbs conditions (6) define the temperature of phase transition
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We solve system (4) completed by (7) or (8) in case of pure hadron or 
quark-gluon phase, respectively.

(7) (8)

In the mixed phase case we solve system (4) completed by relaxation 
equation (5) and expression (9) for         .eq

(9)

λ



Application to Bjorken expansion with phase 
transition

1=Dassuming          .

Fig.1: Energy density vs. the proper time 
for various values of the relaxation time       Γ

Fig.2: Pressure dependence on the 
proper time for various relaxation times 
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Fig. 3: Pressure as a function of energy density 
for various relaxation times     . (Effective EoS)
Black triangles illustrate the proper time steps.
The value of step is equal to 1 fm/c.

Fig. 4: Ratio P/    as a function of energy 
density for various values of the
relaxation time

ε
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Γ

Fig.3  illustrate that in case             EoS 
obtained by solving (10) corresponds to
Maxwell construction.

0→Γ

We can see also that the evolution of system delays with increasing of 
proper time.

The softest 
points



Application to 1+1 D hydrodynamic model in the 
Cartesian coordinates

In case of 1+1 hydrodynamic model system (4) is reduced to
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Space distributions of energy density at fixed times t .
Fig. 5,6,7 correspond to phase transitions with various values of the relaxation time      . 
Fig. 8 illustrates the expansion of fireball without phase transition.
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Phase transition 
slows down 
evolution of the 
system. 
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Fig. 10: dependence of 1D volume-
averaged energy density on time for various 
values of the relaxation time Γ

Fig. 9: time-dependence of one dimensional 
volume of whole system for various relaxation 
times Γ

The total volume of expanding system weakly depends on
relaxation time (Fig. 9) 



Fig.11: dependence of 1D volume-averaged
pressure on time for various relaxation 
times Γ

Fig. 12: 1D volume-averaged pressure as
a function of 1D volume-averaged energy
density for various values of the 
relaxation time Γ

When relaxation time goes to 0, effective EoS is similar to 
Maxwell construction (Fig. 12).  
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Fig. 13: little 1D volume-averaged energy 
density vs. time for various relaxation
times Γ

Fig. 14: little 1D volume-averaged pressure 
vs. time for various relaxation times Γ



Fig. 15: little 1D volume-averaged pressure as
a function of little 1D volume-averaged energy
density for various values of the relaxation time Г .

Obtained as implicit function by using
time-dependencies              (Fig.13)  
and              (Fig.14).
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It reproduces Maxwell construction
for Г=0.001 fm/c  more precisely than
effective EoS from Fig.12



Fig.16: Freeze out  profiles for various values of the relaxation time    .    
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Summary
Dynamical model of the first order phase transition
in the relaxation time approximation has been 
constructed. 
Existence of phase transition delays evolution of 
system. 
The experimental observables which may be
sensitive to the dynamics of phase transition:
Dileptons and direct photons (dileptons from mixed

phase, see V.D. Toneev’s lecture).

Finite baryon chemical potential,
3D calculations with a realistic EoS are to
be done. 
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