EFFECTIVE FIELD THEORIES FOR HOT AND DENSE MATTER (II) NJL MODEL AND ITS RELATIVES

David Blaschke

Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

• NJL Model and its Polyakov-Loop Extension:

- Mesonic correlations Mott Effect
- Polyakov-Loop NJL Model
- Nonlocal, separable NJL Model
 - 3D Formfactors, 4D Formfactors and Phase Diagram
 - -Rank-2 Extension Schwinger-Dyson type Approach
- Summary / Outlook to a Unified Quark-Hadron Approach

Literature: Hansen et al., Phys. Rev. D75, 065004 (2007); Gomez Dumm et al., Phys. Rev. D73, 114019 (2006); arXiv:0807.1660; Blaschke et al., arXiv:0705.0384; Schmidt et al., Phys. Rev. C50, 435 (1994); Zablocki at al., arXiv:0805.2687

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

CHIRAL MODEL FIELD THEORY FOR QUARK MATTER

• Partition function as a Path Integral (imaginary time $\tau = i t$)

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left\{-\int_{V}^{\beta} d\tau \int_{V} d^{3}x [\bar{\psi}[i\gamma^{\mu}\partial_{\mu} - m - \gamma^{0}(\mu + \lambda_{8}\mu_{8} + i\lambda_{3}\phi_{3}]\psi - \mathcal{L}_{\text{int}} + U(\Phi)]\right\}$$

Polyakov loop: $\Phi = N_c^{-1} \text{Tr}_c[\exp(i\beta\lambda_3\phi_3)]$

- Current-current interaction (4-Fermion coupling) $\mathcal{L}_{\text{int}} = \sum_{M=\pi,\sigma,\dots} G_M (\bar{\psi}\Gamma_M \psi)^2 + \sum_D G_D (\bar{\psi}^C \Gamma_D \psi)^2$
- Bosonization (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int \mathcal{D}M_M \mathcal{D}\Delta_D^{\dagger} \mathcal{D}\Delta_D \exp\left\{-\sum_{M, D} \frac{M_M^2}{4G_M} - \frac{|\Delta_D|^2}{4G_D} + \frac{1}{2} \operatorname{Tr} \ln S^{-1}[\{M_M\}, \{\Delta_D\}, \Phi] + U(\Phi)\right\}$$

- Collective quark fields: Mesons (M_M) and Diquarks (Δ_D); Gluon mean field: Φ
- Systematic evaluation: Mean fields + Fluctuations
 - -Mean-field approximation: order parameters for phase transitions (gap equations)
 - Lowest order fluctuations: hadronic correlations (bound & scattering states)
 - Higher order fluctuations: hadron-hadron interactions

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (I)

 $SU(N_c)$ pure gauge sector: Polyakov line

$$L(\vec{x}) \equiv \mathcal{P} \exp\left[i \int_{0}^{\beta} d\tau A_{4}(\vec{x},\tau)\right] ; \quad A_{4} = iA^{0}$$

Polyakov loop

$$l(\vec{x}) = \frac{1}{N_c} \text{Tr}L(\vec{x}) , \quad \langle l(\vec{x}) \rangle = e^{-\beta \Delta F_Q(\vec{x})}.$$

 \mathbf{Z}_{N_c} symmetric phase: $\langle l(\vec{x}) \rangle = 0 \implies \Delta F_Q \rightarrow \infty$: Confinement ! Polyakov loop field:

$$\Phi(\vec{x}) \equiv \langle\!\langle l(\vec{x}) \rangle\!\rangle = \frac{1}{N_c} \operatorname{Tr}_c \langle\!\langle L(\vec{x}) \rangle\!\rangle$$

Potential for the PL-meanfield $\Phi(\vec{x})$ =const., which fits quenched QCD lattice thermodynamics

$$\frac{\mathcal{U}\left(\Phi,\Phi;T\right)}{T^4} = -\frac{b_2\left(T\right)}{2}\bar{\Phi}\Phi - \frac{b_3}{6}\left(\Phi^3 + \bar{\Phi}^3\right) + \frac{b_4}{4}\left(\bar{\Phi}\Phi\right)^2 ,$$

$$b_2\left(T\right) = a_0 + a_1\left(\frac{T_0}{T}\right) + a_2\left(\frac{T_0}{T}\right)^2 + a_3\left(\frac{T_0}{T}\right)^3 . \qquad \boxed{\begin{array}{c|c}a_0 & a_1 & a_2 & a_3 & b_3 & b_4\\\hline \mathbf{6.75} & -\mathbf{1.95} & \mathbf{2.625} & -\mathbf{7.44} & \mathbf{0.75} & \mathbf{7.5}\end{array}}$$

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (II)

Temperature dependence of the Polyakov-loop potential $U(\Phi, \overline{\Phi}; T)$

 $T = 0.26 \text{ GeV} < T_0$ "Color confinement" $T = 1.0 \text{ GeV} > T_0$ "Color deconfinement"

Critical temperature for pure gauge $SU_c(3)$ lattice simulations: $T_0 = 270$ MeV.

POLYAKOV-LOOP NAMBU-JONA-LASINIO MODEL (III)

Lagrangian for $N_f = 2$, $N_c = 3$ quark matter, coupled to the gauge sector

$$\mathcal{L}_{PNJL} = ar{q}(i\gamma^{\mu}D_{\mu} - \hat{m} + \gamma_{0}\mu)q + G_{1}\left[\left(ar{q}q
ight)^{2} + \left(ar{q}i\gamma_{5}ec{ au}q
ight)^{2}
ight] - \mathcal{U}\left(\Phi[A], ar{\Phi}[A]; T
ight),$$

 $D^{\mu} = \partial^{\mu} - iA^{\mu}$; $A^{\mu} = \delta^{\mu}_{0}A^{0}$ (Polyakov gauge), with $A^{0} = -iA_{4}$ Diagrammatic Hartree equation: — = — + _____

$$S_0(p) = -(\not p - m_0 + \gamma^0(\mu - iA_4))^{-1}; \quad S(p) = -(\not p - m + \gamma^0(\mu - iA_4))^{-1}$$

Dynamical chiral symmetry breaking $\sigma = m - m_0 \neq 0$? Solve Gap Equation!

$$m - m_0 = 2G_1 T \operatorname{Tr} \sum_{n = -\infty}^{+\infty} \int_{\Lambda} \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{-1}{\not{p} - m + \gamma^0 (\mu - iA_4)}$$
$$= 2G_1 N_f N_c \int_{\Lambda} \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{2m}{E_p} [1 - f_{\Phi}^+(E_p) - f_{\Phi}^-(E_p)]$$

With the modified quark distribution functions

$$f_{\Phi}^{\pm}(E_p) = \frac{\left(\Phi + 2\bar{\Phi}e^{-\beta(E_p \mp \mu)}\right)e^{-\beta(E_p \mp \mu)} + e^{-3\beta(E_p \mp \mu)}}{1 + 3\left(\Phi + \bar{\Phi}e^{-\beta(E_p \mp \mu)}\right)e^{-\beta(E_p \mp \mu)} + e^{-3\beta(E_p \mp \mu)}}$$

POLYAKOV-LOOP NAMBU-JONA-LASINIO MODEL (IV)

Grand canonical thermodynamical potential

$$\Omega(T,\mu;\Phi,m) = \frac{\sigma^2}{2G} - 6N_f \int \frac{\mathrm{d}^3 p}{(2\pi)^3} E_p \,\theta \left(\Lambda^2 - \vec{p}^{\ 2}\right) - 2N_f T \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left\{ \mathrm{Tr}_c \ln \left[1 + L \,\mathrm{e}^{-(E_p - \mu)/T} \right] \right\} + \mathrm{Tr}_c \ln \left[1 + L^{\dagger} \,\mathrm{e}^{-(E_p + \mu)/T} \right] \right\} + \mathcal{U}\left(\Phi, \bar{\Phi}, T\right)$$

Appearance of quarks below T_c largely suppressed:

$$\ln \det \left[1 + L e^{-(E_p - \mu)/T} \right] + \ln \det \left[1 + L^{\dagger} e^{-(E_p + \mu)/T} \right]$$

=
$$\ln \left[1 + 3 \left(\Phi + \bar{\Phi} e^{-(E_p - \mu)/T} \right) e^{-(E_p - \mu)/T} + e^{-3(E_p - \mu)/T} + \ln \left[1 + 3 \left(\bar{\Phi} + \Phi e^{-(E_p + \mu)/T} \right) e^{-(E_p + \mu)/T} + e^{-3(E_p + \mu)/T} \right]$$

Accordance with QCD lattice susceptibilities! Example:

$$\frac{n_{q}\left(T,\mu\right)}{T^{3}}=-\frac{1}{T^{3}}\frac{\partial\Omega\left(T,\mu\right)}{\partial\mu}$$

Ratti, Thaler, Weise, PRD 73 (2006) 014019.

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (V)

Mesonic currents

$$J_P^a(x) = \bar{q}(x)i\gamma_5\tau^a q(x) \quad \text{(pion)}; \quad J_S(x) = \bar{q}(x)q(x) - \langle \bar{q}(x)q(x) \rangle \quad \text{(sigma)}$$

... and correlation functions

$$C_{ab}^{PP}(q^2) \equiv i \int d^4x e^{iq.x} \langle 0|T\left(J_P^a(x)J_P^{b\dagger}(0)\right)|0\rangle = C^{PP}(q^2)\delta_{ab}$$
$$C_{ab}^{SS}(q^2) \equiv i \int d^4x e^{iq.x} \langle 0|T\left(J_S(x)J_S^{\dagger}(0)\right)|0\rangle$$

Schwinger-Dyson Equations, $T=\mu=0$

$$C^{MM}(q^2) = \Pi^{MM}(q^2) + \sum_{M'} \Pi^{MM'}(q^2)(2G_1)C^{M'M}(q^2)$$

One-loop polarization functions

$$\Pi^{MM'}(q^2) \equiv \int_{\Lambda} \frac{d^4p}{(2\pi)^4} \operatorname{Tr}\left(\Gamma_M S(p+q) \Gamma_{M'} S(q)\right)$$

Hartree quark propagator S(p)

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (VI)

Example of the pion channel:

$$\Pi^{PP}(q^2) = -4iN_c N_f \int_{\Lambda} \frac{d^4 p}{(2\pi)^4} \frac{m^2 - p^2 + q^2/4}{[(p+q/2)^2 - m^2][(p-q/2)^2 - m^2]} = 4iN_c N_f I_1 - 2iN_c N_f q^2 I_2(q^2)$$

Loop Integrals:

$$I_1 = \int_{\Lambda} \frac{d^4 p}{(2\pi)^4} \frac{1}{p^2 - m^2} \quad ; \quad I_2(q^2) = \int_{\Lambda} \frac{d^4 p}{(2\pi)^4} \frac{1}{[(p+q)^2 - m^2] [p^2 - m^2]}$$

With pseudoscalar decay constant (f_P) and gap equation for I_1

$$f_P^2(q^2) = -4iN_c m^2 I_2(q^2)$$
; $I_1 = \frac{m - m_0}{8iG_1 m N_c N_f}$,

One obtains $\Pi^{PP}(q^2) = \frac{m-m_0}{2G_1m} + f_P^2(q^2)\frac{q^2}{m^2}$; $\Pi^{SS}(q^2) = \frac{m-m_0}{2G_1m} + f_P^2(q^2)\frac{q^2-4m^2}{m^2}$. In the chiral limit $(m_0 = 0)$, the correlation functions

$$C^{MM}(q^2) = \Pi^{MM}(q^2) + \Pi^{MM}(q^2)(2G_1)C^{MM}(q^2) = \frac{\Pi^{MM}(q^2)}{1 - 2G_1\Pi^{MM}(q^2)} , \quad M = P, S ,$$

have poles at $q^2 = M_P^2 = 0$ (Pion) and $q^2 = M_S^2 = (2m)^2$ (Sigma meson) \Longrightarrow Check !

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (VII)

Finite
$$T, \mu$$
: $p = (p_0, \vec{p}) \rightarrow (i\omega_n + \mu - iA_4, \vec{p})$; $i \int_{\Lambda} \frac{d^4p}{(2\pi)^4} \rightarrow -T \frac{1}{N_c} \operatorname{Tr}_c \sum_n \int_{\Lambda} \frac{d^3p}{(2\pi)^3}$
 $I_1 = -i \int_{\Lambda} \frac{d^3p}{(2\pi)^3} \frac{1 - f(E_p - \mu) - f(E_p + \mu)}{2E_p}$
 $I_2(\omega, \vec{q}) = i \int_{\Lambda} \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p 2E_{p+q}} \frac{f(E_p + \mu) + f(E_p - \mu) - f(E_{p+q} + \mu) - f(E_{p+q} - \mu)}{\omega - E_{p+q} + E_p}$
 $+ i \int_{\Lambda} \frac{d^3p}{(2\pi)^3} \frac{1 - f(E_p - \mu) - f(E_{p+q} + \mu)}{2E_p 2E_{p+q}} \left(\frac{1}{\omega + E_{p+q} + E_p} - \frac{1}{\omega - E_{p+q} - E_p}\right)$ (1)

For a meson at rest in the medium ($\vec{q} = 0$)

$$I_2\left(\omega,\vec{0}\right) = -i \int_{\Lambda} \frac{d^3p}{(2\pi)^3} \frac{1 - f(E_p + \mu) - f(E_p - \mu)}{E_p\left(\omega^2 - 4E_p^2\right)}$$

which develops an imaginary part

$$\Im m \left(-iI_2(\omega,0)\right) = \frac{1}{16\pi} \left(1 - f\left(\frac{\omega}{2} - \mu\right) - f\left(\frac{\omega}{2} + \mu\right)\right) \sqrt{\frac{\omega^2 - 4m^2}{\omega^2}} \times \Theta(\omega^2 - 4m^2) \Theta(4(\Lambda^2 + m^2) - \omega^2)$$
with the Deuli blocking factor: $N(\omega, \omega) = \left(1 - f\left(\frac{\omega}{2} - \mu\right)\right) - f\left(\frac{\omega}{2} + \mu\right)$

with the Pauli-blocking factor: $N(\omega, \mu) = \left(1 - f\left(\frac{\omega}{2} - \mu\right) - f\left(\frac{\omega}{2} + \mu\right)\right)$

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (VIII)

Spectral function

$$F^{MM}(\omega, \vec{q}) \equiv \Im m \, C^{MM}(\omega + i\eta, \vec{q}) = \Im m \, \frac{\Pi^{MM}(\omega + i\eta, \vec{q})}{1 - 2G_1 \Pi^{MM}(\omega + i\eta, \vec{q})}.$$

$$F^{MM}(\omega) = \frac{\pi}{2G_1} \frac{1}{\pi} \frac{2G_1 \Im m \, \Pi^{MM}(\omega + i\eta)}{(1 - 2G_1 \Re e \, \Pi^{MM}(\omega))^2 + (2G_1 \Im m \, \Pi^{MM}(\omega + i\eta))^2}.$$
(2)

For $\omega < 2m(T,\mu)$, $\Im m \Pi = 0$: decay channel closed \rightarrow bound state!

$$F^{MM}(\omega) = \frac{\pi}{2G_1} \delta \left(1 - 2G_1 \Re e \,\Pi^{MM}(\omega) \right) = \frac{\pi}{4G_1^2 \left| \frac{\partial \Re e \,\Pi^{MM}}{\partial \omega} \right|_{\omega = m_M}} \delta(\omega - m_M) \; .$$

The meson mass m_M is the solution of

$$1 - 2G_1 \Re e \,\Pi^{MM}(m_M) = 0$$

The decay width (inverse lifetime) is

$$\Gamma_M = 2G_1 \Im m \,\Pi^{MM}(m_M)$$

COLOR NEUTRALITY IN THE PNJL PHASE DIAGRAM

Color neutrality constraint: $\tilde{\mu} = \mu \mathbf{1} + \mu_8 \lambda_8 + i \phi_3 \lambda_3$; $\partial \Omega_{MF} / \partial \mu_8 = n_8 = n_r + n_g - 2n_b = 0$ Gap equations: $\partial \Omega_{MF} / (\partial \sigma, \partial \Delta, \partial \phi_3) = 0$

NONLOCAL POLYAKOV LOOP CHIRAL QUARK MODEL

COMPLEX MASS POLE FIT TO LATTICE PROPAGATOR

BHAGWAT, PICHOWSKY, ROBERTS, TANDY, PHYS. REV. C68 (2003) 015203

$$S(p)^{-1} = i \not\!\!\!/ A(p^2) + B(p^2)$$
 ,
$$M(p^2) = B(p^2)/A(p^2)$$

$$Z(p^2) = 1/A(p^2)$$

S(p) sum of N pairs of complex conj. mass poles

$$S(p) = \sum_{i=1}^{N} \frac{1}{Z_2} \left\{ \frac{z_i}{i \not p + m_i} + \frac{z_i^*}{i \not p + m_i^*} \right\} = -i \not p \sigma_V(p^2) + \sigma_S(p^2)$$

Representation of the scalar amplitude

$$\sigma_S(p^2) = \sum_{i=1}^N Z_2^{-1} \left\{ \frac{z_i m_i}{p^2 + m_i^2} + \frac{z_i^* m_i^*}{p^2 + m_i^{*2}} \right\}$$

"Derivation" of the equivalent separable model (in Feynman-like gauge) $D_{\mu\nu}(p-q) = \delta_{\mu\nu} D(p,q)$ and

$$D(p,q) = f_0(p^2) f_0(q^2) + f_1(p^2) p \cdot q f_1(q^2)$$

$$f_1(p^2) = \frac{A(p^2) - 1}{a} ; f_0(p^2) = \frac{B(p^2) - m_c}{b}$$

$$b^{2} = \frac{16}{3} \int_{q}^{\Lambda} [B(q^{2}) - m_{c}] \sigma_{s}(q^{2})$$
$$a^{2} = \frac{8}{3} \int_{q}^{\Lambda} [A(q^{2}) - 1] \frac{q^{2}}{4} \sigma_{v}(q^{2})$$

NUCLEONS IN THE NONLOCAL CHIRAL QUARK MODEL

$$Z_{\rm fluct} = \int D\Delta^{\dagger} D\Delta \exp\{-\frac{|\Delta|^2}{4G_D} - Tr \ln S^{-1}[\Delta, \Delta^{\dagger}]\}$$

Cahill, Roberts, Prashifka: Aust. J. Phys. 42 (1989) 129, 161 Cahill, ibid, 171; Reinhardt: PLB 244 (1990) 316; Buck, Alkofer, Reinhardt: PLB 286 (1992) 29

