Goldstone bosons in the CFL phase

Verena Werth¹ Michael Buballa¹ Micaela Oertel²

¹Institut für Kernphysik, Technische Universität Darmstadt

²Observatoire de Paris-Meudon

Dense Matter in Heavy Ion Collisions and Astrophysics, August 21 - September 1, 2006

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation	Method	Results	Summary & Outlook
oo	oooooo	00000	O
Outline			

- Model
- Formalism

- Equal quark masses
- Dependence on the strange quark mass
- Calculation of f_{π}

Motivation	Method	Results	Summary & Outlook
•0			

Phase diagram of neutral dense quark matter

- first order phase transition
- second order phase transition

• normal quark matter:

 $\Delta_{ud} = \Delta_{us} = \Delta_{ds} = 0$

• 2SC phase:

$$\Delta_{ud} \neq 0,$$

 $\Delta_{us} = \Delta_{ds} = 0$

• uSC phase:

$$\Delta_{ud}, \Delta_{us} \neq 0,$$

 $\Delta_{ds} = 0$

• CFL phase:

$$\Delta_{ud}, \Delta_{us}, \Delta_{ds} \neq 0$$

Motivation	Method	Results	Summary & Outlook
0•			

Why are we interested in Goldstone bosons?

- chiral symmetry breaking
 - Goldstone bosons
- lightest excitations: mesons
 - effective theories predict low meson masses and meson condensation

 influence of the pseudoscalar meson condensates studied by Warringa [hep-ph/0606063]

Motivation	Method	Results	Summary & Outlook
oo	●ooooo	00000	

Nambu–Jona-Lasinio model

Lagrangian

$$\mathcal{L}_{eff} = \bar{\psi}(i\partial \!\!\!/ - \hat{m})\psi + H \sum_{A=2,5,7} \sum_{A'=2,5,7} \left[\left(\bar{\psi} i \gamma_5 \tau_A \lambda_{A'} C \bar{\psi}^T \right) \left(\psi C i \gamma_5 \tau_A \lambda_{A'} \psi^T \right) \right. \left. + \left(\bar{\psi} \tau_A \lambda_{A'} C \bar{\psi}^T \right) \left(\psi C \tau_A \lambda_{A'} \psi^T \right) \right]$$

Motivation	Method •••••	Results 00000	Summary & Outlook

Nambu-Jona-Lasinio model

Lagrangian

$$\mathcal{L}_{eff} = \bar{\psi}(i\partial \!\!\!/ - \hat{m})\psi + H \sum_{A=2,5,7} \sum_{A'=2,5,7} \left[\left(\bar{\psi} i \gamma_5 \tau_A \lambda_{A'} C \bar{\psi}^T \right) \left(\psi C i \gamma_5 \tau_A \lambda_{A'} \psi^T \right) \right. \left. + \left(\bar{\psi} \tau_A \lambda_{A'} C \bar{\psi}^T \right) \left(\psi C \tau_A \lambda_{A'} \psi^T \right) \right]$$

Four vertices in Nambu-Gorkov space

$$\Gamma_s^{ll} = \begin{pmatrix} 0 & 0\\ i\gamma_5\tau_A\lambda_{A'} & 0 \end{pmatrix}, \qquad \Gamma_s^{ur} = \begin{pmatrix} 0 & i\gamma_5\tau_A\lambda_{A'}\\ 0 & 0 \end{pmatrix}$$

$$\Gamma_{ps}^{ll} = \begin{pmatrix} 0 & 0\\ \tau_A\lambda_{A'} & 0 \end{pmatrix}, \qquad \Gamma_{ps}^{ur} = \begin{pmatrix} 0 & \tau_A\lambda_{A'}\\ 0 & 0 \end{pmatrix}$$

Motivation	Method	Results	Summary & Outlook
oo	o●oooo	00000	
Ingredients			

Inverse propagator in Nambu-Gorkov space

$$S^{-1} = \begin{pmatrix} \not p + \hat{\mu}\gamma_0 - \hat{m} & \sum_{A=2,5,7} \Delta_A \gamma_5 \tau_A \lambda_A \\ -\sum_{A=2,5,7} \Delta_A^* \gamma_5 \tau_A \lambda_A & \not p - \hat{\mu}\gamma_0 - \hat{m} \end{pmatrix}$$

 Δ_A and μ₈ derived from self-consistent solution of the CFL gap equation + neutrality conditions

Motivation	Method	Results	Summary & Outlook
	00000		

Bethe-Salpeter equation

Bethe-Salpeter equation

Motivation	Method	Results	Summary & Outlook
	00000		

Bethe-Salpeter equation

Bethe-Salpeter equation

$$\hat{V} = \Gamma_i V_{ij} \Gamma_j^{\dagger} \qquad \hat{T} = \Gamma_i T_{ij} \Gamma_j^{\dagger}$$
$$\Gamma_i^{\dagger} \hat{J} \Gamma_j = J_{ij}$$

Motivation	Method	Results	Summary & Outlook
	00000		

Bethe-Salpeter equation

Bethe-Salpeter equation

$$\hat{V} = \Gamma_i V_{ij} \Gamma_j^{\dagger} \qquad \hat{T} = \Gamma_i T_{ij} \Gamma_j^{\dagger}$$
$$\Gamma_i^{\dagger} \hat{J} \Gamma_j = J_{ij}$$

T-matrix

$$T = V + VJT$$
$$\implies T = (\mathbb{1} - VJ)^{-1}V$$

Motivation	Method	Results	Summary & Outlook
00	000e00	00000	o
Polarization	function		

$$-iJ_{\Gamma_{j}^{\dagger}\Gamma_{k}}(q) = -\int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{2} \mathrm{Tr}[\Gamma_{j}^{\dagger}iS(p+q)\Gamma_{k}iS(p)]$$

$$-iJ_{\Gamma_{j}^{\dagger}\Gamma_{k}}(q) = -\int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{2} \mathrm{Tr}[\Gamma_{j}^{\dagger}iS(p+q)\Gamma_{k}iS(p)]$$

• applying Matsubara formalism and restriction to $\vec{q} = 0$

$$-iJ_{\Gamma_{j}^{\dagger}\Gamma_{k}}(q) \stackrel{\vec{q}=0}{=} \frac{i}{2}T\sum_{n}\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2}\mathrm{Tr}[\Gamma_{j}^{\dagger}iS(i\omega_{n}+i\omega_{m},\vec{p})\Gamma_{k}iS(i\omega_{n},\vec{p})]$$

$$-iJ_{\Gamma_{j}^{\dagger}\Gamma_{k}}(q) = -\int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{2} \mathrm{Tr}[\Gamma_{j}^{\dagger}iS(p+q)\Gamma_{k}iS(p)]$$

• applying Matsubara formalism and restriction to $\vec{q} = 0$

$$-iJ_{\Gamma_{j}^{\dagger}\Gamma_{k}}(q) \stackrel{\vec{q}=0}{=} \frac{i}{2}T\sum_{n}\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2}\mathrm{Tr}[\Gamma_{j}^{\dagger}iS(i\omega_{n}+i\omega_{m},\vec{p})\Gamma_{k}iS(i\omega_{n},\vec{p})]$$

only a few vertex-combinations non-vanishing

➔ J can be transformed into block-diagonal structure

- choose the basis in which J is block-diagonal
 - ➔ V is diagonal
 - ➔ T is block-diagonal

→ problem can be decomposed into smaller blocks:

- six 2x2 blocks (correspond to π^+ , π^- , K^+ , K^- , K^0 , and \bar{K}^0)
- one 6x6 block (corresponds to π⁰, η, and η')

Motivation	Method	Results	Summary & Outlook
oo	00000	00000	
"Mesons"			

• *T* couples to external meson

Motivation	Method	Results	Summary & Outlook
00	○○○○○●	00000	
"Mesons"			

 \Rightarrow

• *T* couples to external meson

 we have to calculate which diquark vertices contribute to the loop

Motivation	Method	Results	Summary & Outlook
oo	○○○○○●	ooooo	o
"Mesons"			

• *T* couples to external meson

meson vertices

$$\begin{split} \Gamma_{\pi^{\pm}} &= \frac{i}{2} \gamma_5 \begin{pmatrix} \tau_1 \pm i \tau_2 & 0 \\ 0 & \tau_1 \mp i \tau_2 \end{pmatrix} \\ \Gamma_{K^{\pm}} &= \frac{i}{2} \gamma_5 \begin{pmatrix} \tau_4 \pm i \tau_5 & 0 \\ 0 & \tau_4 \mp i \tau_5 \end{pmatrix} \\ \Gamma_{K^0}^{(-)} &= \frac{i}{2} \gamma_5 \begin{pmatrix} \tau_6 \pm i \tau_7 & 0 \\ 0 & \tau_6 \mp i \tau_7 \end{pmatrix} \end{split}$$

 we have to calculate which diquark vertices contribute to the loop

Motivation	Method	Results	Summary & Outlook
oo	○○○○○●	ooooo	o
"Mesons"			

• T couples to external meson

 we have to calculate which diquark vertices contribute to the loop

meson vertices

$$\begin{split} \Gamma_{\pi^{\pm}} &= \frac{i}{2} \gamma_5 \begin{pmatrix} \tau_1 \pm i \tau_2 & 0 \\ 0 & \tau_1 \mp i \tau_2 \end{pmatrix} \\ \Gamma_{K^{\pm}} &= \frac{i}{2} \gamma_5 \begin{pmatrix} \tau_4 \pm i \tau_5 & 0 \\ 0 & \tau_4 \mp i \tau_5 \end{pmatrix} \\ \Gamma_{K^{(-)}} &= \frac{i}{2} \gamma_5 \begin{pmatrix} \tau_6 \pm i \tau_7 & 0 \\ 0 & \tau_6 \mp i \tau_7 \end{pmatrix} \end{split}$$

non-vanishing combinations

- $\Gamma_{\pi^+} \longrightarrow \Gamma_{75}^{ll}, \Gamma_{57}^{ur}$
- $\Gamma_{\pi^-} \longrightarrow \Gamma_{57}^{ll}, \Gamma_{75}^{ur}$
- $\bullet \ \Gamma_{K^+} \longrightarrow \Gamma_{72}^{ll}, \Gamma_{27}^{ur}$
- $\bullet \ \Gamma_{K^-} \longrightarrow \Gamma^{ll}_{27}, \Gamma^{ur}_{72}$
- $\bullet \ \Gamma_{K^0} \longrightarrow \Gamma^{ll}_{52}, \Gamma^{ur}_{25}$
- $\Gamma_{\bar{K}^0} \longrightarrow \Gamma_{25}^{ll}, \Gamma_{52}^{ur}$

Motivation	Method	Results	Summary & Outlook
oo	oooooo	●○○○○	
Meson mass for $\pi^{\pm}, K^{\pm}, K^{0}, \bar{K}^{0}$	r equal quark r	nasses	

• prediction from EFT:

$$m_M = am_q$$

$$a = \sqrt{\frac{8A}{f_\pi^2}}$$

$$A = \frac{3\Delta^2}{4\pi^2}$$

$$f_\pi^2 = \frac{21 - 8\ln 2}{18} \frac{\mu^2}{2\pi^2}$$

Motivation	Method	Results	Summary & Outlook
oo	000000	○●○○○	
Dependence or $m_u = m_d = 30 \text{ MeV}$	the strange qu	lark mass	

Motivation	Method	Results	Summary & Outlook
oo	oooooo	○●○○○	o
Dependence or	n the strange o	uark mass	

prediction from EFT

[Bedaque, Schaefer, Nucl.Phys. A697 (2002)] $q_{\rm meson}(pole) = -\mu_{\rm meson} + m_{\rm meson}$

Motivation	Method	Results	Summary & Outlook
oo	oooooo	○●○○○	
Dependence or	n the strange q	uark mass	

prediction from EFT

[Bedaque, Schaefer, Nucl.Phys. A697 (2002)] $q_{
m meson}(pole) = -\mu_{
m meson} + m_{
m meson}$

Motivation	Method	Results	Summary & Outlook
00	000000	○o●o○	o
Kaon propa	adator		

$$t_{K^-}^{-1} = \frac{(q_0 + \mu_{K^-})^2 - m_{K^-}^2}{-g^2}$$

$$\begin{split} \mu_{K^-} &= -\frac{m_s^2 - m_u^2}{2\mu} \\ m_{K^-} &= \sqrt{\frac{a_{\rm fit}}{\sqrt{2}}m_d(m_u + m_s)} \end{split}$$

Motivation	Method	Results	Summary & Outlook
00	000000	○o●o○	o
Kaon propa	adator		

$$t_{K^-}^{-1} = \frac{(q_0 + \mu_{K^-})^2 - m_{K^-}^2}{-q^2}$$

$$\begin{split} \mu_{K^-} &= -\frac{m_s^2 - m_u^2}{2\mu} \\ m_{K^-} &= \sqrt{\frac{a_{\rm fit}}{\sqrt{2}}m_d(m_u + m_s)} \end{split}$$

Motivation	Method	Results	Summary & Outlook
00	000000	○o●o○	o
Kaon propa	adator		

$$t_{K^-}^{-1} = \frac{(q_0 + \mu_{K^-})^2 - m_{K^-}^2}{-q^2}$$

$$\begin{split} \mu_{K^-} &= -\frac{m_s^2 - m_u^2}{2\mu} \\ m_{K^-} &= \sqrt{\frac{a_{\rm fit}}{\sqrt{2}}m_d(m_u + m_s)} \end{split}$$

Motivation	Method	Results	Summary & Outlook
00	000000	○o●o○	o
Kaon propa	adator		

$$t_{K^-}^{-1} = \frac{(q_0 + \mu_{K^-})^2 - m_{K^-}^2}{-g^2}$$

$$\begin{split} \mu_{K^-} &= -\frac{m_s^2 - m_u^2}{2\mu} \\ m_{K^-} &= \sqrt{\frac{a_{\rm fit}}{\sqrt{2}}m_d(m_u + m_s)} \end{split}$$

Motivation	Method	Results	Summary & Outlook
oo	000000	○○○●○	o

Motivation	Method	Results	Summary & Outlook
	000000	○○○○●	o
Dian daaa	/ constant		

Pion decay constant

Calculate loop at $q_0 = q_0(pole)$

$$f_{\pi}q_{0} = \int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{2} \operatorname{Tr} \left[A^{0}_{\pi^{+}} S(p+q) (g_{1} \Gamma^{ll}_{75} + g_{2} \Gamma^{ur}_{57}) S(p) \right]$$

Motivation	Method	Results	Summary & Outlook
oo	000000	○○○○●	o
Pion decay con	stant		

$$\mathbf{A}_{\pi}^{\mathbf{a}} \qquad \qquad \mathbf{A}_{\pi^{+}}^{\mathbf{0}} = \frac{i}{2\sqrt{2}}\gamma^{\mathbf{0}}\gamma_{5} \begin{pmatrix} \tau_{1} - i\tau_{2} & \mathbf{0} \\ \mathbf{0} & \tau_{1} + i\tau_{2} \end{pmatrix}$$

Calculate loop at $q_0 = q_0(pole)$

$$f_{\pi}q_{0} = \int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{2} \operatorname{Tr} \left[A^{0}_{\pi^{+}} S(p+q) (g_{1}\Gamma^{ll}_{75} + g_{2}\Gamma^{ur}_{57}) S(p) \right]$$

• for $\mu = 500$ MeV, T = 0, and $m_u = m_d = m_s = 30$ MeV we find $f_\pi \approx 95.1 \, {\rm MeV}$

• comparison with effective theory:

$$f_{\pi} = \sqrt{\frac{21 - 8\ln 2}{36}} \frac{\mu}{\pi} \approx 104.3 \,\mathrm{MeV}$$

Motivation	Method	Results	Summary & Outlook
oo	000000	○○○○●	o
Pion decay con	stant		

$$\mathbf{A}_{\pi}^{\mathbf{a}} \qquad \qquad \mathbf{A}_{\pi^{+}}^{\mathbf{0}} = \frac{i}{2\sqrt{2}}\gamma^{\mathbf{0}}\gamma_{5} \begin{pmatrix} \tau_{1} - i\tau_{2} & \mathbf{0} \\ \mathbf{0} & \tau_{1} + i\tau_{2} \end{pmatrix}$$

Calculate loop at $q_0 = q_0(pole)$

$$f_{\pi}q_{0} = \int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{2} \mathrm{Tr} \left[A^{0}_{\pi^{+}} S(p+q) (g_{1}\Gamma^{ll}_{75} + g_{2}\Gamma^{ur}_{57}) S(p) \right]$$

• for $\mu = 500 \text{ MeV}$, T = 0, and $m_u = m_d = m_s = 30 \text{ MeV}$ we find $f_\pi \approx 95.1 \text{ MeV}$ 9% smaller than in EFT

o comparison with effective theory:

$$f_{\pi} = \sqrt{\frac{21 - 8\ln 2}{36}} \frac{\mu}{\pi} \approx 104.3 \,\mathrm{MeV}$$

Motivation	Method	Results	Summary & Outlook
	oooooo	00000	●
Summary &	Outlook		

Summary

- description of mesons with diquark loops
- good qualitative agreement with low-energy effective theory

			•	
Summary & Outlook				

Summary

- description of mesons with diquark loops
- good qualitative agreement with low-energy effective theory

Outlook

- wider range of chemical potentials
- finite temperature
- include additional interactions
 - quark-antiquark interactions
- mesons in the new CFL+meson groundstate