Thermodynamic properties of a correlated nuclear system

Vittorio Somà
Institute of Nuclear Physics PAN
Cracow, Poland

Helmholtz International Summer School on Dense Matter
JINR, Dubna, August 21 - September 1, 2006

Introduction

- infinite system of strongly interacting nucleons
- equation of state of nuclear matter (heavy ion collisions, neutron stars)
- self-consistent finite temperature Green's function approach
- energy per particle, pressure, entropy at zero and finite temperature, different densities, symmetric matter
- free NN interaction (CD Bonn), comparison with an effective potential ($\mathrm{V}_{\text {low }} \mathrm{k}$), no three body forces
- as a reference V. S. and P. Bożek, nucl-th/0604030

The T-matrix or ladder approximation

The two-particle propagator is expressed as

$$
\mathcal{G}_{2}=G_{2}^{n c}+G_{2}^{n c} T G_{2}^{n c}+\text { exchange }
$$

where $\quad G_{2}^{n c}=G G \quad$ and $\quad T=V+V G_{2}^{n c} T$.

All the ingredients are calculated iteratively:

$$
T=T[V, G], \quad \Sigma=\Sigma[T, G], G=G[\Sigma] .
$$

The generating functional Φ

It belongs to a class of approximations derivable from a suitably chosen generating functional (Baym and Kadanoff, 1961). Formally

$$
\Sigma(x, y)=\frac{\delta \Phi}{\delta G(x, y)}
$$

In the case of the ladder approximation $\Phi=\sum_{n} \frac{1}{2 n} \operatorname{Tr}\left\{\left(V G_{2}^{n c}\right)^{n}\right\}$.

Thermodynamic consistency is ensured, thermodynamic relations are fulfilled. It is related to the thermodynamic potential Ω by

$$
\Omega=-\operatorname{Tr}\left\{\ln \left[G^{-1}\right]\right\}-\operatorname{Tr}\{\Sigma G\}+\Phi
$$

Energy of the interacting system

The (total) internal energy is obtained as the expectation value of the Hamiltonian

$$
\frac{E}{N}=\frac{1}{\rho}\left[\frac{\left\langle H_{k i n}\right\rangle}{\mathscr{V}}+\frac{\left\langle H_{p o t}\right\rangle}{\mathscr{V}}\right] .
$$

In particular

$$
\left\langle H_{p o t}\right\rangle=\frac{\mathscr{V}}{2} \int \frac{d^{3} P}{(2 \pi)^{3}} \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \frac{d \Omega}{2 \pi} V\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left\langle\mathbf{k}^{\prime}\right| G_{2}^{<}(\mathbf{P}, \Omega)|\mathbf{k}\rangle .
$$

Alternatively, it is possible to estimate the internal energy through the Galitsky-Koltun's sum rule

$$
\frac{E}{N}=\frac{1}{\rho} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d \omega}{2 \pi}\left[\frac{\mathbf{p}^{2}}{2 m}+\omega\right] A(\mathbf{p}, \omega) f(\omega) .
$$

Within the T-matrix approach, the interaction energy can be expressed as a function of T and $G_{2}^{n c}$.

$$
\begin{aligned}
V \mathcal{G}_{2} & =V G_{2}^{n c}+V G_{2}^{n c} T G_{2}^{n c} \\
& =\left[V+V G_{2}^{n c} T\right] G_{2}^{n c}=T G_{2}^{n c},
\end{aligned}
$$

which, in terms of diagrams, looks like this

$$
\begin{aligned}
\left\langle H_{\text {pot }}\right\rangle & =\frac{1}{2} \sum_{n} \\
& =\frac{1}{2}
\end{aligned}
$$

$2^{\text {nd }}$ order approximation

Expand the interaction energy

$$
\left\langle H_{p o t}\right\rangle=\frac{1}{2} \operatorname{Tr}\left\{\left(V \mathcal{G}_{2}\right)\right\}=\sum_{n} \frac{1}{2} \operatorname{Tr}\left\{\left(V G_{2}^{n c}\right)^{n}\right\}
$$

Up to $2^{\text {nd }}$ order, using an effective interaction $V_{\text {low }} \mathrm{k}$ instead of V_{NN}.

Cutoff dependence

Energy vs. density

Energy vs. density (comparison)

Pressure

The pressure is related to the thermodynamical potential

$$
\Omega(T, \mu, V)=-P V .
$$

Recall $\quad \Omega=-\operatorname{Tr}\left\{\ln \left[G^{-1}\right]\right\}-\operatorname{Tr}\{\Sigma G\}+\Phi$.
The first contribution to the pressure is

$$
\begin{gathered}
P_{I}=\frac{1}{V}\left[\operatorname{Tr}\left\{\ln \left[G^{-1}\right]\right\}+\operatorname{Tr}\{\Sigma G\}\right] \\
=T \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d \omega}{2 \pi} \ln \left(1+e^{-\beta \omega}\right)[A(\mathbf{p}, \omega) \\
\left.+\frac{\partial A(\mathbf{p}, \omega)}{\partial \omega} \operatorname{Re} \Sigma^{R}(\mathbf{p}, \omega)-2 \operatorname{lm} \Sigma^{R}(\mathbf{p}, \omega) \frac{\partial \operatorname{Re} G^{R}(\mathbf{p}, \omega)}{\partial \omega}\right] .
\end{gathered}
$$

The contribution from Φ

The second contribution to the pressure comes from the functional Φ. It is calculated by introducing an integration over the (artificial) parameter λ :

$$
\begin{aligned}
\Phi & =\sum_{n} \frac{1}{2 n} \operatorname{Tr}\left\{\left(V G_{2}\right)^{n}\right\} \\
& =\int_{0}^{1} \frac{d \lambda}{\lambda} \sum_{n} \frac{1}{2} \operatorname{Tr}\left\{\left(\lambda V G_{2}\right)^{n}\right\} \\
& =\int_{0}^{1} \frac{d \lambda}{\lambda}<H_{p o t}\left(\lambda V, G_{\lambda=1}\right)>
\end{aligned}
$$

Since $<H_{p o t}(V, G)>\sim \frac{1}{2} \operatorname{Tr}\left\{T G_{2}^{n c}\right\} \quad$ and $\quad T=\frac{V}{1-V G_{2}^{n c}}$, finally

$$
\Phi=\int_{0}^{1} \frac{d \lambda}{\lambda}<H_{p o t}\left(\lambda V, G_{\lambda=1}\right)>\sim \frac{1}{2} \int_{0}^{1} d \lambda \frac{\operatorname{Tr}\left\{V G_{2}^{n c}\right\}}{1-\operatorname{Tr}\left\{\lambda V G_{2}^{n c}\right\}}
$$

Entropy

The entropy is estimated through the thermodynamic relation

$$
\frac{S}{N}=\frac{1}{T}\left[\frac{E}{N}+\frac{P}{\rho}-\mu\right]
$$

and compared with two analytic expressions:

1. the dynamical quasiparticle formula

$$
\frac{S_{D Q}}{N}=\frac{1}{\rho} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d \omega}{2 \pi} \sigma(\omega)\left[A(\mathbf{p}, \omega)\left(1-\frac{\partial \operatorname{Re} \Sigma^{R}(\mathbf{p}, \omega)}{\partial \omega}\right)+\frac{\partial \operatorname{Re} G^{R}(\mathbf{p}, \omega)}{\partial \omega} \Gamma(\mathbf{p}, \omega)\right]
$$

$$
\text { where } \quad \sigma(\omega)=-f(\omega) \ln [f(\omega)]-[1-f(\omega)] \ln [1-f(\omega)]
$$

2. the entropy for a free Fermi gas with effective masses

$$
\frac{S_{\text {free }}}{N}=\frac{1}{\rho} \int \frac{d^{3} p}{(2 \pi)^{3}} \sigma\left(\omega_{p}\right) \quad \text { with } \quad \omega_{p}=\frac{p^{2}}{2 m}-\mu-\Sigma\left(p, \omega_{p}\right)
$$

Entropy vs. temperature

Summary

The presented scheme provides a way to calculate consistently thermodynamic properties of nuclear matter, at zero and finite temperatures, taking into account short range correlations.

The full (diagrammatic) calculation has been compared to others

- (energy) Galitsky-Koltun's sum rule, second order Born diagrams
- (entropy) dynamical quasiparticle formula, Fermi gas expression with effective masses

To be done:

- introduce three-body interactions
- deal with asymmetric matter
- ...

