Statistical models of hadron production simple models for complicated processes

Ludwik Turko

Institute of Theoretical Physics University of Wrocław, Poland

Dense Matter in Heavy Ion Collisions and Astrophysics Helmoltz International Summer School Dubna, 21.08–1.09.2006

2 Introduction

- Non HEP physics
 Probability distributions
- 4 Close to the thermodynamic limit
 - The simplest example
 - Mathematics of the thermodynamic limit

Statement of the problem

Theoretical description of particle production

$$\mathcal{P}_n(i \to f) = \int d^4 p'_1 \dots d^4 p'_n \delta(p'_1 + \dots + p'_n - P_i) \prod_{j=1}^n \delta(p'_j^2 - m_j^2) |\langle p'_1, \dots p'_n | \mathcal{S} | i \rangle|^2$$

The dynamical part

 $\langle p_1', \ldots p_n' | S | i \rangle$

The kinematical part

$$\delta(p_1'+\cdots+p_n'-P_i)\prod_{i=1}^n\delta(p_j'^2-m_j^2)$$

Place for statistical physics

More particles (degrees of freedom) in the process: kinematics tends to dominate the behavior of the system

- measurable quantities are much less detailed than $\langle p'_1, \dots p'_n | \mathcal{S} | i
 angle$
- with the integration over a large region of the phase space the dynamical details are averaged and only a few parameters remains
- ullet restricted knowledge of $\langle p_1', \dots p_n' | \mathcal{S} | i \rangle$ is not needed

$$P_n = \bar{S}_n \mathcal{R}_n$$

$$\mathcal{R}_{n} = \int d^{4}p'_{1} \dots d^{4}p'_{n}\delta(p'_{1} + \dots + p'_{n} - P_{i})\prod_{j=1}^{n}\delta(p'_{j}^{2} - m_{j}^{2})$$

Place for statistical physics

More particles (degrees of freedom) in the process: kinematics tends to dominate the behavior of the system

- measurable quantities are much less detailed than $\langle p'_1, \dots p'_n | \mathcal{S} | i \rangle$
- with the integration over a large region of the phase space the dynamical details are averaged and only a few parameters remains
- ullet restricted knowledge of $\langle p_1', \dots p_n' | \mathcal{S} | i \rangle$ is not needed

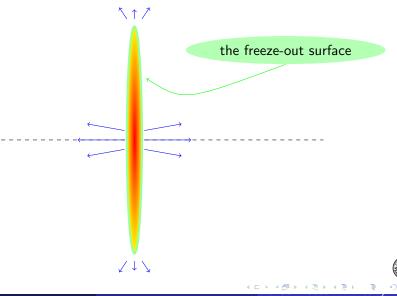
$$P_n = \bar{S}_n \mathcal{R}_n$$

$$\mathcal{R}_{n} = \int d^{4}p'_{1} \dots d^{4}p'_{n}\delta(p'_{1} + \dots + p'_{n} - P_{i})\prod_{j=1}^{n}\delta(p'_{j}^{2} - m_{j}^{2})$$

Arguments work if the thermodynamic equilibrium is reached

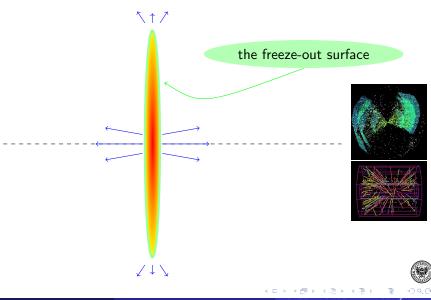
Introduction

HIC collision – graphics



Introduction

HIC collision – graphics



Ludwik Turko (IFT, Wrocław)

The aim of statistical models

To derive the equilibrium properties of a macroscopic system from the measured yields of the constituent particles

but

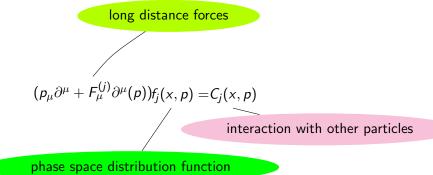
Not to describe how a system approaches equilibrium.

The chemical freeze-out

The stage where hadrons have been created and the net numbers of stable particles of each type no longer change in further system evolution.

Almost reality

The time-space evolution of the system after collision is given by kinetic equations



Fewer degrees of freedom: small number of particles or low temperature: dynamics more and more important

Local thermodynamic equilibrium

In the adiabatic processes

$$\partial_{\mu}s^{\mu} = 0$$

and

$$f_{j}^{eq}(x,p) = \frac{1}{e^{(u^{\mu}(x)p_{\mu} - b_{j}\mu_{b}(x) - s_{j}\mu_{s}(x))/T(x)} \pm 1}$$

通り

Fireball parameters

The mean free path

$$\lambda_j = rac{1}{\sum\limits_k \langle \sigma_{jk}
angle}$$

Between scattering time

$$\tau_{\textit{scatt}}^{(j)} = \frac{\lambda_j}{\langle \textit{v}_j \rangle} \sim \frac{1}{\sum\limits_k \langle \textit{v}_{jk} \sigma_{jk} \rangle}$$

Escape time

$$au_{esc}^{(j)} = rac{R}{\langle v_j
angle} \sim rac{R}{c}$$

Expansion time

$$\tau_{exp} = \frac{1}{\partial_{\mu} u^{\mu}(x)}$$

-1

通り

Freeze-out condition

$$au_{\textit{scatt}}^{(j)} \gtrsim \min(au_{\textit{esc}}^{(j)}, au_{\textit{exp}})$$

gives

freeze-out hypersurface $\Sigma_f^{(j)}(x)$

Introduction

Statistical model calculations - in principle

$$\epsilon = \frac{1}{2\pi^2} \sum_{j=1} (2S_j + 1) \int_0^\infty \frac{dp \, p^2 E_j}{\exp\left\{\frac{E_j - \mu_j}{T}\right\} + g_j} ,$$

$$n_b = \frac{1}{2\pi^2} \sum_{j=1} (2S_j + 1) b_j \int_0^\infty \frac{dp \, p^2}{\exp\left\{\frac{E_j - \mu_j}{T}\right\} + g_j} ,$$

$$n_s = \frac{1}{2\pi^2} \sum_{j=1} (2S_j + 1) s_j \int_0^\infty \frac{dp \, p^2}{\exp\left\{\frac{E_j - \mu_j}{T}\right\} + g_j} ,$$

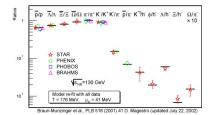
00

where

$$\mu_j = b_j \mu_b + s_j \mu_s$$

- ● 注 →

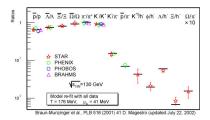
It works



康

・ロン ・通 と ・ モト・・ モン

It works



although still there are discussions is this "the real" temperature or "a fake" temperature due to the phase space dominance effect.

Puzzle

Multiproduction at high energy e^+e^- and pp is still well described within statistical model.

Finite volume effects

- The quark gluon hadrons systems are created in a finite volume
- In the thermodynamic limit different statistical ensembles are equivalent,

Finite volume effects

- The quark gluon hadrons systems are created in a finite volume
- In the thermodynamic limit different statistical ensembles are equivalent, but what does it mean?
- selection of the appropriate scale parameter

The scale parameter:

 VT^3 ; 1 fm \cdot 1 MeV \approx 200 $\hbar c$

The thermodynamic limit is not sufficient

There are physical quantities which are finite in the thermodynamic limit

The thermodynamic limit is not sufficient

There are physical quantities which are finite in the thermodynamic limit but are still different for different statistical ensembles:

The thermodynamic limit is not sufficient

There are physical quantities which are finite in the thermodynamic limit but are still different for different statistical ensembles:

The scaled variance

$$\omega_N = rac{\Delta N^2}{\langle N
angle} = rac{\langle N^2
angle - \langle N
angle^2}{\langle N
angle} \,.$$

has different thermodynamic limits in different statistical ensembles:

$$\omega_N = \begin{cases} 1 & \text{ in the grand canonical ensemble at } \langle Q \rangle = 0 \,, \\ \frac{1}{2} & \text{ in the canonical ensemble at } Q = 0 \,. \end{cases}$$

 See e.g.:
 V. V. Begun, M. Gazdzicki, M. I. Gorenstein and O. S. Zozulya, Phys. Rev. C 70,034901 (2004); V. V. Begun, M. I. Gorenstein, A. P. Kostyuk and O. S. Zozulya, Phys. Rev. C 71,054904 (2005); V. V. Begun, M. I. Gorenstein and O. S. Zozulya, Phys. Rev. C 72,014902 (2005); A. Keränen, F. Becattini, V.V. Begun, M.I. Gorenstein, O.S. xZozulya, J. Phys. G 31, S1095 (2005)

Semi-intensive quantities

Semi-intensive quantities

Finite T-limits, although those limits are governed by NLO (next to leading order) finite volume corrections to probability distributions.

Semi-intensive quantities

Semi-intensive quantities

Finite T-limits, although those limits are governed by NLO (next to leading order) finite volume corrections to probability distributions.

Look at densities:

 $\langle N^2 \rangle = V^2 \langle n^2 \rangle$ $\omega_N = \frac{\Delta N^2}{\langle N \rangle} = \frac{V^2 \Delta n^2}{V \langle n \rangle} \equiv V \omega_n \,.$

 ω_N finite in the thermodynamic limit

$$\omega_n = rac{1}{V}\mathcal{R} + \mathcal{O}(V^{-2}).$$

Semi-intensive quantities

Semi-intensive quantities

Finite T-limits, although those limits are governed by NLO (next to leading order) finite volume corrections to probability distributions.

Look at densities:

ω

$$\langle N^2
angle = V^2 \langle n^2
angle$$
 $u_N = \frac{\Delta N^2}{\langle N
angle} = \frac{V^2 \Delta n^2}{V \langle n
angle} \equiv V \omega_n \,.$

 ω_N finite in the thermodynamic limit

$$\omega_n = \frac{1}{V}\mathcal{R} + \mathcal{O}(V^{-2}).$$

Corollary

Look at $\mathcal{O}(V^{-1})$ terms. They are important also in the thermodynamic limit.

More:

J. Cleymans, K. Redlich and L.T.: Phys. Rev. C **71** 047902 (2005); J. Phys. G **31** 1421 (2005)

Q.S.S

Non HEP physics

Canonical and grand canonical ensembles Non-HEP physics

Number of particles is important

- The canonical ensemble: fixed number of particles *N*.
- The grand canonical ensemble: fixed average number of particles $\langle N \rangle$.

Statistical ensembles \implies probabilities

• $\mathcal{P}_{N}^{C}(E, V)$ for the canonical distribution,

Non HEP physics

Canonical and grand canonical ensembles Non-HEP physics

Number of particles is important

- The canonical ensemble: fixed number of particles *N*.
- The grand canonical ensemble: fixed average number of particles $\langle N \rangle$.

Statistical ensembles \implies probabilities

- $\mathcal{P}_{N}^{C}(E, V)$ for the canonical distribution,
- $\mathcal{P}^{GC}_{\langle N \rangle}(N, E, V)$ for the grand canonical distribution,
- $\mathcal{P}_{\langle N \rangle}^{GC}(N, V)$ for the grand canonical distribution.

Non HEP physics

Canonical and grand canonical ensembles Non-HEP physics

Number of particles is important

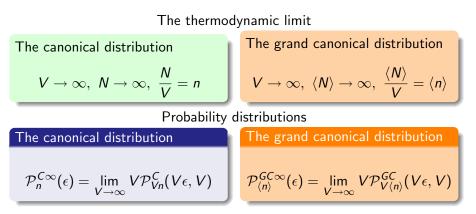
- The canonical ensemble: fixed number of particles *N*.
- The grand canonical ensemble: fixed average number of particles $\langle N \rangle$.

Statistical ensembles \implies probabilities

- $\mathcal{P}_{N}^{C}(E, V)$ for the canonical distribution,
- $\mathcal{P}^{GC}_{\langle N \rangle}(N, E, V)$ for the grand canonical distribution,
- $\mathcal{P}_{(N)}^{GC}(N, V)$ for the grand canonical distribution.

$$\mathcal{P}^{GC}_{\langle N \rangle}(N,E,V) = \mathcal{P}^{GC}_{\langle N \rangle}(N,V) \mathcal{P}^{C}_{N}(E,V)$$

The thermodynamic limit



Equivalence

$$\mathcal{P}^{GC\infty}_{\langle n\rangle}(\epsilon) = \mathcal{P}^{C\infty}_n(\epsilon)$$

The grand canonical distribution

For particle number

$${\cal P}_{\langle N
angle}(N) = rac{\langle N
angle^N}{N!} \, {
m e}^{-\langle N
angle} \, ,$$

For the density

$$\mathbf{P}_{\langle n
angle}(n) = V \mathcal{P}_{V \langle n
angle}(V n) = V rac{(V \langle n
angle)^{V n}}{\Gamma(V n + 1)} \, \mathrm{e}^{-V \langle n
angle} \; .$$

T-limit: $V \to \infty$

$$\mathbf{P}_{\langle n \rangle}(n) \sim V^{1/2} \frac{1}{\sqrt{2\pi n}} \left(\frac{\langle n \rangle}{n}\right)^{Vn} \mathrm{e}^{V(n-\langle n \rangle)} \left\{ 1 - \frac{1}{12Vn} + \mathcal{O}(V^{-2}) \right\}$$

思い

Generalized function limit

$$\langle G \rangle = \int dn G(n) \mathbf{P}_{\langle n \rangle}(n)$$

+ saddle point method \Downarrow

通り

Generalized function limit

$$\langle G \rangle = \int dn G(n) \mathbf{P}_{\langle n \rangle}(n)$$

+ saddle point method \Downarrow

 $\Downarrow \Downarrow$

$$\langle G \rangle = G(\langle n \rangle) + \frac{\langle n \rangle}{2V}G''(\langle n \rangle) + O(V^{-2}),$$

$$\mathbf{P}_{\langle n \rangle}(n) \sim \delta(n - \langle n \rangle) + \frac{\langle n \rangle}{2V} \, \delta''(n - \langle n \rangle) + \mathcal{O}(V^{-2}) \, .$$

思い

Moments

$$\langle n^2 \rangle = \langle n \rangle^2 + \frac{\langle n \rangle}{V}$$

$$\Delta n^2 = \frac{\langle n \rangle}{V} \to 0 \,.$$

Expressed by particle number (extensive variable)

$$\langle N^2 \rangle = \langle N \rangle^2 + \langle N \rangle \Rightarrow \frac{\Delta N^2}{\langle N \rangle} = 1.$$

For the canonical ensemble

$$\Delta N^2 = 0$$

by definition.

This does not contradict the GC and C ensemble equivalence because in the T-limit

$$\mathsf{P}^{GC}_{\langle n \rangle}(n) = \delta(n - \langle n \rangle) = \mathsf{P}^{C}_{n}(n)$$

Part II

High Energy Statistical Physics

通り

Key ingredients of the last lecture

- Equivalence of statistical ensembles
- Nonequivalence of physical quantities
- Equivalence of statistical ensembles
- Nonequivalence of physical quantities
- Choice of variables
- Semi-intensive variables
- 6 HEP physics
 - Probability distributions
 - Probability distributions for densities
 - 7 The thermodynamic limit up to NLO
 - Probability distribution moments
 - The canonical ensemble
 - The grand canonical ensemble
- 8 Density moments up to NLO terms
 - Beyond NLO terms
 - Semi-intensive quantities

Crucial points

All people are equal

- any statistical ensemble is connected with the corresponding probability distribution (for densities),
- in finite volume those probability distributions are different for different ensembles,
- statistical ensembles are equivalent in the thermodynamic limit i.e. corresponding probability distribution have the same T-limit,

Crucial points

All people are equal

- any statistical ensemble is connected with the corresponding probability distribution (for densities),
- in finite volume those probability distributions are different for different ensembles,
- statistical ensembles are equivalent in the thermodynamic limit i.e. corresponding probability distribution have the same T-limit,

But not the same

- semi-intensive variables remain finite in the thermodynamic limit,
- they remain different for different ensembles even in the thermodynamic limit.

Variables

In the thermodynamical limit the relevant probabilities distributions are those related to densities. These distributions are given by moments calculated for densities – not for particles. In the practice, however, we measure particles – not densities. By taking corresponding ratios volumes are canceled.

The density variance $\Delta^2 n$

$$\Delta^2 n = \langle n^2 \rangle - \langle n \rangle^2 = \frac{\langle N^2 \rangle - \langle N \rangle^2}{V^2} \, .$$

By taking the relative variance

$$\frac{\Delta^2 n}{\langle n \rangle^2} = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle^2} \,,$$

volume is eliminated

- ▲ 注 →

Variables

A special care should be taken for calculations of ratios of particles momenta. These momenta are extensive variables but their ratios can be finite in the thermodynamic limit. A behavior of such quantities depend on higher terms in the saddle point procedure.

The scaled particle variance

$$\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} = V \frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle}$$

The term

$$\frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle} \, .$$

tends to zero in the thermodynamic limit. A behavior of the scaled variance depends on the $\mathcal{O}(V^{-1})$ term in the scaled density variance

- 4 回 🖌 🖌 🕀

HEP physics

Canonical and grand canonical distribution

High energy physics

HEP vocabulary

- particle number is not conserved
- charge is conserved
- canonical and grand canonical with respect to the charge

Conserved charges are important

- Canonical ensemble: charge Q is fixed.
- Grand canonical ensemble: The average charge $\langle Q \rangle$ is fixed.

 $\mathsf{Ensembles} \Longrightarrow \mathsf{probability} \ \mathsf{distributions}$

- $\mathcal{P}_{Q}^{C}(N, V)$ for the canonical distribution,
- $\mathcal{P}_{\langle Q \rangle}^{GC}(N, Q, V), \mathcal{P}_{\langle Q \rangle}^{GC}(N, V)$ for the grand canonical distribution.

HEP physics

Canonical and grand canonical distribution High energy physics. The thermodynamic limit

The thermodynamic limit: $V
ightarrow \infty$

The canonical ensemble

$$Q, N \to \infty; \ \frac{Q}{V} = q, \ \frac{N}{V} = n$$

$$\langle Q \rangle, N \to \infty; \ \frac{\langle Q \rangle}{V} = \langle q \rangle, \ \frac{N}{V} = n$$

N means here and it will mean till the end of that lecture: number of negative charged particles.

Ideal gas with conserved charge Q

$$\mathcal{P}_Q^C(N, V) = \frac{z^{2N+Q}}{N!(N+Q)!} \frac{1}{I_Q(2z)}.$$

$$\mathcal{P}_{\langle Q \rangle}^{GC}(Q,V) = I_Q(2z) \left[\frac{\langle Q \rangle + \sqrt{\langle Q \rangle^2 + 4z^2}}{2z} \right]^Q e^{-\sqrt{\langle Q \rangle^2 + 4z^2}}$$
$$\mathcal{P}_{\langle Q \rangle}^{GC}(N,V) = \frac{1}{N!} \left[\frac{\sqrt{\langle Q \rangle^2 + 4z^2} - \langle Q \rangle}{2} \right]^N \exp\left[-\frac{\sqrt{\langle Q \rangle^2 + 4z^2} - \langle Q \rangle}{2} \right].$$

$$z(T) = rac{V}{(2\pi)^3} \sum_i g_i \int d^3 p \; \mathrm{e}^{-eta \sqrt{p^2 + m_i^2}} \equiv V z_0(T) \, ,$$

$$\begin{split} \mathbf{P}_{q}^{G}(n,V) &:= V\mathcal{P}_{Vq}^{G}(Vn,V), \\ \mathbf{P}_{\langle q \rangle}^{GC}(n,q,V) &:= V^{2}\mathcal{P}_{V\langle q \rangle}^{GC}(Vn,Vq,V), \\ \mathbf{P}_{\langle q \rangle}^{GC}(q,V) &:= V\mathcal{P}_{V\langle q \rangle}^{GC}(Vq,,V). \end{split}$$

In the thermodynamic limit $V
ightarrow \infty$

$$\mathbf{P}_q^C(n, V) = \mathcal{P}_q^\infty(n) + \frac{1}{V} R_q^C(n) + \mathcal{O}(V^{-2})$$

$$egin{aligned} \mathbf{P}^{GC}_{\langle q
angle}(n,q,V) &= \mathcal{P}^{\infty}_{\langle q
angle}(n,q) + rac{1}{V}R^{GC}_{\langle q
angle}(n,q) + \mathcal{O}(V^{-2})\,, \ \mathbf{P}^{GC}_{\langle q
angle}(q,V) &= \mathcal{P}^{\infty}_{\langle q
angle}(q) + rac{1}{V}S^{GC}_{\langle q
angle}(q) + \mathcal{O}(V^{-2})\,. \end{aligned}$$

< C > < 🗇

Some technique

Grand canonical distribution

$$\mathcal{Z}^{GC}(V,T) = \operatorname{Tr} e^{-eta(\hat{H}-\mu\hat{Q})}$$

So GC leads to

$$\begin{split} \mathcal{Z}^{GC}(V,T,\mu) = &\sum_{N_+} \sum_{N_-} \langle N_+ | \, \mathrm{e}^{-\beta \hat{H}} \, | N_+ \rangle \, \mathrm{e}^{\beta \mu N_+} \langle N_- | \, \mathrm{e}^{-\beta \hat{H}} \, | N_- \rangle \, \mathrm{e}^{-\beta \mu N_-} = \\ & \mathrm{e}^{(\lambda_+ + \lambda_-)z} \,, \end{split}$$

where

$$\lambda_{\pm} = \mathrm{e}^{\pm\beta\mu} \ .$$

 λ_\pm can be used later as formal fugacities to calculate average numbers of positive and negative particles in the system.

$$\langle N_{\pm}
angle = \lambda_{\pm} rac{\partial}{\partial \lambda_{\pm}} \ln \mathcal{Z}^{GC} = \mathrm{e}^{\pm eta \mu} \, z \, .$$

Some technique

The average charge is given as

$$\langle {\cal Q}
angle = {\cal T} rac{\partial}{\partial \mu} \ln {\cal Z}^{GC} \, .$$

The charge dispersion is

$$\Delta Q^2 = \langle Q^2
angle - \langle Q
angle^2 = T^2 rac{\partial^2}{\partial \mu^2} \ln \mathcal{Z}^{GC} \, .$$

This gives

$$\langle Q \rangle = \left(e^{\beta\mu} - e^{-\beta\mu} \right) z = \langle N_+ \rangle - \langle N_- \rangle ,$$

 $\Delta Q^2 = \left(e^{\beta\mu} + e^{-\beta\mu} \right) z = \langle N_+ \rangle + \langle N_- \rangle .$

The chemical potential is untangled as

$$\frac{\mu}{T} = \frac{1}{2} \ln \frac{\langle N_+ \rangle}{\langle N_- \rangle} \,.$$

思い

Some technique

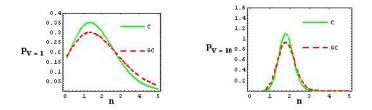
For fugacities

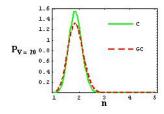
$$\lambda_{+} = rac{\langle Q
angle + \sqrt{\langle Q
angle^2 + 4z^2}}{2z}; \quad \lambda_{-} = rac{2z}{\langle Q
angle + \sqrt{\langle Q
angle^2 + 4z^2}};$$

The probability distribution $\mathcal{P}_{\langle Q \rangle}^{GC}(N, V)$ to have the charge Q, N + Q positive (and N negative) particles at the given average charge $\langle Q \rangle$ has a form

$$\mathcal{P}_{\langle Q \rangle}^{GC}(N,V) = \frac{z^{2N+Q}}{N!(N+Q)!} \left[\frac{\langle Q \rangle + \sqrt{\langle Q \rangle^2 + 4z^2}}{2z} \right]^Q e^{-\sqrt{\langle Q \rangle^2 + 4z^2}}$$

Volume dependence





通り

Moment with NLO corrections

$$\langle n^k \rangle_q^C \simeq \int dn \, n^k \, \mathcal{P}_q^\infty(n) + \frac{1}{V} \int dn \, n^k \, \mathcal{R}_q^C(n) \, ,$$

$$\langle n^k
angle_{\langle q
angle}^{GC} \simeq \int dn \, n^k \int dq \, \mathcal{P}^{\infty}_{\langle q
angle}(n,q) + rac{1}{V} \int dn \, n^k \int dq \, R^{GC}_{\langle q
angle}(n,q) \, .$$

Average density of charged particles

$$\langle n_{\pm}
angle_{\infty} = rac{\sqrt{q^2 + 4z_0^2} \pm q}{2}$$

The same T-limit in the grand canonical and canonical ensemble

$$\mathcal{P}^{\infty}_{\langle q \rangle}(n,q) = \mathcal{P}^{\infty}_q(n) \cdot \delta(q - \langle q \rangle).$$

The canonical ensemble

Probability distribution up to NLO terms

$$\begin{aligned} \mathbf{P}_{q}^{C}(n;V) &\simeq \delta\left(n - \langle n \rangle_{\infty}\right) + \\ &+ \frac{1}{V} \frac{z_{0}^{2}}{q^{2} + 4z_{0}^{2}} \,\delta'\left(n - \langle n \rangle_{\infty}\right) + \frac{1}{V} \frac{z_{0}^{2}}{2\sqrt{q^{2} + 4z_{0}^{2}}} \,\delta''\left(n - \langle n \rangle_{\infty}\right) \,. \end{aligned}$$

The grand canonical ensemble Probability distributions up to NLO terms

$$\begin{split} \mathbf{P}_{\langle q \rangle}^{GC}(q,n;V) &\simeq \delta\left(n - \langle n \rangle_{\infty}\right) \delta(q - \langle q \rangle) + \frac{\langle n \rangle_{\infty}}{2V} \delta''\left(n - \langle n \rangle_{\infty}\right) \delta(q - \langle q \rangle) \,, \\ \mathbf{P}_{\langle q \rangle}^{GC}(q,V) &\simeq \delta\left(q - \langle q \rangle\right) + \frac{\sqrt{\langle q \rangle^2 + 4z_0^2}}{2V} \,\delta''(q - \langle q \rangle) \,, \\ \mathbf{P}_{\langle q \rangle}^{GC}(n,V) &\simeq \delta\left(n - \langle n \rangle_{\infty}\right) + \frac{\langle n \rangle_{\infty}}{2V} \delta''\left(n - \langle n \rangle_{\infty}\right) \,. \end{split}$$

Moments up to NLO terms

The canonical ensemble

$$\langle n_{\pm}^{k} \rangle^{C} \simeq \langle n_{\pm} \rangle_{\infty}^{k} - \frac{k}{V} \frac{z_{0}^{2}}{q^{2} + 4z_{0}^{2}} \langle n_{\pm} \rangle_{\infty}^{k-1} + \frac{k(k-1)}{2V} \frac{z_{0}^{2}}{\sqrt{q^{2} + 4z_{0}^{2}}} \langle n_{\pm} \rangle_{\infty}^{k-2}.$$

The grand canonical ensemble

$$\langle n_{\pm}^k \rangle^{GC} \simeq \langle n_{\pm} \rangle_{\infty}^k + rac{k(k-1)}{2V} \langle n_{\pm} \rangle_{\infty}^{k-1} \,.$$

Moments up to NLO terms

The canonical ensemble

$$\langle n_{\pm}^{k} \rangle^{C} \simeq \langle n_{\pm} \rangle_{\infty}^{k} - \frac{k}{V} \frac{z_{0}^{2}}{q^{2} + 4z_{0}^{2}} \langle n_{\pm} \rangle_{\infty}^{k-1} + \frac{k(k-1)}{2V} \frac{z_{0}^{2}}{\sqrt{q^{2} + 4z_{0}^{2}}} \langle n_{\pm} \rangle_{\infty}^{k-2}.$$

The grand canonical ensemble

$$\langle n_{\pm}^k
angle^{GC} \simeq \langle n_{\pm}
angle^k_{\infty} + rac{k(k-1)}{2V} \langle n_{\pm}
angle^{k-1}_{\infty}.$$

 $\frac{q}{z_0}$ is an observable:

$$\frac{q^2}{z_0^2} = \frac{\langle N_+ \rangle_{\infty}}{\langle N_- \rangle_{\infty}} + \frac{\langle N_- \rangle_{\infty}}{\langle N_+ \rangle_{\infty}} - 2$$

思い

Density moments up to NLO terms

Approaching the thermodynamic limit

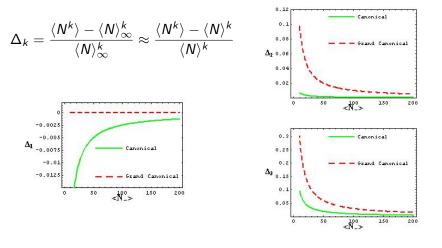
$$\Delta_{k} = \frac{\langle \mathsf{N}^{k} \rangle - \langle \mathsf{N} \rangle_{\infty}^{k}}{\langle \mathsf{N} \rangle_{\infty}^{k}} \approx \frac{\langle \mathsf{N}^{k} \rangle - \langle \mathsf{N} \rangle^{k}}{\langle \mathsf{N} \rangle^{k}}$$

康

注▶ ★ 注♪

- 4 🗇 🕨

Approaching the thermodynamic limit



N²LO terms

From

$$\begin{split} \widetilde{\mathbf{P}}_{\langle q \rangle}^{GC}(q,V) &\sim V^{1/2} \frac{\mathrm{e}^{-V\left(\sqrt{\langle q \rangle^2 + 4z_0^2} - \sqrt{q^2 + 4z_0^2}\right)}}{\sqrt{2\pi}(q^2 + 4z_0^2)^{1/4}} \left[\frac{\langle q \rangle + \sqrt{\langle q \rangle^2 + 4z_0^2}}{q + \sqrt{q^2 + 4z_0^2}} \right]^{Vq} \times \\ &\left\{ 1 + \frac{6z_0^2 - q^2}{12V(q^2 + 4z_0^2)^{3/2}} + \frac{324z_0^4 - 300z_0^2q^2 + q^4}{288V^2(q^2 + 4z_0^2)^3} \right\} \,. \end{split}$$

one gets

$$egin{aligned} \widetilde{\mathsf{P}}^{GC}_{\langle q
angle}(q,V) &= \delta\left(q-\langle q
angle
ight) + rac{\sqrt{\langle q
angle^2 + 4z_0^2}}{2V} \, \delta^{''}(q-\langle q
angle) + \ &rac{1}{V^2} \left(-rac{\langle q
angle}{6} \, \delta^{(3)}(q-\langle q
angle) + rac{\langle q
angle^2 + 4z_0^2}{8} \, \delta^{(4)}(q-\langle q
angle)
ight) + \, \mathcal{O}(V^{-3}) \, . \end{aligned}$$

・ロン ・聞と ・ モト・・ モン

Example 1: Moments

$$\mathcal{S}_{k} = \frac{\langle N_{\pm}^{k} \rangle - \langle N_{\pm} \rangle^{k}}{\langle N_{\pm} \rangle^{k-1}}$$

For the canonical distribution

T-lim
$$\mathcal{S}_{k}^{C} = rac{k(k-1)}{4} rac{\sqrt{q^{2} + 4z_{0}^{2}} \mp q}{\sqrt{q^{2} + 4z_{0}^{2}}},$$

For the grand canonical distribution

$$\mathsf{T} ext{-}\lim \mathcal{S}_k^{\mathsf{GC}} = rac{k(k-1)}{2}\,.$$

思い

Example 2: Susceptibilities

κ_p : *p*-th order susceptibility

$$\begin{aligned} \kappa_{p} &= \frac{\partial^{p} \ln \mathcal{Z}}{\partial \mu^{p}} \\ \mathcal{K}_{p;r} &= \frac{\kappa_{p}}{\kappa_{r}} \,, \end{aligned}$$

is a semi-intensive quantity.

• In the thermodynamic limit relevant probabilities are density distributions.

→ Ξ →

- In the thermodynamic limit relevant probabilities are density distributions.
- Density probability distributions obtained from different statistical ensembles have the same thermodynamical limit.

- In the thermodynamic limit relevant probabilities are density distributions
- Density probability distributions obtained from different statistical • ensembles have the same thermodynamical limit.
- Physical observables in the thermodynamic limit can depend on NLO terms \implies Semi-intensive quantities

- In the thermodynamic limit relevant probabilities are density distributions.
- Density probability distributions obtained from different statistical ensembles have the same thermodynamical limit.
- Physical observables in the thermodynamic limit can depend on NLO terms => Semi-intensive quantities
- First moments are the same in the canonical and grand canonical ensemble ⇒
 - EOS is the same the same in the canonical and grand canonical ensemble.

- In the thermodynamic limit relevant probabilities are density distributions
- Density probability distributions obtained from different statistical ensembles have the same thermodynamical limit.
- Physical observables in the thermodynamic limit can depend on NLO terms \implies Semi-intensive quantities
- First moments are the same in the canonical and grand canonical ensemble \implies
 - EOS is the same the same in the canonical and grand canonical ensemble.
- Finite volume effect more relevant for higher moments.

