Dynamics of relativistic HI collisions

V. Toneev

Facets of HI Physics

Phase diagram General remark Interaction scales

Market of transport models

BBHKYhierarchy Non-relativisti BE RMF

Relativistic BE

- conclusions

Dynamics of relativistic heavy ion collisions I

V. Toneev

The Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna

August 21, 2006

イロン 不同と 不同と 不同と

-2

Dynamics of relativistic HI collisions

V. Toneev

Facets of HI Physics

Phase diagram General remarks Interaction scales

Market of transport models

BBHKYhierarchy Non-relativistic BE RMF Relativistic BE Nuclear kinetics consturious

1 Facets of HIC Physics

Phase diagram General remarks Interaction scales

2 Market of transport models

BBHKY-hierarchy Non-relativistic BE RMF Relativistic BE Nuclear kinetics - conclusions

イロト イヨト イヨト イヨト

-1

Energy stair

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

Phase diagram General remarks Interaction scales

Market of transport models

hierarchy Non-relativistic BE RMF Relativistic BE Nuclear kinetic

- conclusions

・ロト ・回ト ・ヨト ・ヨト

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram

Interaction scales

Market of transport models

BBHKYhierarchy Non-relativis

RMF

Relativisti

Nuclear kinetic

- conclusions

Phases of strongly interacting matter

http://www.gsi.de/

(4日) (4日)

3

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram

Interaction scales

Market of transport models

BBHKYhierarchy Non-relativis BE

RMF

Relativistic

Nuclear kinetic

- conclusions

Phases of strongly interacting matter

▲ @ ▶ ▲ ∃

< □ > < □ > < □ > < □ > < □ > .

4

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

Phase diagram General remarks Interaction scales

Market of transport models BBHKYhierarchy Non-relativisti BE RMF Relativistic BI

- conclusions

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

Phase diagram General remarks Interaction scales

Market of transport models

hierarchy Non-relativist BE

RMF

Relativistic BI

Nuclear kinetic

Cross section

$$\sigma \sim \int \prod_{j} d^{3}p_{j} \mid \langle f \mid \mathcal{A}_{n} \mid i \rangle \mid^{2} \delta(E_{f} - E_{i})$$

 $f, i \to A, R, \rho_i, \dots$ $\mathcal{A}_n \to g_i, \dots$ limiting cases:

• elastic, inelastic scattering $p + A \rightarrow p' + A'$

$$\lambda = rac{\hbar}{
ho} \gg 1 \qquad \psi(x) \sim \exp(\imath k z) + \mathcal{A}(\vec{q}) \; \exp(\imath \vec{k} \vec{r})/r$$

with the Glauber-Sitenko amplitude

 $\mathcal{A}(\vec{q}) = \frac{i}{2\pi\lambda} \int d^2 b \, \exp(i\vec{q}\vec{b}) \, \Gamma(\vec{b})$ $\Gamma(\vec{b}) = \int \mathcal{K}(r) d\vec{r} = \sum_i \eta_i (\vec{b} - \vec{r}_i)$

Dynamics of relativistic HI collisions

V. Toneev

Facets of HI Physics

General remarks Interaction scales

Market of transport models

hierarchy Non-relativis

RMF

Relativistic BE

Nuclear kinetic

- conclusions

• participant-spectator model $| < f | A_n | i > |^2 \simeq ext{const}$ $\sigma \sim \int \prod_j d^3 p_j \ \delta(E_f - E_i)$

<ロ> (日) (日) (日) (日) (日)

 $\star\,$ Pure state $\rightarrow\,$ particle ensemble $\rightarrow\,$ statistical consideration

Dynamics of relativistic HI collisions

V. Toneev

General remarks

participant-spectator model $|\langle f|\mathcal{A}_n|i\rangle|^2\simeq \mathrm{const}$ $\sigma \sim \int \prod_i d^3 p_j \, \delta(E_f - E_i)$

イロト イヨト イヨト イヨト

L.Turko, M.Gorenstein

 \star Pure state \rightarrow particle ensemble \rightarrow statistical consideration

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remarks Interaction scalos

Market of transport models BBHKYbiorarchy

Non-relativisti BE RMF

Relativisti

Nuclear kineti

イロト イヨト イヨト イヨト

 $\star\,$ Pure state $\rightarrow\,$ particle ensemble $\rightarrow\,$ statistical consideration

* Adiabatic switching on the interaction ? \rightarrow time evolution *N*-body Liouville equation (time reversible !)

$$\frac{d\rho_{N}}{dt} = \frac{\partial}{\partial t}\rho_{N} + \frac{1}{i\hbar}\left[H, \ \rho_{N}\right] = 0$$

to solve it, justified approximations are needed

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remarks Interaction scalos

Market of transport models BBHKYbiorarchy

Non-relativisti BE RMF

Nuclear kir

- conclusions

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\star\,$ Pure state $\rightarrow\,$ particle ensemble $\rightarrow\,$ statistical consideration

* Adiabatic switching on the interaction ? \rightarrow time evolution *N*-body Liouville equation (time reversible !)

$$\frac{d\rho_{N}}{dt} = \frac{\partial}{\partial t}\rho_{N} + \frac{1}{i\hbar}\left[H, \ \rho_{N}\right] = 0$$

to solve it, justified approximations are needed

D.Voskresensky

Nuclear scales

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark Interaction scales

Market of transport models BBHKYhierarchy Non-relativist BE RMF

Relativisti

Nuclear kinetic

- conclusions

(4回) (4回) (日)

-2

units	d	٨	L	d/A	$Kn = \Lambda/L$
air (10^{-8} cm)	1	10 ⁵	10 ⁸	10 ⁻³	10 ⁻³
liquid (10^{-8} cm)	1	2-10	10 ⁸	0.1-0.5	10 ⁻⁷
nuclei (0.4/1.2 fm)	1	1.5-2	2-8	0.2-0.6	1-0.2

kinetics \Leftarrow $d \ll \Lambda \ll L$ \Rightarrow hydrodynamics

For nuclear case (intermediate energies) : $d < \Lambda < L$

Molecular dynamics

ŀ

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

General remark Interaction scales

Market of transport models

BBHKYhierarchy Non-relativistic BE RMF Relativistic BE Nuclear kinetics

• A-body problem in a classical picture [Quantum] Molecular Dynamics

$$\dot{\vec{x}}_i = \frac{\partial}{\partial \vec{p}_i} H(i = 1, \dots A)$$
$$\dot{\vec{p}}_i = \frac{\partial}{\partial \vec{p}_i} H(i = 1, \dots A)$$

$$\dot{\vec{p}}_i = -\frac{\partial}{\partial \vec{x}_i} H(i=1,\ldots A)$$

with
$$H = -\sum \bigtriangledown_{p_i}^2 + \sum_{i>k} V_{ik}$$

nuclear stability $V \rightarrow V^{Pauli}(p)$ NN-scattering ?

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Molecular dynamics

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark

scales

Market of transport models

BBHKYhierarchy Non-relativistic BE RMF Relativistic BE Nuclear kinetics - conclusions

• A-body problem in a classical picture [Quantum] Molecular Dynamics

$$\dot{\vec{x}_i} = \frac{\partial}{\partial \vec{p}_i} H(i = 1, \dots A)$$
$$\dot{\vec{p}_i} = -\frac{\partial}{\partial \vec{x}_i} H(i = 1, \dots A)$$

with
$$H = -\sum \bigtriangledown_{p_i}^2 + \sum_{i>k} V_{ik}$$

nuclear stability $V \rightarrow V^{Pauli}(p)$ NN-scattering ?

• Fermionic Molecular Dynamics $\sum \mathcal{A}_{\mu\nu} \ \dot{q}^{\nu} = -\frac{\partial}{\partial q^{\mu}} H$ $q = \{\vec{p}, \vec{x}, s \dots\} \qquad \text{with} \quad \mathcal{A}_{\mu\nu} = \frac{\partial^2 \mathcal{L}_0}{\partial \dot{q}^{\mu} \partial q_{\nu}} - \frac{\partial^2 \mathcal{L}_0}{\partial \dot{q}^{\nu} \partial q_{\mu}}$ wave packet CMD limit: $\mathcal{A}_{\mu\nu} \Rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

BBGKY-Hierarchy

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark Interaction scalas

Market of transport models

BBHKYhierarchy

Non-relativistic BE RMF Relativistic BE Nuclear kinetics

• Non-relativistic kinetic models

$$H = T + V = \sum \epsilon_i a_i^{\dagger} a_i + \sum V(ij, i'j') a_i^{\dagger} a_j^{\dagger} a_{i'} a_{j'}$$

$$\begin{array}{ll} n \text{-particle density}:\\ \rho_n(x_1, x_2, \dots, x_n) = \mathcal{V}^{n-N} \int dx_{n+1} \dots dx_N \ \rho(x_1 \dots, x_N) \\ \\ i\hbar \frac{\partial \rho_1(1)}{\partial t} &= [T_1, \rho_1(1)] + Tr_{(2)}[V_{12}, \rho_2(1, 2)] \\ \\ i\hbar \frac{\partial \rho_2(1, 2)}{\partial t} &= [(T_1 + T_2 + V_{12}), \rho_2(1, 2)] \\ \\ &+ Tr_{(3)}[(V_{13} + V_{23}), \rho_3(1, 2, 3)] \end{array}$$

$$\begin{split} \rho_{1} &\Rightarrow f^{W}(\vec{p}, \vec{x}, t) = < n(\vec{p}, \vec{x}) >_{t} \\ \text{with } n(\vec{p}, \vec{x}) &= \int \frac{d^{3}k}{(2\pi\hbar)^{3}} e^{i\vec{k}\vec{x}} a^{\dagger}_{\vec{p}-\vec{k}/2} a_{\vec{p}+\vec{k}/2} \\ \text{and } \frac{1}{\Delta\mu} \int f^{W}(\vec{p}, \vec{x}, t) \ d\mu &= f(\vec{p}, \vec{x}, t) + O(\frac{\hbar}{\Delta\mu}) \end{split}$$

approximations are needed

$$\rho_2(1,2) = \rho_1(1), \rho_1(2) = \rho_2(2)$$

Vlasov-Boltzmann terms

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

Phase diagram General remarks Interaction scales

Market of transport models

BBHKYhierarchy

Non-relativistic BE RMF Relativistic BE Nuclear kinetics

Generalized kinetic equation :

$$\frac{\partial f(\vec{p},\vec{x},t)}{\partial t} = -D(f) + C(ff)$$

• Driving Vlasov term (classical limit) (Hartree approximation, no exchange terms)

$$D(\vec{p},\vec{x},t) = \frac{\vec{p}}{m} \frac{\partial}{\partial \vec{x}} f(\vec{p},\vec{x},t) - \frac{\partial}{\partial \vec{x}} U(x) \frac{\partial}{\partial \vec{p}} f(\vec{p},\vec{x},t)$$

with an effective potential

$$U(x) = \int \frac{d^3x_1 \ d^3p_1}{(2\pi\hbar)^3} \ V(\vec{x} - \vec{x}_1) \ f(\vec{p}_1, \vec{x}_1, t)$$

phenomenologically (Skyrme) $U(x) = -a\rho + b\rho^2$

イロン イヨン イヨン イヨン

Boltzmann terms

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

Phase diagram General remarks Interaction scales

Market of transport models

BBHKYhierarchy

Non-relativistic BE RMF

Relativistic BE Nuclear kinetic

- conclusions

• Collision term

 $ec{p}+ec{p}_2\Rightarrowec{p}_1'+ec{p}_2'$, no correlation and retardation effects

$$C(\vec{p}, \vec{x}, t) = \int \frac{d^3 p_2 d^3 p'_1 d^3 p'_2}{(2\pi\hbar)^6} |T_2(\vec{p}\vec{p}_2; \vec{p}'_1 \vec{p}'_2) - T_2(\vec{p}\vec{p}_2; \vec{p}'_2 \vec{p}'_1)|^2$$

$$\times \delta(E_p + E_{p_2} - E'_{p_1} - E'_{p_2}) \,\,\delta(\vec{p} + \vec{p}_2 - \vec{p}'_1 - \vec{p}'_2)$$

$$\times \left[f_{p'_1} f_{p'_2} (1 - f_p)(1 - f_{p_2}) - f_p f_{p_2} (1 - f_{p'_1})(1 - f_{p'_2})\right]$$

$$\Leftrightarrow \text{gain} \qquad \Leftrightarrow \text{loss}$$

no exchange, no im-medium effects, ladder approximation for T_2

$$C(\vec{p}, \vec{x}, t) = \int \frac{d^3 p_2 d^3 p'_2}{(2\pi\hbar)^3} \,\delta(\vec{p} + \vec{p}_2 - \vec{p}'_1 - \vec{p}'_2) \,v_{12} \,\frac{d\sigma^{el}}{d\Omega} \\ \times \left[f_{p'_1} f_{p'_2} (1 - f_p) (1 - f_{p_2}) - f_p f_{p_2} (1 - f_{p'_1}) (1 - f_{p'_2}) \right] \\ \left\{ \frac{\partial}{\partial t} + \frac{\vec{p}}{m} \frac{\partial}{\partial \vec{x}} + \frac{\dot{\vec{p}}}{m} \frac{\partial}{\partial \vec{p}} \right\} f(\vec{p}, \vec{x}, t) = C(\vec{p}, \vec{x}, t) + \delta C$$

 $\begin{array}{l} \mathsf{BUU}\Rightarrow \mathsf{events}\ \mathsf{generators}; \quad f\ll 1\Rightarrow \mathsf{Boltzmann}\ \mathsf{equation}\\ \mathsf{account}\ \mathsf{for}\ \mathsf{fluctuations}\Rightarrow \mathsf{B-Langevin}\ \mathsf{equation}_{\square}\ ,\ \ \mathsf{random}\ \mathsf{force}\ \Uparrow_{\square\square\square\square} \end{array}$

Relativistic kinetic equations

Dynamics of relativistic HI collisions

V. Toneev

RMF

• the Walecka
$$\sigma - \omega \mod : \mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{int}$$

 $\mathcal{L}_0 = \bar{\psi}(i\gamma_\mu\partial^\mu - m_N)\psi + \frac{1}{2}(\partial_\mu\sigma\,\partial^\mu\sigma - m_S\,\sigma^2) - \frac{1}{4}F_{\mu\nu}\,F^{\mu\nu} + \frac{1}{2}m_V^2\,\omega_\mu\omega^\mu;$
 $\mathcal{L}_{int} = g_S\bar{\psi}\psi\sigma - g_V\bar{\psi}\gamma^\mu\psi\omega_\mu \qquad \text{with } F^{\mu\nu} = \partial^\mu\omega^\nu - \partial^\nu\omega^\mu.$

Equations of motion

 σ_0

 ω_0

es T

 $(\partial_{\mu}\partial^{\mu} + m_{s}^{2}) \sigma = g_{s}\bar{\psi}\psi$ Klein-Gordon $\partial F^{\mu\nu} + m_{\nu}^2 = g_V \bar{\psi} \gamma^\nu \psi$ Proka

$$\gamma^{\mu}(i\partial_{\mu} + g_{V}\omega_{\mu}) - (m_{N} - g_{S}\sigma)\psi = 0$$

In the mean-field approximation

Dirac

$$= \frac{\frac{\partial V}{\partial r_{S}^{2}}}{m_{S}^{2}} < \psi\psi > \equiv \frac{\frac{\partial V}{\partial r_{S}^{2}}}{m_{S}^{2}}\rho_{s}$$

$$= \frac{\frac{\partial V}{\partial r_{V}^{2}}}{m_{V}^{2}} < \bar{\psi}\gamma_{0}\psi > \equiv \frac{\frac{\partial V}{\partial r_{V}^{2}}}{m_{V}^{2}}\rho_{B}$$

$$\left[\left[p_{\mu}\partial^{\mu} - m_{N}^{*}\dot{p}^{\nu}\frac{\partial}{\partial p^{\nu}} \right] f(p,x) = C^{rel}(p,x) \right]$$

with $m_N^* \dot{p}^\nu = g_V p_\mu F^{\mu\nu} + m_N^* (\partial^\nu m_N^*)$ and quasiparticle parameters: $m_N^* = m_N - g_S \sigma_0$ - eff. mass, $p_\mu \to p_\mu - g_V \omega_\mu$ - kinetic momentum $\mathsf{RBUU} \Rightarrow \mathsf{events} \ \mathsf{generators}$ イロト イポト イヨト イヨト 3

Relativistic kinetic equations

Dynamics of relativistic HI collisions

RMF

• the Walecka
$$\sigma - \omega$$
 model : $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{int}$
 $\mathcal{L}_0 = \bar{\psi}(i\gamma_\mu\partial^\mu - m_N)\psi + \frac{1}{2}(\partial_\mu\sigma\,\partial^\mu\sigma - m_S\,\sigma^2) - \frac{1}{4}F_{\mu\nu}\,F^{\mu\nu} + \frac{1}{2}m_V^2\,\omega_\mu\omega^\mu;$
 $\mathcal{L}_{int} = g_S\bar{\psi}\psi\sigma - g_V\bar{\psi}\gamma^\mu\psi\omega_\mu$ with $F^{\mu\nu} = \partial^\mu\omega^\nu - \partial^\nu\omega^\mu.$

Equations of motion

- $(\partial_{\mu}\partial^{\mu} + m_{s}^{2}) \sigma = g_{s}\bar{\psi}\psi$ Klein-Gordon $\partial F^{\mu\nu} + m_{\nu}^2 = g_V \bar{\psi} \gamma^\nu \psi$
- $\gamma^{\mu}(i\partial_{\mu}+g_{V}\omega_{\mu})-(m_{N}-g_{S}\sigma)\psi=0$ In the mean-field approximation
- $\sigma_0 = \frac{g_s}{m_a^2} < \bar{\psi}\psi > \equiv \frac{g_s}{m_a^2}\rho_s$ $\omega_0 = \frac{g_V}{m^2} < \bar{\psi}\gamma_0\psi > \equiv \frac{g_V}{m^2}\rho_B$

$$\left[p_{\mu}\partial^{\mu}-m_{N}^{*}\dot{p}^{\nu}\frac{\partial}{\partial p^{\nu}}\right]f(p,x)=C^{rel}(p,x)$$

with $m_N^* \dot{p}^\nu = g_V p_\mu F^{\mu\nu} + m_N^* (\partial^\nu m_N^*)$ and quasiparticle parameters: $m_N^* = m_N - g_S \sigma_0$ - eff. mass, $p_\mu \to p_\mu - g_V \omega_\mu$ - kinetic momentum

Steps towards higher energies

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark Interaction scales

Market of transport models

BBHKYhierarchy

Non-relativisti BE RMF

Relativistic BE

Nuclear kinetic

• Relativistic Boltzmann equation ($\psi,\sigma,\omega\Rightarrow$ 0; $f\ll$ 1)

$$(p_{\mu}\partial^{\mu}) f_i(x,p_i) = \sum_j C^{rel}(x,p_i) + \sum_r R_{r \rightarrow i}$$

 $= -f_i(x, p_i) \sum_j \int d\omega_j f_j(x, p_j) Q_{ij} \sigma^{ij} + \sum_{kj} \int d\omega_k d\omega_j \Phi(p_j p_k \mid x, p_i, \tau_f)$

$$+\sum_{r}\int d\omega_{k'}d\omega_{r} f_{r}(x,p_{r}) \Gamma^{r\to i+k'} \delta(p_{r}-p_{i}-k')$$

hadron production rate

$$\Phi(p_j p_k \mid x, p_i, \tau_f) = \int dx' \underbrace{f_k(x', p_i) f_j(x', p_j) Q_{ij} \sigma^{ij}}_{\text{collision rate}} \underbrace{\phi(x' \mid x, p_i, \tau_f)}_{\text{transition prob.}}$$

with
$$d\omega = d^3 p/E$$
, $Q_{ij} = (p_i p_j)^2 - p_i^2 p_j^2 = |v_i - v_j| E_i E_j$

transition probability for a finite formation time

$$\phi(\mathbf{x}' \mid \mathbf{x}, \mathbf{p}, \tau_f) = \frac{1}{\sigma} \frac{d\sigma}{d\omega} \ \theta(t - t' - \tau_f) \ \delta^{(3)}(\vec{\mathbf{x}} - \vec{\mathbf{x}}' - \frac{\vec{p}}{E}(t - t')) \ F(\tau_f)$$

・ロン ・回 と ・ ヨン ・ ヨン

-2

Steps towards higher energies

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark Interaction scales

Market of transport models

BBHKYhierarchy

Non-relativisti BE RMF

Relativistic BE

Nuclear kinetic

• Relativistic Boltzmann equation $(\psi, \sigma, \omega \Rightarrow 0; f \ll 1)$ $(p_{\mu}\partial^{\mu}) f_i(x, p_i) = \sum_i C^{rel}(x, p_i) + \sum_r R_{r \to i}$

 $= -f_i(x, p_i) \sum_j \int d\omega_j f_j(x, p_j) Q_{ij} \sigma^{ij} + \sum_{kj} \int d\omega_k d\omega_j \Phi(p_j p_k \mid x, p_i, \tau_f)$

$$+\sum_{r}\int d\omega_{k'}d\omega_r \ f_r(x,p_r) \ \Gamma^{r\to i+k'} \ \delta(p_r-p_i-k')$$

hadron production rate

$$\Phi(p_j p_k \mid x, p_i, \tau_f) = \int dx' \underbrace{f_k(x', p_i) f_j(x', p_j) Q_{ij} \sigma^{ij}}_{\text{collision rate}} \underbrace{\phi(x' \mid x, p_i, \tau_f)}_{\text{transition prob.}}$$

with
$$d\omega = d^3 p/E$$
, $Q_{ij} = (p_i p_j)^2 - p_i^2 p_j^2 = |v_i - v_j| E_i E_j$

transition probability for a finite formation time

$$\phi(\mathbf{x}' \mid \mathbf{x}, \mathbf{p}, \tau_f) = \frac{1}{\sigma} \frac{d\sigma}{d\omega} \ \theta(t - t' - \tau_f) \ \delta^{(3)}(\vec{\mathbf{x}} - \vec{\mathbf{x}}' - \frac{\vec{p}}{E}(t - t')) \ F(\tau_f)$$

- ★ multiple particle production \Rightarrow coupled set of equations for stable hadrons and resonances { h_i }; new flavors
- * finite formation time $\theta(t \tau_f)$, $\tau_f = (E/m)\tau_f^0$ with $\tau_f^0 \sim 1$ fm; \Rightarrow memory (retarded) effect (non-Markovian process) = $\tau_f^0 \sim 1$ fm;

Strings

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark Interaction

Market of transport models

hierarchy Non-relativist BE

Relativistic BE

Nuclear kinetics - conclusions • new degrees of freedom (QCD) : quark/gluons , strings, formation of color rope

 \star Hadron as a string

 $H_{yo-yo} = |p_1| + |p_2| + \kappa |x_1 - x_2|$ $\frac{dp_{1,2}}{dt} = \pm \kappa , \frac{dx_{1,2}}{dt} = \pm 1$ $x^+ = \frac{p^+}{\kappa} = \frac{E+p}{\kappa} , x^- = \frac{p^-}{\kappa} = \frac{E-p}{\kappa} , S = \frac{p^+p^-}{\kappa^2} = \frac{E^2-p^2}{\kappa^2} = \frac{m^2}{\kappa^2}$ V. Tonew Dynamics of relativistic HL collisions

Strings

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark Interaction scalar

Market of transport models

hierarchy Non-relativist BE

RMF Relativistic BE

Nuclear kinetics

• new degrees of freedom (QCD) : quark/gluons , strings, formation of color rope

 \star Hadron as a string

V. Toneev

Dynamics of relativistic HI collisions

String interaction

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

Phase diagram General remarks Interaction scales

Market of transport models

BBHKYhierarchy

Non-relativisti BE RMF

Relativistic BE

Nuclear kinetics - conclusions

• Particularities of space-time evolution

CLASSICAL STRING THEORY

time \Rightarrow

\star string rearrangement

 $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

- * leading particle effect
- * color rope formation

DUAL TOPOL. MODEL

* planar diagram

* cylindrical diagram

▲□ > < □ >

< ∃⇒

Jets

Dynamics of relativistic HI collisions

V. Toneev

Facets of HI Physics Phase diagram

General remark Interaction scales

Market of transport models

BBHKYhierarchy

BE RMF

Relativistic BE

Nuclear kinetic - conclusions

Hard parton-parton collision (true two-body scattering) $p_{\perp} \gg \Lambda_{QCD}, \quad r_{\perp} \sim \hbar c/p_{\perp}$ $\frac{d\sigma}{dp_{\perp}} = \frac{C}{p_{\perp}^{n}}$ RHIC physics HUING code

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Jets

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics Phase diagram General remark

Interaction scales

Market of transport models

BBHKYhierarchy

BE RMF

Relativistic BE

Nuclear kinetics - conclusions

Hard parton-parton collision (true two-body scattering) $p_{\perp} \gg \Lambda_{QCD}, \quad r_{\perp} \sim \hbar c/p_{\perp}$ $\frac{d\sigma}{dp_{\perp}} = \frac{C}{p_{\perp}^{n}}$ RHIC physics HIJING code

solution \Rightarrow Monte Carlo Methods: event generators \Rightarrow UrQMD, QGSM, HSD ...

- \bullet quark-gluon transport $\mbox{ (color} \rightarrow \mbox{ dynamical degree of freedom, }$
 - in the quasi-classical limit $\rightarrow (p\partial_x gpF\partial_p)W$) ona-Losinio model V.Yudichev
- ★ Nambu-Jona-Losinio model

Basic kinetic idea

Dynamics of relativistic HI collisions

V. Toneev

Facets of HIC Physics

Phase diagram General remark Interaction scales

Market of transport models BBHKYhierarchy Non-relativis

RMF Relativistic BE Nuclear kinetics - conclusions HIC ⇒ subsequent collisions between quasiparticles (Boltzmann-like equations)

Physics : What is a quasiparticle ?

non-relativistic

$$\begin{pmatrix} \frac{\partial}{\partial t} + \vec{v} \vec{\bigtriangledown}_{x} + \frac{d\vec{p}}{dt} \vec{\bigtriangledown}_{p} \end{pmatrix} f(\vec{p}, \vec{x}, t) = C(\vec{p}, \vec{x}, t) \\ \uparrow \frac{d\vec{p}}{dt} = -\vec{\bigtriangledown}_{x} \frac{d\vec{p}}{dt} U(\vec{r}, t)$$

relativistic – QHD

(p-h)N + V(r)free N

hadrons $+\psi$ (Walecka-like)

resonances strings color ropes jets

quarks/gluons

V. Toneev Dynamics of relativistic HI collisions