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Basic facts

Neutron stars are born with T ∼ 1010 − 1011 K

Neutrino cooling down to T ∼ Tc ∼ 109 K within weeks

Neutrino cooling down to core T ∼ 108 K within next 104

years neutrinos are produced locally and leave the star
without interactions - neutrino cooling era

Photon emission from the surface for t ≥ 105 yr
- photon cooling era

Complex, multi-scale problem, which depends on many
unknown parameters

But... Continuing X-ray missions; True challenge to the
many-body theory with potential to constraint the
properties of dense matter.
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Chandra image of Crab nebula in X-rays
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Cooling simulations

Structure from Tolman-Opennheimer-Volkov equations

Evolution equations

∂(Le2φ)

∂r
= 4πr2eΛ

(
−ενe2φ + he2φ − cv

∂(Teφ)

∂t

)
,

∂(Teφ)

∂r
= −(Le2φ)eΛ−φ

4πr2κ
.

Boundary conditions

L(r = 0) = 0 ,

T (r = rm) = Tm(rm, Lm,Mm) ,
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Input quantities

Equations of state: crust, core, multiple phases

Superfluidity of fermions

Heat capacity

Thermal conductivities: crust, core

Neutrino emissivities: pair-, photon-, plasma-processes,
bremsstrahlung, Urca processes

Photosphere

Surface composition
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Structure
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Cooling tracks
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Luminosities
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Classifying reactions

Processes on fermions

Neutral current processes (Z0 exchange)
{
f1 → f2 + νf + ν̄f (brems)

f1 + f ′1 → f2 + f ′2 + νf + ν̄f
(-2)

Charged current processes (W± exchange)
{
f1 → f2 + e+ ν̄e (Urca)

f1 + f ′1 → f2 + f ′2 + e+ ν̄e
(-3)
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Classifying reactions - 2

Processes on bosons

Pion decay

π− + n→ n+ e− + ν̄e

Condensation of pions leads to

π− → e− + ν̄e

analogous processes in K condensed phases
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Transport equations

ν and ν̄ - Boltzmann equations
[
∂t + ~∂q ων(~q)~∂x

]
fν(~q, x)

=

∫ ∞

0

dq0

2π
Tr
[
Ω<(q, x)S>0 (q, x)− Ω>(q, x)S<0 (q, x)

]
,

ν-quasiparticle propagators:

S<0 (q, x) =
iπ 6q
ων(~q)

[
δ (q0 − ων(~q)) fν(q, x)

−δ (q0 + ων(~q)) (1− fν̄(−q, x))
]
. (-7)

definition of the Poisson bracket

{f, g}P.B. = ∂ωf ∂tg − ∂tf ∂ωg − ∂~pf ∂~rg + ∂~rf ∂~pg. (-8)
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Self-energies

ν and ν̄-self-energies (second order in weak force)

−iΩ>,<(q1, x) =

∫
d4q

(2π)4

d4q2

(2π)4
(2π)4δ4(q1 − q2 − q)

iΓµL q iS
<
0 (q2, x)iΓ†λL qiΠ

>,<
µλ (q, x), (-9)

the problem is to compute the polarization tensor!
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Bremsstrahlung emissivity

energy loss per unit time and volume

ενν̄ =
d

dt

∫
d3q

(2π)3
[fν(~q) + fν̄(~q)]ων(~q) (-10)

expressed through the collision integrals

ενν̄ = −2

(
G

2
√

2

)2∑

f

∫
d3q2

(2π)32ων(~q2)

∫
d3q1

(2π)32ων(~q1)

∫
d4q

(2π)4

(2π)4δ3(~q1 + ~q2 − ~q)δ(ων(~q1) + ων(~q2)− q0) [ων(~q1) + ων(~q2)]

gB(q0) [1− fν(ων(~q1))] [1− fν̄(ων(~q2))] Λµλ(q1, q2)=m ΠR
µλ(q).
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Urca emissivity

energy loss per unit time and volume

εUrca =
d

dt

∫
d3q

(2π)3
[fν̄(~q)]ων(~q) (-12)

expressed through the collision integrals

εν̄ = −2

(
G̃√

2

)2 ∫
d3q1

(2π)32ωe(q1)

∫
d3q2

(2π)32ων(q2)
∫
d4qδ(q1 + q2 − q)δ(ωe + ων − q0)ων(q2)

gB(q0) [1− fe(ωe)] Λµζ(q1, q2)=m ΠR
µζ(q), (-13)
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The direct Urca process

Simplest charge-current process is the β-decay

n→ p+ e− + ν̄ e− + p→ n+ ν (-14)

The one-loop polarization tensor for charge current
process. The wavy lines correspond to the W+

propagators, the solid line to the baryonic propagators.
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Urca process continued

Direct Urca is forbidden by kinematics if the matter is
strongly asymmetric, for proton fractions xp ≥ 11− 13%

εν̄ = (1 + 3g2
A)

3G̃2m∗nm
∗
ppFe

2π5β6

∫
dy gB(y) ln

1 + e−xmin

1 + e−(xmin+y)

×
∫
dzz3fe(z − y) ' 1026 × T 6 erg cm−3 s−1, (-15)

Temperature dependence εν̄ ∝ T 6.

each degenerate fermion, i.e., e, p, n factor T/εF

anti-neutrino T 3

energy conservation T−1 and energy rate T
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Effects of pairing on direct Urca process
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Effects of pairing on direct Urca process

Naive picture prescribes a suppression of the Urca process
by the pairing gap [∆max = ∆n, ∆p]

εν̄ → εν̄ × exp

(
−∆max

T

)
. (-16)

A more systematic way ...

Neutrino radiation from dense matter – p.19/29



Polarization tensor at one loop

ΠR
V/A(q, ω) =

∑

σ,~p

{(
u2
pu

2
k

ω + εp − εk + iδ
−

v2
pv

2
k

ω − εp + εk + iδ

)
[f(εp)− f(εk)]

+

(
u2
pv

2
k

ω − εp − εk + iδ

)
[1− f(εp)− f(εk)]

}
, (-17)

with coherence factors

u2
p =

1

2

(
1 +

ξp
εp

)
u2
p + v2

p = 1. (-18)

Scattering and pair-braking contributions
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One-loop vs naive suppression
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Pair-breaking contribution
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Neutral current pair-breaking processes

The one-loop contribution to the polarization tensor in the
superfluid matter; solid lines refer to the baryon
propagators, wavy lines to the (amputated) Z0 propagator.

ενν̄ =
G2 c2V
240π3

ν(pF ) T 7 I(ζ) ≡ ε0 I(ζ),

I(ζ) = ζ7

∫ ∞

0
dφ (coshφ)5 f(ζ coshφ)2, ζ = 2∆(T )/T
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Multi-loop processes continued

0 0.2 0.4 0.6 0.8 1
T/Tc

0

0.01

0.02

0.03

0.04

0.05

0.06

I 

one loop
full vector current
full axial vector current

Neutrino radiation from dense matter – p.24/29



Neutrinos in superconducting quark matter

At moderate densities u, d and e plasma
Lagrangian:

Leff = ψ̄(x)(iγµ∂µ)ψ(x)

+ G1(ψTCγ5τ2λAψ(x))†(ψTCγ5τ2λAψ(x)),

Pairing ansatz:

∆ ∝ 〈ψT (x)Cγ5τ2λ2ψ(x)〉,

Stationary points of the thermodynamical potential

∂Ω

∂∆
= 0, − ∂Ω

∂µf
= ρf ;
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Thermodynamic potential

Two-flavor systems with isospin asymmetry

Ω = − 1

β

∑

ωn

∫
d3p

(2π)3

1

2
Tr ln


β


 S−1

11 (iωn, ~p) S−1
12 (iωn, ~p)

S−1
21 (iωn, ~p) S−1

22 (iωn, ~p)






+
∆2

4G1
,

In terms of quasiparticle spectra where ξ±± = (p± µ)± δµand
E±± =

√
(p± µ)2 + |∆|2 ± δµ,

Ω = −2

∫
d3p

(2π)3

{
2p+

∑

ij

[ 1

β
log
(
1 + e−βξij

)
+Eij

+
2

β
log
(
1 + e−βsijEij

)]
}

+
∆2

4G1
, (-24)
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One loop results

Polarization tensors

Πµλ(q) = −i
∫

d4p

(2π)4
Tr [(Γ−)µS(p)(Γ+)λS(p+ q)]

Γ±(q) = γµ(1− γ5)⊗ τ±

Sf=u,d = iδab
Λ+(p)

p2
0 − ε2p

(6p− µfγ0), F (p) = −iεab3εfg∆
Λ+(p)

p2
0 − ε2p

γ5C
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The neutrino radiation reactions can be computed
systematically in the superfluid hadronic and quark
phases within Green’s function approach

Accurate rates are need for cooling simulations of
baryonic and quark stars.

This program has the potential to constrain the
properties of dense matter in compact stars.

Thanks to: Christoph Schaab, Fridolin Weber, Dima Voskre-

sensky, Prashant Jaikumar, Craig Roberts
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