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Density-temperature plane
ρ ≤ 3ρ0, ρ0 = 0.16 fm−3, T ∼ 0 − 60 MeV

Free-space interaction is well constrained (phase-shifts
below E ∼ 350 MeV)

Long-range attractive and short range repulsive force
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Complexity:
1. pair-correlations
2. bound states and their Bose condensation
3. neutron rich exotic nuclei
4. strangeness (stable hypernuclear matter)
5. strong fields
6. . . .
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A short introduction to Real-Time GF

tt0

t0
t

Equation of motion for Heisenberg operators

i∂tψ(x) = [ψ(x),H] , (1)

Path-ordered correlation function

G(1, 1′) = −i〈Pψ(1)ψ†(1′)〉

Equations of motion for PO correlation function

G(1, 1′) = G0(1, 1
′) − i

∫

C

d2d3d4 G0(1, 1
′) V (12; 34) G2(34, 1

′2+)
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G0(1)
−1G(1, 1′) = δ(1 − 1′) − i

∫

C

d2d3d4 V (12; 34) G2(34, 1
′2+),

Contour self-energies decouple the hierarchy as

Σ(1, 3)G(3, 1′) = −i

∫

C

d2d4 V (12; 34) G2(34, 1
′2).

“Prototype” kinetic equation
[

G∗
0(1

′) − G0(1)
]

G(1, 1′)

=

∫

C

d2
[

G(1, 2) Σ(2, 1′) − Σ(1, 2) G(2, 1′)
]

.
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Six propagators on the contour

G<(1, 1′) = −i〈ψ(1)ψ†(1′)〉, G>(1, 1′) = i〈ψ†(1′)ψ(1)〉.

Gc(1, 1′) = θ(t1 − t′1)G
>(1, 1′) + θ(t′1 − t1)G

<(1, 1′),

Ga(1, 1′) = θ(t′1 − t1)G
>(1, 1′) + θ(t1 − t′1)G

<(1, 1′),

GR(1, 1′) = θ(t1 − t′1)[G
>(1, 1′) −G<(1, 1′)],

GA(1, 1′) = θ(t′1 − t1)[G
<(1, 1′) −G>(1, 1′)].
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Quasi-classical kinetic equation

i{<G−1(p, x), G<(p, x)}P.B. + i{Σ<(p, x),<G(p, x)}P.B. =

Σ<(p, x)G>(p, x) − Σ>(p, x)G<(p, x),

the Kadanoff-Baym (KB) ansatz,

− iG<(p, x) = a(p, x)f(p, x), iG>(p, x) = a(p, x) [1 − f(p, x)]

[∂t + ∂pε(p, x)∂r + ∂rε(p, x)∂p] f(p, x)

=

∫

dω

(2π)

[

Σ>(p, x)G<(p, x) −G>(p, x)Σ<(p, x)
]

.
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(some) advantages of RTGF

Boltzmann equation is recovered in the quasiparticle
limit a(p) ∝ δ(ω − εp); more general framework (off-shell
transport)

valid for arbitrary non-equilibrium situations

Particle-hole symmetry of the self-energies must be
preserved (violated, e.g., in Bruckner type calculations)

Very convenient diagrammatic extension of the
Feynman rules to finite temperatures

for further reading, see W. Botermans and R. Malfliet, Phys. Rep. 1990
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The two-body problem

Self-consistent solution of coupled equations

T (12; 34) = V (12; 34) + i

∫

C

d5d6 V (12; 34) G(35) G(46) T (56; 34).

Σ(1, 2) = i

∫

C

d3d4 T (12; 34)G(43+).
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Equation of state

internal energy

E = g

∫

d4p

(2π)4
1

2

[

ω +
p2

2m
+ ReΣ(p)

]

a(p)fF (ω), (2)

free-energy

F = E − β−1S, (3)

entropy

S = g

∫

d4p

(2π)4
A(p) {fF (ω)lnfF (ω) + [1 − fF (ω)]ln[1 − fF (ω)]} . (4)
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Saturation problem

Particle-hole symmetries are broken

Need three-body forces

Relativistic kinematics and dynamics (?)

Density function theories that fit the properties

Many possible solutions, no definitive answer yet

NS observations have predictive power
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Charge neutrality and weak equilibrium

equilibrium with respect to weak interactions

n→ p+ e− + ν̄e, p+ e− → n+ νe, µe = µn − µp. (5)

charge neutrality

np = ne, Yp = Ye =
8

3π2n
S3

2

(

1

2
− Yp

)3

(6)

Symmetry energy

ES = S2α
2 + S4α

4 +O(α6), (7)

α = (ρn − ρp)/(ρn + ρp)
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collection of EOS

EoS method composition forces
A RMF npeHπ contact 2B
B variational npe realistic 2B + 3B
C DBHF npe realistic 2B
D BBG npe realistic 2B + 3B
E BBG npeH realistic 2B + 3B

Table 1:
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Mass and radius as a function of the central density
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Mass radius relationship
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The three-body problem in background medium

.... as an example of efficient application of the RTG
formalism

Foundations:

Skornyakov and Ter-Martirosian, 1956 (contact
interactions)

Faddeev, 1960 (for arbitrary, finite range interactions)

Bethe, 1965 (nuclear matter problem, hole-line
expansion)

Alt, Sandhas et al 1969 (alternative forms of Faddeev
equations)
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The three-body equation for the T -matrix

T = V + V G V = V + V G0 T , (8)

where the interaction V = V12 + V23 + V13

Reformulate the problem: T = T (1) + T (2) + T (3)

T (k) = Vij + VijG0T ijk = 123, 231, 312. (9)

Define: Tij = Vij + VijG0Tij and eliminate the potentials

Non-singular three-body equations

T (k) = Tij + TijG0

(

T (i) + T (j)
)

. (10)
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Three-body propagator in background medium

The time structure of the three-body T -matrix

T R (1)(t, t′) = T R
23(t, t′)

+

∫

[

T R (2)(t, t̄) + T R (3)(t, t̄)
]

GR
0 (t̄, t′′)T R

23(t′′, t′)dt̄dt′′,

Possible particle-hole channels

GR
0 (t1, t2) = θ(t1 − t2)



















G>G>G>(t1, t2) − (>↔<) (3p)

G>G>G<(t1, t2) − (>↔<) (2ph)

G>G<G<(t1, , t2) − (>↔<) (p2h)

G<G<G<(t1, t2) − (>↔<) (3h)
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Particle-hole content of the T -matrix

3-particle – 3-hole scattering T -matrix

T R (1) = T R
23 +

∫

[

T R (2) + T R (3)
] Q3(Ω

′)

Ω − Ω′ + iη
T R

23(Ω′)dΩ′,

3-body Pauli-blocking: f̄F = 1 − fF

Q3(pα, pβ , pγ) = f̄F (pα)f̄F (pβ)f̄F (pγ) − fF (pα)fF (pβ)fF (pγ).

pα are spanned in terms of Jacobi coordinates.
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Bound states in background medium

Bound state wave-function

Ψ = ψ(1) + ψ(2) + ψ(3); ψ(k) = G0Tij(ψ
(i) + ψ(j)). (11)

Need the channel T -matrix

TR(~p, ~p′; ~P ,E)

= V (~p, ~p′) +

∫

d~p′′

(2π)3
V (~p, ~p′′)GR

0 (~p′′, ~P ,E)TR(~p′′, ~p′; ~P ,E)

GR
0 (~k1, ~k2, E) =

Q2(~k1, ~k2)

E − ε(~k1) − ε(~k2) + iη
, (12)
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Temperature dependent binding energies of triton in nuclear matter
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The three-body wave-function
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The phase diagram
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Summary on three-body problem

The background medium modifies the three-body w.f.
and binding energy and leads to extinction of bound
states at a critical temperature

The ratio of the three-body to two-body bound states
energies is found to be independent of temperature.

Implications for the composition of dilute nuclear matter
and physics of dilute multi-species atomic gases
remains to be explored. Of particular interest are the
Efimov states recently observed in gases.
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Alpha condensation

Phenomenology of alpha condensation:
The excited states of 4N nuclei are well described
within the α particle model: elementary degrees of
freedom are α’s interacting via a α-α potential: 8Be
(unstable) 12C (first stable α nucleus), 16O, 40Ca.
Recent work suggest that these systems are well
described by single wave function (BEC in systems
with a few particles ?).
This motivates the study of Bose-Einstein
condensation in infinite alpha matter - start with N → ∞
system and follow the crossover as N is reduced.
(see work by G. Röpke, P. Schuck + Japanese colleagues).
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Alpha condensation

Astrophysical motivation:
Supernova matter at densities ρ ∼ 1012 g cm−3 and
temperatures T ≤ 10 MeV contains 15 − 20% α
particles
α effect and its impact on the r-process (McLaughlin,
Fuller and Wilson, 1996).
triple-alpha fusion in accreting neutrons stars
α+ α+ α→12C+Q (Langanke et al 1992)).
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From Hamiltonian to effective action

Consider gas of α particles interacting with 2 and 3-body forces

H =

∫

d3x

[

~
2

2m
∇ψ†(x)∇ψ(x) − µψ†(x)ψ(x)

+ψ†(x)ψ(x)U(x)

]

,

Interactions:

U(x) =

∫

dx′V2(x
′,x)ψ†(x′)ψ(x′)

+

∫

dx′

∫

dx′′V3(x,x
′,x′′)ψ†(x′′)ψ(x′)ψ†(x′′)ψ(x′),
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Coupling constants

Assume contact form of interaction (need lattice
regularization):

U(x) = g2ψ
†(x)ψ(x) + g3ψ

†(x)ψ(x)ψ†(x)ψ(x),

g2 = 4π~
2a

(2)
sc /m is related to the scattering length:

a
(2)
sc =

m

4π~2

∫

dx V2(x).

and assume that

V3(x,x
′,x′′) = Ṽ

(1)
2 (x,x′) + Ṽ

(2)
2 (x,x′′) + Ṽ

(3)
2 (x′,x′′).
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Effective action

Expand the fields ψ and ψ† in Matsubara sums and
keep near Tc the zeroth order term (Baym, Blaizot, Zinn
Justin ’99).

ψ(x, ων) = ψ0(x) +
∞

∑

ν=−∞, ν 6=0

eiωντψ(x, τ), (13)

New fields: ψ = η(φ1 + iφ2), where φ1,2 -real,
η =

√

m/~2β.
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Partition function

Continuum action describes a classical O(2) symmetric

scalar φ6 field theory in 3 dimensions φ2 = φ2
1 + φ2

2:

S (φ) =

∫

d3x

{

1

2

∑

ν

[∂νφ]2 +
r

2
φ2 −

u

4!

[

φ2
]2

+
w

6!

[

φ2
]3

}

.

with parameters: r = −2βµη2, u = 4!βg2η
4, w = 6!βg3η

6.

Compute the partition function on 3d spatial lattice

Z =

∫

[dφ(x)]exp [−S (φ)] ,

Evaluated on a cubic lattice with Monte-Carlo methods
AS, H. Müther, P. Schuck, Nucl. Phys. A766 (2006) 97.
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EOS of α matter
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Critical temperature for BEC
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Summary on α condensation

Alpha matter is simulated on a lattice after near Tc after
re-casting the theory as O(2) symmetric φ6 theory with
negative quartic and positive sextic interactions (differs
from conventional φ4 theory!).

α condensation dominates the quasi-deuteron
condensation at low densities.

details of the EOS depend on the α-α potential (in
particular in the dilute system on the scattering length).
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