Helmholtz International Summer School on Dense Matter, Dubna/Russia, Aug 21 – Sep 1, 2006

Warm dense matter in giant planets and exoplanets

Ronald Redmer and Nadine Nettelmann University of Rostock, Institute of Physics D-18051 Rostock, Germany

- Introduction: Solar system
- Detection methods for exoplanets
- Planetary models and EOS of WDM
- Results for Jupiter
- Conclusions

Solar system: (Nixe) Eight planets*

*IAU Meeting Prague 24.08.2006: Pluto is considered as "Dwarf Planet"

Planetary parameters

Object Moor	Dist.	Mass	rho	G_{surf}	T _{surf}	Rot	Orb	
Weel	(AE)	(ME)	(g/cm³)	(Earth	n) (K)	period	period	
Sun	-	333000) 1.41	28	5800	25.4 d	-	-
Planets	:							
Mercury	0.387	0.0553	5.43	0.378	440	59 d	88 d	-
Venus	0.724	0.8152	5.20	0.907	730	243 d	224.7d	-
Earth	1.000	1.0000	5.52	1.000	287	23.934 h	365 d	1
Mars	1.524	0.1075	3.93	0.377	218	24.623 h	687 d	2
Jupiter	5.203	317.88	1.33	2.364	120	9.925 h	11.856 a	61
Saturn	9.555	95.162	0.69	0.916	88	10.656 h	29.424 a	31
Uranus	19.204	14.535	1.32	0.889	59	17.24 h	83.75 a	22
Neptune	30.087	17.141	1.64	1.125	48	16.11 h	163.7 a	14
Dwarf Planets:								
Ceres	2.5-2.9	(Astero	oid belt))			4.6 a	-
Pluto	39.505	0.0022	2.06	0.067	37	6.387 d	248.5 a	3
"Xena"	38-98	(Kuipe	r belt o	bject 20	003 U	B ₃₁₃)	557 a	1

Quest for extrasolar planets

Scan the neighborhood of the sun

Extrasolar planets: Detection methods

A. Hatzes, Lecture WEH-School

Radial velocity method

Measurement of the periodic Doppler shift of the stellar spectral lines

- Successful method: 180 detections so far
- Several planetary systems with 2 and 3 planets
- Method restricted to close-in planets with short orbital distances
- Method restricted to main sequence stars of spectral type F7-M5

Signal detection limit : $v_r = c \frac{d\lambda}{\lambda} \approx 2 \text{ m/s}$ Earth: $v_r \approx 0.1 \text{ m/s}$ Jupiter: $v_r \approx 13 \text{ m/s}$ Saturn: $v_r \approx 3 \text{ m/s}$

www.exoplanets.org

First exoplanet detected

- Star: 51 Pegasi $(M_* = 1.06M, d = 45 \text{ ly})$
- Mass: $M_P \sin i = 0.45 M_J$
- Period: $T = 4.233 \, d$
- Semi-major axis: $a_p = 0.051 \text{AE}$

M. Mayer and D. Queloz, Nature 378, 355 (1995)

Radial velocity method and orbital parameters

Measured parameters

Radial velocity
$$v_r = \frac{v_*}{\sin i} = c \frac{d\lambda}{\lambda}$$

Period T

Known parameters

Stellar mass M_*

Derivation of M_P , a_P by means of Keplerian laws

3rd Keplerian law :
$$\frac{a_P^3}{T^2} = \frac{G(M_* + M_P)}{4\pi^2}$$

Common center of mass : $M_P a_P = M_* a_*$, $2\pi a_* = Tv_*$

$$M_P = M_* \frac{Tv_*}{2\pi} \frac{1}{a_P} \implies M_P \sin i = v_r \left(\frac{M_*^2 T}{2\pi G}\right)^{\frac{1}{2}}$$

Transits: Relative photometry

Transits

measurement of the decreasing stellar luminosity during occultation by transiting planet

"Secondary Transits"

measurement of the decreasing planetary infrared-intensity during occultation by the star

H. Rauer, Lecture WEH-School 2006

Transits: Observational parameters

Direct measurements: period *P*, transit duration *T*, change of intensity *dI* //

Combination with radial velocity results:

mass-radius relationship!

Konacki et al. (2003)

(Extrasolar) giant planets: Modelling the interiors

H+He: 25% Helium, without core

- a) 30% helium, core mass=15 M_F
- b) 36% helium, core mass=15 M_E

Planet	$M \sin i [M_{jup}]$	$R[R_{jup}]$	a [AU]	P [d]
HD 209458b	0.69	1.42	0.0462	3.5
OGLE- 56	1.45	1,08	0.0225	3.0
OGLE- 113	0.765	1.25	0.0228	1.2
OGLE- 132	1.19	1.00	0.0307	4.0
OGLE- 111	0.53	1,08	0.0470	1.4
TrES-1	0.75	1.13	0.0393	1.7

Hot Jupiters !

T. Guillot, Ann. Rev. Earth Planet. Sci. 33

Solar giant planets: Schematic 3-layer model

Observables and free parameters

Constraints	Jupiter	Saturn			
M [M _{earth}]	318	95			
R [R _{earth}]	11.2	9.4			
T (1 bar) [K]	165	135			
Period [h]	9.9	10.7			
X He (1 bar)	23,8 %	6 %			
X He (average)	(27,5 %)	(27,5 %)			
gravitational moments J2, J4, J6					

fue e verene te ve
free parameters
core mass
ice: rock ratio (core)
X Metals (molecular envelope)
X Metals (metallic envelope)
transition pressure
Most important

input parameter:

EOS of H (He) !

Hydrogen EOS used for interior models

Hugoniot curves:

Sesame tables (Kerley 1972): limit for a "stiff" EOS, agrees with PIMC

FVT (Rostock): applicable for P < 0.5 Mbar including pressure dissociation, agrees with experiments and QMD results

 FVT_{ip}^{+} (Rostock): includes plasma contributions \rightarrow more compressible, reproduces NOVA data ("other limit")

Saumon, Chabrier, Van Horn (SCVH): commonly used for Jupiter and Saturn, two versions with/without PPT, yields also a higher compression ratio

Modelling solar giant planets: Basic equations

mass conservation:

$$dm = 4\pi r^2 \rho(r) dr$$

hydrostatic equation of motion:

$$\frac{1}{\rho}\frac{dP}{dr} = \frac{dU}{dr} , \qquad U = V + Q$$

gravitational potential:

$$V(\vec{r}) = -G \int_{V_0} d^3 r' \frac{\rho(r')}{|\vec{r} - \vec{r}'|}$$

expansion into Legendre polynomials:

$$V(r,\theta) = -\frac{GM}{r(\theta)} \left(1 - \sum_{i=1}^{\infty} \left(\frac{R_{eq}}{r(\theta)} \right)^{2i} J_{2i} P_{2i} \left(\cos \theta \right) \right)$$

gravitational moments:

$$J_{2i} = -\frac{1}{MR_{eq}^{2i}} \int d^3r' \rho(r'(\theta')) r'^{2i} P_{2i}(\cos\theta')$$

Multipole expansion of the gravitational potential

 $V(\vec{r}) = -G \int_{V_0} d^3 r' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} \, \text{gravitational potential of a mass distribution } \rho(r)$

multipole expansion:
$$\frac{1}{\left|\vec{r}-\vec{r}\,\right|} = \begin{cases} \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos\psi) & :r > r'\\ \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^{-n-1} P_n(\cos\psi) & :r < r' \end{cases}, \psi = (\vec{r}, \vec{r}')$$

$$V(\vec{r}) = -G \int d\Omega \int_{0}^{r} dr' \rho(r') r'^{2} \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^{n} P_{n}(\cos\psi) \quad \text{: external field}$$
$$-G \int d\Omega \int_{r}^{R} dr' \rho(r') r'^{2} \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^{-n-1} P_{n}(\cos\psi) \quad \text{: internal field}$$

- axial symmetry:
- north-south symmetry:
- spherical symmetry:

$$P_n(\cos\psi) = P_n(\cos\theta) \cdot P_n(\cos\theta') + \text{terms}(\varphi, \varphi')$$

no terms containing
$$P_n \Big|_{n>0}$$
, $P_0 = 1$

Potential of spherical symmetric planets

$$V(r) = -\frac{Gm(r)}{r} - 4\pi G \int_{r}^{R} dr' \rho(r')r'$$

external internal field

derivative of the gravitational potential:

$$\frac{dV}{dr} = \frac{Gm(r)}{r^2} - \frac{G}{r} \frac{dm}{\frac{dr}{4\pi r^2 \rho(r)}} - 4\pi G \frac{d}{\frac{dr}{r}} \int_{r}^{R} \frac{dr' \rho(r')r'}{\rho(r')r'} = \frac{Gm(r)}{r^2}$$

centrifugal potential:
$$Q(r) = \frac{1}{2}\omega^2 r^2 \sin^2 \theta = \frac{1}{2}\omega^2 r^2 \frac{2}{3}(1 - P_2(\cos\theta))^{\text{sphere}} = \frac{1}{3}\omega^2 r^2$$

derivative:
$$\frac{dQ}{dr} = \frac{2}{3}\omega^2 r$$

Potential of nearly spherical planets

Apply perturbation theory for non-relativistic compact objects

$$V(r,t) = -\frac{G}{r} \sum_{n=0}^{\infty} \left(r^{-2n} \int_{\substack{r' < r \\ r'' < r}} d^3 r' \rho(r') r'^{2n} P_{2n}(t') + r'^{2n+2} \int_{\substack{r' < r' \\ r'' < r'' \\ I_{2n}^i(r)}} d^3 r' \rho(r') r'^{-(2n+2)} P_{2n}(t') \right) P_{2n}(t)$$

Aim:

- calculation of the density integrals $I_{2n}^{e}(r)$, $I_{2n}^{i}(r)$
- $U(r,t) \rightarrow U(l)$ to solve the equations of motion

Method: Theory of figures by Zharkov & Trubitsyn (1978)

equipotential surfaces $r(\theta) = l(1 + \sum_{n=0}^{A} s_{2n}(l)P_{2n}(t))$, $s_{2n}(l)$: figure functions scaling: $\frac{4}{3}\pi l^3 = \int_{V} d^3r(l,\theta)$ approximation schema $A = \begin{cases} 1:J_2\\2:J_2,J_4\\3:J_2,J_4,J_6 \end{cases}$

Aim:
$$U(l) = \sum_{n=0}^{\infty} U_{2n}(l) P_{2n}(t)$$
 with $U_{2n} = 0$ for $n > 0$

Density integrals : $I_{2n}^{e}(r)$, $I_{2n}^{i}(r)$

•
$$r^m = l^m \left(1 + \sum_{n=0}^A s_{2n}(l)P_{2n}(t)\right)^m = \dots$$
 binomial expansion

• Products of Legendre polynomials

$$P_m \cdot P_n = \sum_{i=0}^{n+m} q_i P_i$$

• Example :
$$I_0^e(l) = \frac{4}{3}\pi\overline{\rho}l_1^3 \frac{m(l)}{M} \rightarrow U(l) = \frac{-Gm(l)}{l} + \dots$$

$$I_0^i(l) = \frac{4}{3}\pi \int_l^{l_1} dl' \rho(l') \frac{d}{dl'} \left[l'^2 \left(\frac{3}{2} - \frac{3}{10} s_2^2(l') - \frac{2}{35} s_2^3(l') \right) \right]$$
(3rd order)

U(I) formally determined!

$$U(l) = -G\left(\left(1 + \frac{2}{5}s_2^2\right)\frac{I_0^e(l)}{l} - \frac{3}{5}s_2\frac{I_2^e(l)}{l^3} + I_0^i(l) + \frac{2}{5}s_2l^2I_2^i(l)\right) + \omega^2l^2\left(\frac{1}{3} - \frac{10}{21}s_2\right)$$
(2nd order)

Figure functions s_{2n} : Iterative solution

 $U_{2n} = 0$ for n > 0

e.g.
$$0 = U_4(l) = -s_4 + \frac{18}{35}s_2^2 I_0^e(l) - \frac{54}{35}s_2 I_2^e(l) + I_4^e + \frac{36}{35}s_2 I_2^i(l) + I_4^i(l) - \omega^2 \frac{12}{35}s_2(l)$$

(2nd order)
(2nd order)
(2nd order)
 $J_{2n}(l) = \left(\frac{l}{MR_{eq}}\right)^{2n+2} I_{2n}^e(l)$
Figure functions for Jupiter

Program package for modelling giant planets

Results Jupiter: P-, T-, ρ - profiles

Very similar although different EOS are used!

Core mass & heavy element abundance

constraints from solar system evolution theory:

 $\overline{X}_{\text{He}} = 27.5\% \text{ (C1)}$ $X_{\text{He}} \text{ (molecular layer)} = 24\%$ Scenario gravitational instability : $M_{core} < 10 \text{ M}_{\text{E}}$ Scenario cluster formation : $10 < M_{core} < 20 \text{ M}_{\text{E}}$

Internal composition of Jupiter

H-He EOS of Saumon, Chabrier, Van Horn, ApJS **99**, 713 (1995); H₂O EOS from Sesame tables (1972)

Summary

- Modelling giant planets is an important task of astrophysics \rightarrow Structure and evolution of the solar system and of the universe
- Accurate models for giant planets in the solar system allow to check EOS data (H, He, H₂0 ...), especially in the WDM region
 - \rightarrow phase diagram at high pressures
 - \rightarrow plasma phase transition and nonmetal-to-metal transition
 - \rightarrow miscibility of helium in hydrogen, He droplet formation
- Exoplanets: New field of research
 - \rightarrow irradiation of nearby stars, opacity and circulation models
 - → detection of Earth-like planets
 - \rightarrow new ground- and space-based instruments