BOUND STATES AND SUPERCONDUCTIVITY IN DENSE MATTER (II) BCS/BEC CROSSOVER IN QUARK MATTER

David Blaschke

Institut für Physik, Universität Rostock, Germany and BLTP @ JINR Dubna, Russia

Path Integral Formulation

- -Nozières-Schmitt-Rink theory for relativistic fermion systems
- Thermodynamic potential with correlations: spectral density vs. phase shift
- Thouless criterion
- Particle number conservation
- Thermodynamics of the BCS-to-BEC crossover
- Evolution of the soft mode dynamics
 - Ginzburg-Landau equation and (relativistic) Gross-Pitaevskii equation
 - Transport properties
- Summary / Outlook

Reference: H. Abuki, arxiv:hep-ph/0605081 (May 2006)

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

RELATIVISTIC NOZIERES-SCHMITT-RINK THEORY (I)

Lagrangian for $N_f = 2$, $N_c = 3$ quark matter, OGE inspired

$$\mathcal{L} = \bar{q}(i\partial \!\!\!/ + \mu - m)q - \frac{g^2}{2}\sum_{a=1}^8 \bar{q}T^a\gamma_\mu q\,\bar{q}T^a\gamma^\mu q$$

Fierz transformation, select scalar diquark channel $(P_{\eta})_{ab}^{ij} = iC\gamma_5\epsilon^{ij}\epsilon_{abc}$

$$\mathcal{L} = \bar{q}(i\partial \!\!\!/ + \mu - m)q + \frac{G}{4} \sum_{\eta=1}^{3} [iq^{t}P_{\eta}q][i\bar{q}\bar{P}_{\eta}\bar{q}^{t}] + \frac{G}{4} \sum_{\eta=1}^{3} [iq^{t}P_{\eta}\gamma_{5}q][i\bar{q}\bar{P}_{\eta}\gamma_{5}\bar{q}^{t}] \cdots$$

Spinor doublet (bispinor) $Q = (q, \bar{q}^t)$ representation, $\bar{P}_{\eta} = \gamma_0 (P_{\eta})^{\dagger} \gamma_0$

$$\mathcal{L} = \frac{1}{2}\bar{Q} \begin{pmatrix} i\partial \!\!\!/ + \mu - m & 0 \\ 0 & i\partial^{t} - \mu^{t} + m \end{pmatrix} Q + \frac{G}{4}\bar{Q} \begin{pmatrix} 0 & 0 \\ P_{\eta} & 0 \end{pmatrix} Q \bar{Q} \begin{pmatrix} 0 & \bar{P}_{\eta} \\ 0 & 0 \end{pmatrix} Q$$

Partition function with $\mathcal{L}_E = -\mathcal{L}|_{t \rightarrow -i\tau}$

$$Z = \int \mathcal{D}Q \exp\left[-\int_{0}^{\beta} d\tau \int dd\boldsymbol{x} \mathcal{L}_{E}(Q)\right]$$

RELATIVISTIC NOZIERES-SCHMITT-RINK THEORY (II)

Hubbard–Stratonovich transformation to fermion pair fields

$$\Delta_{\eta}(\tau, x) = \frac{G}{2} \left\langle \bar{Q} \left(\begin{array}{cc} 0 & 0 \\ P_{\eta} & 0 \end{array} \right) Q \right\rangle, \quad \Delta_{\eta}^{*}(\tau, x) = \frac{G}{2} \left\langle \bar{Q} \left(\begin{array}{cc} 0 & \bar{P}_{\eta} \\ 0 & 0 \end{array} \right) Q \right\rangle,$$

Integrating out the fermion fields

$$Z = \int \mathcal{D}\Delta \mathcal{D}\Delta^* \exp\left[-\int d\tau d\boldsymbol{x} \left(\frac{|\Delta(-i\tau, \boldsymbol{x})|^2}{G}\right)\right] \times \exp\left[\frac{1}{2}\log \operatorname{Det}_{(x,y)} \left(\begin{array}{cc} S_{Fx,y}^{-1} & \bar{P}_{\eta}\Delta(x)\delta_{x,y} \\ P_{\eta}\Delta^*(x)\delta_{x,y} & \bar{S}_{Fx,y}^{-1} \end{array}\right)\right]$$

Bare fermion propagator

$$S_{Fx,y}^{-1} = (i\partial \!\!\!\partial + \not \!\!\!\! / \!\!\! / - m)\delta_{x,y}, \quad \bar{S}_{Fx,y}^{-1} = \gamma_5 C S_{Fy,x}^{-1} C \gamma_5; \quad \delta_{x,y} = T \sum_n \int \frac{dp}{(2\pi)^3} e^{-i\omega_n(\tau_x - \tau_y) + ip \cdot (x-y)} dp \cdot (x-y) dp \cdot (y-y) dp$$

Nambu-Gorkov propagator and self energy

$$\boldsymbol{S}_{Fx,y}^{-1} = \begin{pmatrix} S_{Fx,y}^{-1} & 0\\ 0 & \bar{S}_{Fx,y}^{-1} \end{pmatrix}, \quad -\boldsymbol{\Sigma}_{x,y} = \begin{pmatrix} 0 & \bar{P}_{\eta} \Delta_{\eta}(x) \delta_{x,y}\\ P_{\eta} \Delta_{\eta}^{*}(x) \delta_{x,y} & 0 \end{pmatrix},$$

Factorize the fluctuation contribution to the partition function

$$Z(\mu, T) \equiv e^{-\beta \Omega(\mu, T)} = Z_0(\mu, T) Z_{\text{fluc}}(\mu, T),$$

RELATIVISTIC NOZIERES-SCHMITT-RINK THEORY (III)

The thermodynamic potential for the free quark system is ($\epsilon_{p\pm} = \sqrt{m^2 + p^2} \mp \mu$)

$$\frac{\Omega_0}{V} = -\frac{1}{\beta V} \ln Z_0 = -2N_f N_c T \sum_{\alpha=\pm} \int \frac{d\boldsymbol{p}}{(2\pi)^3} \ln\left(1 + e^{-\epsilon_{p\alpha}/T}\right),$$

and the fluctuation contribution is determined from $\Omega_{\rm fluc} = -\ln Z_{\rm fluc}/\beta$ with

$$Z_{\text{fluc}} = \int \mathcal{D}\Delta \mathcal{D}\Delta^* \exp\left[-\int d\tau d\boldsymbol{x} \left(\frac{|\Delta_{\eta}(-i\tau,\boldsymbol{x})|^2}{G}\right) + \frac{1}{2} \ln \operatorname{Det}_{(x,y)}\left(\delta_{x,y} - \sum_{z} \boldsymbol{S}_{Fx,z}\boldsymbol{\Sigma}_{z,y}\right)\right].$$

Expanding up to quadratic order in (Δ, Δ^*) (Gaussian approximation), we have

$$Z_{\rm fluc} \equiv e^{-\beta\Omega_{\rm fluc}} = \prod_{\eta,N,\mathbf{P}} \int d\Delta_{\eta} (i\Omega_N,\mathbf{P}) d\Delta_{\eta}^* (i\Omega_N,\mathbf{P}) \exp\left[-\frac{T}{V} \left(\frac{1}{G} - \chi_{\mu,T} (i\Omega_N,\mathbf{P})\right) |\Delta_{\eta} (i\Omega_N,\mathbf{P})|^2\right],$$

where Ω_N and P denote the *bosonic* Matsubara-frequency and momentum. Integrating out the Gaussian fluctuation leads to (vacuum contr. $\chi_0 \equiv \chi_{\mu=0,T=0}$ subtracted)

$$\Omega_{\rm fluc} = d_B T \sum_{N: \rm even} \int \!\! \frac{d\boldsymbol{P}}{(2\pi)^3} \log\left[\frac{1}{G} - \chi_{\mu,T}(i\Omega_N, \boldsymbol{P})\right] - d_B \int_{-\infty}^{\infty} d\Omega \int \!\! \frac{d\boldsymbol{P}}{(2\pi)^3} \log\left[\frac{1}{G} - \chi_0(i\Omega, \boldsymbol{P})\right],$$

RELATIVISTIC NOZIERES-SCHMITT-RINK THEORY (IV)

The *pair correlation function* $\chi_{\mu,T}(i\Omega_N, \mathbf{P})$ at one-loop level is defined by \implies Set

$$\chi_{\mu,T}(i\Omega_N, \mathbf{P}) = 2T \sum_n \int \frac{d\mathbf{q}}{(2\pi)^3} \operatorname{tr}[S_F(i\omega_n + i\Omega_N, \mathbf{q} + \mathbf{P})S_F(-i\omega_n, -\mathbf{q})] \\ = -2 \int \frac{d\mathbf{q}}{(2\pi)^3} \left(1 + \frac{m^2 + \mathbf{q} \cdot (\mathbf{q} + \mathbf{P})}{E_q E_{q+P}}\right) \frac{1 - f_F(E_{q+P} - \mu) - f_F(E_q - \mu)}{i\Omega_N + 2\mu - E_{q+P} - E_q} \\ -4 \int \frac{d\mathbf{q}}{(2\pi)^3} \left(1 - \frac{m^2 + \mathbf{q} \cdot (\mathbf{q} + \mathbf{P})}{E_q E_{q+P}}\right) \frac{-f_F(E_{q+P} - \mu) + f_F(E_q + \mu)}{i\Omega_N + 2\mu - E_{q+P} + E_q} \\ +2 \int \frac{d\mathbf{q}}{(2\pi)^3} \left(1 + \frac{m^2 + \mathbf{q} \cdot (\mathbf{q} + \mathbf{P})}{E_q E_{q+P}}\right) \frac{1 - f_F(E_{q+P} + \mu) - f_F(E_q + \mu)}{i\Omega_N + 2\mu - E_{q+P} + E_q},$$

The (retarded) dynamic pair susceptibility $\Gamma(\omega, \mathbf{P})$ can be obtained by the analytic continuation of the pair correlation to the real ω -axis:

$$\Gamma_{\mu,T}^{-1}(\omega, \mathbf{P}) = \frac{1}{G} - \chi_{\mu,T}(\omega + i\delta, \mathbf{P}).$$

It corresponds to the quark pair propagator and its spectral density for $G = \mathcal{G}$

$$\rho_{\mu,T}^{\mathcal{G}}(\omega,\boldsymbol{P}) = \operatorname{Im} \Gamma_{\mu,T}^{\mathcal{G}}(\omega,\boldsymbol{P}) ; \quad \Gamma_{\mu,T}^{\mathcal{G}}(\omega,\boldsymbol{P}) = \frac{1}{1/\mathcal{G} - \chi_{\mu,T}(i\Omega_N,\boldsymbol{P})} = -\int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{\rho_{\mu,T}^{\mathcal{G}}(\omega,\boldsymbol{P})}{i\Omega_N - \omega}.$$

THERMODYNAMIC POTENTIAL IN TERMS OF SPECTRAL DENSITY

Differentiation and integration of Ω_{fluc} with respect to G gives

$$\Omega_{\text{fluc}} = d_B \int_0^G \frac{d\mathcal{G}}{\mathcal{G}^2} \int_{-\infty}^\infty \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} T \sum_N \frac{\omega \rho_{\mu,T}^{\mathcal{G}}(\omega, \mathbf{P})}{\Omega_N^2 + \omega^2} - (T = \mu = 0 \text{ part})$$

Identity $\rho_{-\mu,T}^{\mathcal{G}}(\omega, \mathbf{P}) = -\rho_{\mu,T}^{\mathcal{G}}(-\omega, \mathbf{P})$ entails charge conjugation symmetry $\mu \leftrightarrow -\mu$. Matsubara summation yields [$\tilde{f}_B(\omega) = f_B(\omega) + \theta(-\omega)$ with $f_B(\omega) = 1/(e^{\beta\omega} - 1)$]

$$\Omega_{\rm fluc} = -d_B \int_0^G \frac{d\mathcal{G}}{\mathcal{G}^2} \int_{-\infty}^\infty \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \tilde{f}_B(\omega) \rho_{\mu,T}^{\mathcal{G}}(\omega, \mathbf{P}) - d_B \int_0^G \frac{d\mathcal{G}}{\mathcal{G}^2} \int_{-\infty}^\infty \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \frac{\epsilon(\omega)}{2} \delta \rho_{\mu,T}^{\mathcal{G}}(\omega, \mathbf{P})$$

In-medium spectral shift: $\delta \rho^{\mathcal{G}}_{\mu,T}(\omega, \mathbf{P}) = \rho^{\mathcal{G}}_{\mu,T}(\omega, \mathbf{P}) - \rho^{\mathcal{G}}_{0,0}(\omega, \mathbf{P})$. The result

$$\Omega_{\rm fluc} = \Omega_{\rm NSR} + \Omega_{\rm qfl}$$

shows quantum fluctuation Ω_{qfl} besides the Nozieres–Schmitt-Rink contribution Ω_{NSR} . Ω_{qfl} can be ignored for:

(i) high temperature $T > T_c$ and (ii) weak coupling $T_c/E_F \ll 1$

THERMODYNAMIC POTENTIAL IN TERMS OF PHASE SHIFT

Integrating the spectral density over the coupling constant leads to

$$\int_{0}^{G} \frac{d\mathcal{G}}{\mathcal{G}^{2}} \rho_{\mu,T}^{\mathcal{G}}(\omega, \boldsymbol{P}) = \frac{i}{2} \log \left(\frac{\frac{1}{G} - \chi_{\mu,T}(\omega + i\delta, \boldsymbol{P})}{\frac{1}{G} - \chi_{\mu,T}(\omega - i\delta, \boldsymbol{P})} \right) \equiv \delta_{\mu,T}(\omega, \boldsymbol{P}).$$

The in-medium phase shift $\delta_{\mu,T}(\omega, \mathbf{P})$ is the argument of the dynamic pair susceptibility

$$\frac{\frac{1}{G} - \chi_{\mu,T}(\omega \pm i\delta, \boldsymbol{P})}{\left|\frac{1}{G} - \chi_{\mu,T}(\omega, \boldsymbol{P})\right|} = e^{\mp i\delta_{\mu,T}(\omega, \boldsymbol{P})}.$$

The contributions to the thermodynamical potential can be expressed as

$$\Omega_{\rm NSR} = -d_B \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \tilde{f}_B(\omega) \delta_{\mu,T}(\omega, \mathbf{P}),$$

$$\Omega_{\rm qfl} = -d_B \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \frac{\epsilon(\omega)}{2} \left[\delta_{\mu,T}(\omega, \mathbf{P}) - \delta_{0,0}(\omega, \mathbf{P}) \right],$$

where $\Omega_{\rm NSR}$ is exactly the Nozieres–Schmitt-Rink result in J. Low Temp. Phys. 59 (1985) 195

THOULESS CRITERION AND RENORMALIZATION OF COUPLING (I)

In the weak attractive coupling regime, the Thouless condition defines the critical temperature T_c by the divergence of the static and long wavelength limit of the dynamic pair susceptibility

$$\Gamma_{\mu,T_c}^{-1}(0,\mathbf{0}) = \frac{1}{G} - \chi_{\mu,T_c}(0,\mathbf{0}) = 0 , \quad \chi_{\mu,T_c}(0,\mathbf{0}) = 2 \int^{\Lambda} \frac{d\mathbf{q}}{(2\pi)^3} \frac{\tanh\frac{E_q-\mu}{2T_c}}{E_q-\mu} + (\mu \to -\mu).$$

Cutoff-dependence of $T_c = \Lambda f(m/\Lambda, \mu/\Lambda, G\Lambda^2)$ reduced by partial renormalization using lowenergy scattering *T*-matrix ("1" = (\mathbf{p}, a, i, h_1) labels quark momentum, color, flavor, spin)

$$T(12 \to 34) = T(\boldsymbol{p}, \boldsymbol{k})(\Gamma_{12}\Gamma_{34} - (3 \leftrightarrow 4)), \quad \Gamma_{12} = \frac{\varepsilon_{ab}}{\sqrt{2}} \frac{\varepsilon_{ij}}{\sqrt{2}} \frac{\sigma_{h_1h_2}^3}{\sqrt{2}},$$

where $T(\mathbf{p}, \mathbf{k})$ can be evaluated with the Lippman-Schwinger resummation

$$T(\boldsymbol{p}, \boldsymbol{k}) = \frac{-G}{1 - G\chi_{0,0}(2E_p + i\delta, \boldsymbol{0})} \equiv -\Gamma_{0,0}(2E_p, \boldsymbol{0}).$$

At sufficiently low energy, $2E_p = 2m + \frac{p^2}{m}$, the scattering amplitude $f(\mathbf{p}, \mathbf{k}) = -\frac{m}{4\pi}T(\mathbf{p}, \mathbf{k})$ is

$$f(\boldsymbol{p}, \boldsymbol{k}) = \frac{e^{i\delta} \sin \delta}{p} = \frac{1}{p \cot \delta - ip} \sim \frac{1}{-\frac{1}{a_s} + \frac{1}{2}r_e p^2 - ip}$$

with the s-wave scattering length a_s and the effective range r_e to be extracted from $\Gamma_{0,0}(2E_p, \mathbf{0})$.

THOULESS CRITERION AND RENORMALIZATION OF COUPLING (II)

The effective range is UV finite, while the inverse scattering length is quadratically divergent

$$-\frac{m}{4\pi a_s} = \frac{1}{G} - 2\int \frac{d\mathbf{q}}{(2\pi)^3} \left(\frac{1}{E_q - m} + \frac{1}{E_q + m}\right) = \frac{1}{G} - \chi_{0,0}(2m, \mathbf{0}) \equiv -\frac{1}{G_R},$$

Thouless criterion with renormalization of coupling and pair correlation reads

$$-\frac{1}{G_R} - \chi_{\mu,T_c}^{\operatorname{Ren}}(0,\mathbf{0}) = 0, \quad \chi_{\mu,T}^{\operatorname{Ren}}(\omega,\boldsymbol{P}) \equiv \chi_{\mu,T}(\omega,\boldsymbol{P}) - \chi_{0,0}(2m,\mathbf{0}).$$

Bound state or resonance ? In vacuum ($\mu = T = 0$) from condition: $-1/G_R - \chi_{0,0}^{\text{Ren}}(\omega, \mathbf{0}) = 0$. Since $\chi_0^{\text{Ren}}(2m, 0) = 0$ follows: if $-1/G_R > 0$ then a resonance pole is located at $|\omega| > 2m$; otherwise a *stable bound state* is located at $|\omega| < 2m$, because $\text{Im } \chi(|\omega| < 2m, \mathbf{0}) = 0$. Then the critical coupling $G_R = G_{c1}$ for the zero binding is given by the condition

$$-\frac{1}{G_{c1}} - \chi_0^{\text{Ren}}(2m, \mathbf{0}) = -\frac{1}{G_{c1}} = 0,$$

so that $1/a_s = 0$, so-called unitary limit. For the relativistic case, a second critical coupling exists at $G_R = G_{c2}$, when the bound state becomes massless: $-1/G_{c2} = \chi_0^{\text{Ren}}(0, \mathbf{0}) < 0$.

PARTICLE NUMBER CONSERVATION (I)

In-medium spectral function and the in-medium phase shift from

$$\rho_{\mu,T}^{\text{Ren}}(\omega,\boldsymbol{P}) = \text{Im}\,\Gamma_{\mu,T}^{\text{Ren}}(\omega,\boldsymbol{P}), \delta_{\mu,T}^{\text{Ren}}(\omega,\boldsymbol{P}) = \text{Arg}\left[\Gamma_{\mu,T}^{\text{Ren}}(\omega,\boldsymbol{P})\right].$$

Total quark number density from the thermodynamic potential $n_{\rm tot}(\mu,T) = -\frac{\partial \Omega(\mu,T)}{\partial \mu}$

$$n_{\rm tot}(\mu,T) = 2N_c N_f \int \frac{d\boldsymbol{q}}{(2\pi)^3} [f_F(E_q-\mu) + f_F(E_q+\mu)] + d_B \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{d\boldsymbol{P}}{(2\pi)^3} \tilde{f}_B(\omega) \frac{\partial \delta_{\mu,T}^{\rm Ren}(\omega,\boldsymbol{P})}{\partial \mu},$$

The NSR contribution can be transformed to

$$n_{\rm NSR}(\mu, T) = d_B \int \! \frac{d\mathbf{P}}{(2\pi)^3} \Big[2 - \frac{\partial E_{B\mathbf{P}}^{\mu, T}}{\partial \mu} \Big] \tilde{f}_B(E_{B\mathbf{P}}^{\mu, T} - 2\mu) - d_B \int \! \frac{d\mathbf{P}}{(2\pi)^3} \Big[2 + \frac{\partial E_{\bar{B}\mathbf{P}}^{\mu, T}}{\partial \mu} \Big] \tilde{f}_B(E_{\bar{B}\mathbf{P}}^{\mu, T} + 2\mu)$$

and contains unstable pair correlations besides the bound (anti-)boson ones. The critical chemical potential μ_c is defined by

$$N_c N_f \frac{k_F^3}{3\pi^2} \equiv n_{\rm tot}(\mu_c, T) = n_{\rm MF}(\mu_c, T) + n_{\rm NSR}(\mu_c, T),$$

PARTICLE NUMBER CONSERVATION (II)

Estimate of critical parameters for Bose condensation from bound state dominance. (1) Nonrelativistic BEC: boson mass ($2\mu_c$) much larger than kinetic energy

$$2\mu_c \gg N_{\rm tot}^{2/3}/4\mu_c \implies E_{BP}^{\mu_c,T} \sim 2\mu_c + \frac{P^2}{4\mu_c}.$$

Boson pole dominates and one gets

$$n_{\text{tot}} = N_c N_f \frac{k_F^3}{3\pi^2} = 2d_B \left(\frac{\mu_c T}{\pi}\right)^{3/2} \zeta(3/2) \implies T < T_{\text{BEC}}^{\text{NR}} = \frac{k_F^2}{\pi^{1/3}\mu_c} \left(\frac{N_f}{N_c - 1} \frac{1}{3\zeta(3/2)}\right)^{2/3}$$

(2) Relativistic BEC: $2\mu_c \ll n_{tot}^{1/3}$; boson and anti-boson with dispersion $\sqrt{4\mu_c^2 + P^2}$ contribute.

$$n_{\rm tot} = N_c N_f \frac{k_F^3}{3\pi^2} = 2d_B \frac{2\mu_c T^2}{3} \implies T_{\rm BEC}^{\rm RL} = \frac{k_F}{\pi} \sqrt{\frac{k_F}{\mu_c} \frac{N_f}{2(N_c - 1)}}.$$

The critical temperature is of order $(n_{tot}/2\mu_c)^{1/2}$, i.e. much larger than the boson mass $2\mu_c$ (3) Crossover regime: Thouless criterion and number conservation

$$0 = \operatorname{Re}\left[\Gamma_{\mu_c,T_c}^{\operatorname{Ren}}(0,\mathbf{0})^{-1}\right]; \quad N_c N_f \frac{k_F^3}{3\pi^2} = n_{\operatorname{MF}}(\mu_c,T_c) + \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \tilde{f}_B(\omega) \frac{\partial \delta_{\mu_c,T_c}^{\operatorname{Ren}}(\omega,\mathbf{P})}{\partial \mu_c}$$

THERMODYNAMICS OF THE BCS-TO-BEC CROSSOVER

(a) The critical temperature T_c and the critical chemical potential μ_c as a function of attractive coupling G_R . The dissociation temperature of pre-formed pair in the strong coupling regime is also depicted by dashed line.

(b) The quark number fractions as a function of coupling G_R .

THERMODYNAMICS OF THE BCS-TO-BEC CROSSOVER (II)

The zero temperature gap parameter Δ_0 , and T_c as a function of G_R . The mean field gap parameter Δ_0 is calculated at $(\mu = \mu_c, T = 0)$. A measure of physical gap in the single quark excitation at T = 0, $\sqrt{\Delta_0^2 + \max(m - \mu_c, 0)^2}$, is also shown by the bold red line.

The in-medium boson and antiboson masses $(M_B, M_{\bar{B}})$ along the critical line $(\mu_c(G_R), T_c(G_R))$. The cross indicates the point $G_R/G_c \cong 0.07$ where the bound boson forms, i.e., $M_B(\mu_c, T_c) = 2\mu_c = 2m$ holds at this point.

THERMODYNAMICS OF THE BCS-TO-BEC CROSSOVER

The k_F dependence of the critical temperature as a function of G_R/G_c . From bottom to top, the Fermi momentum increases as $k_F = 0.2m, 0.4m, \cdots, 2.4m$. The large point located on each critical line represents the BCS/BEC crossover point where $\mu_c = m$ holds, while the large cross corresponds to the BEC/RBEC boundary where the $T_c = \mu_c$. The large square put on the horizontal axis indicates the standard choice of the diquark attraction, i.e., $G/4 \sim$ $\frac{3}{4}G_s$ with $G_s = 2.17/\Lambda^2$ set to reproduce the dynamical quark mass $M_q = 400$ MeV in vacuum.

Abuki, arxiv:hep-ph/0605081

GINZBURG-LANDAU AND GROSS-PITAEVSKII EQUATION

Time-dependent Ginzburg-Landau (TDGL) equation in the BCS regime:

$$\left[\frac{\operatorname{Im} d}{c}\partial_t + \frac{a_T}{c} - \frac{\nabla_x^2}{4m} + \frac{b_0}{c^2}\sum_{\xi} |\Psi_{\xi}(t, \boldsymbol{x})|^2\right] \Psi_{\eta}(t, \boldsymbol{x}) = 0$$

Gross-Pitaevskii (GP) equation

$$\left[-i\partial_t + \frac{a_T}{d} - \frac{c\nabla_x^2}{4md} + \frac{b_0}{d^2}\sum_{\xi} |\Psi_{\xi}(t, \boldsymbol{x})|^2\right] \Psi_{\eta}(t, \boldsymbol{x}) = 0.$$

Relativistic Gross-Pitaevskii (RGP) equation (Klein-Gordon equation with Φ^4 interaction)

$$\left[\partial_t^2 - v_s^2 \nabla_{\boldsymbol{x}}^2 + M^2 + \lambda \sum_{\boldsymbol{\xi}} |\Psi_{\boldsymbol{\xi}}(t, \boldsymbol{x})|^2\right] \Psi_{\boldsymbol{\eta}}(t, \boldsymbol{x}) = 0.$$

Abuki, arxiv:hep-ph/0605081

GINZBURG-LANDAU AND GROSS-PITAEVSKII EQUATION

The three physically different ω regions where the fluctuation is described by TDGL, GP, and RGP equations. The low energy expansion of the pair susceptibility is allowed for the shaded area where $\omega < \omega_c \equiv \min(T_c, |\mu_c - m|)$.

Abuki, arxiv:hep-ph/0605081

TRANSPORT PROPERTIES: PERFECT LIQUID!

(a) The shear viscosity to entropy ratios from the damping (or scattering) process of soft modes, η_s^{BCS} , η_s^{BEC} , and η_s^{RBEC} as a function of four-fermion coupling G_R (thin solid lines). The dashed lines indicated by η_f^{BCS} and η_f^{RBEC} correspond to the shear viscosities from fermion binary scattering in BCS and RBEC regimes. The "KSS bound", the minimum bound $(\frac{1}{4\pi})$ proposed by Kovtun, Son and Starinets

(b) The shear viscosity to baryon charge ratios as a function of G_R . The horizontal dashed line $(\frac{1}{6\pi})$ indicated by "GSZ bound" is the minimum bound proposed by Gelman, Shuryak and Zahed

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

SUMMARY

- Nozieres–Schmitt-Rink theory for relativistic fermion system
- Thermodynamics of the BEC/BCS crossover
- Pair fluctuation transport: Gross-Pitaevskii equation and shear viscosity
- Density dependence of T_c and role of quantum fluctuations

OUTLOOK

- Dynamic pair susceptibilities from a chiral quark model with mesonic channels and gluonic dof (e.g. Polyakov loop)
- Investigation of the transport properties in the phase diagram
- Step-like enhancement of threshold processes due to Mott effect
- Reaction kinetics for strong correlations @ SPS, RHIC and FAIR: observable effects?