BOUND STATES AND SUPERCONDUCTIVITY IN DENSE MATTER (I)

David Blaschke

Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

- Introduction: Many-particle Systems and Quantum Field Theory
- Partition function for QCD: Lattice Simulations vs. Resonance Gas
- Bound states and Mott effect, Color superconductivity
 - -Heavy Quarkonia Schrödinger Equation
 - Chiral quark model Color superconductivity
 - Pions, Kaons, D-mesons Chiral Quark Model
- Application 1: J/ψ suppression in Heavy-Ion Collisions
- Application 2: Quark Matter in Compact Stars
- Summary / Outlook to Lecture II: BCS/BEC crossover in Quark Matter

MANY PARTICLE SYSTEMS & QUANTUM FIELD THEORY

Elements	Bound states	System
humans, animals	couples, groups, parties	society
molecules, crystals	(bio)polymers	animals, plants
atoms	molecules, clusters, crystals	solids, liquids,
ions, electrons	atoms	plasmas
nucleons, mesons	nuclei	nuclear matter
quarks, anti-quarks	nucleons, mesons	quark matter

Partition function: $Z = \text{Tr} \left\{ e^{-\overline{\beta(H-\mu_i Q_i)}} \right\}$

PARTITION FUNCTION FOR QUANTUM CHROMODYNAMICS (QCD)

• Partition function as a Path Integral (imaginary time $\tau = i t$, $0 \le \tau \le \beta = 1/T$)

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \exp\left\{-\int_{0}^{\beta} d\tau \int_{V} d^{3}x \mathcal{L}_{QCD}(\psi, \bar{\psi}, A)\right\}$$

QCD Lagrangian, non-Abelian gluon field strength:

Numerical evaluation: Lattice gauge theory simulations (Bielefeld group)

PHASEDIAGRAM OF QCD: LATTICE SIMULATIONS

PHASEDIAGRAM OF QCD: LATTICE SIMULATIONS

LATTICE QCD EOS VS. RESONANCE GAS

Ideal hadron gas mixture ...

$$\varepsilon(T) = \sum_{i=\pi,\rho,\dots} g_i \int \frac{d^3p}{(2\pi)^3} \frac{\sqrt{p^2 + m_i^2}}{\exp(\sqrt{p^2 + m_i^2}/T) + \delta_i}$$

missing degrees of freedom below and above T_c

Resonance gas ... Karsch, Redlich, Tawfik, Eur.Phys.J. C29, 549 (2003)

$$\varepsilon(T) = \sum_{i=\pi,\rho,\dots} \varepsilon_i(T) + \sum_{r=M,B} g_r \int dm \ \rho(m) \int \frac{d^3p}{(2\pi)^3} \frac{\sqrt{p^2 + m^2}}{\exp(\sqrt{p^2 + m^2}/T) + \delta_r}$$

 $ho(m) \sim m^{eta} \exp(m/T_H)$... Hagedorn Massenspektrum too many degrees of freedom above T_c

LATTICE QCD EOS AND MOTT-HAGEDORN GAS

$$\varepsilon_{\rm R}(T, \{\mu_j\}) = \sum_{i=\pi, K, \dots} \varepsilon_i(T, \{\mu_i\}) + \sum_{r=M, B} g_r \int_{m_r} dm \int ds \,\rho(m) A(s, m; T) \int \frac{d^3 p}{(2\pi)^3} \frac{\sqrt{p^2 + s}}{\exp\left(\frac{\sqrt{p^2 + s} - \mu_r}{T}\right) + \delta_r}$$

Hagedorn mass spectrum: $\rho(m)$

Spectral function for heavy resonances:

$$A(s,m;T) = N_s rac{m\Gamma(T)}{(s-m^2)^2+m^2\Gamma^2(T)}$$

Ansatz with Mott effect at $T = T_H = 180$ MeV:

$$\Gamma(T) = B\Theta(T - T_H) \left(\frac{m}{T_H}\right)^{2.5} \left(\frac{T}{T_H}\right)^6 \exp\left(\frac{m}{T_H}\right)$$

No width below T_H : Hagedorn resonance gas Apparent phase transition at $T_c \sim 150 \text{ MeV}$

Blaschke & Bugaev, Fizika B13, 491 (2004) Prog. Part. Nucl. Phys. 53, 197 (2004) Blaschke & Yudichev, in preparation

HADRONIC CORRELATIONS ABOVE T_c : LATTICE QCD

Hadron correlators $G_H \Longrightarrow$ spectral densities $\rho_H(\omega, T)$

$$G_H(\tau,T) = \int_0^\infty d\omega \rho_H(\omega,T) \frac{\cosh(\omega(\tau-T/2))}{\sinh(\omega/2T)}$$

Maximum entropy method Karsch et al. PLB 530 (2002) 147

Result:

Correlations persist above T_c ! Karsch et al. NPA 715 (2003)

 J/ψ and η_c survive up to $T \sim 1.6T_c$ Asakawa, Hatsuda; PRL 92 (2004) 012001

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

HEAVY QUARK POTENTIAL FROM LATTICE QCD

Blaschke, Kaczmarek, Laermann, Yudichev, EPJC 43, 81 (2005); [hep-ph/0505053]

Color-singlet free energy F_1 in quenched QCD

$$\langle \operatorname{Tr}[L(0)L^{\dagger}(r)] \rangle = \exp[-F_1(r)/T]$$

Long- and short- range parts

$$F_1(r,T) = F_{1,\text{long}}(r,T) + V_{1,\text{short}}(r)e^{-(\mu(T)r)^2}$$

$$F_{1,\text{long}}(r,T) = \text{'screened'confinementpot.}$$
$$V_{1,\text{short}}(r) = -\frac{4}{3} \frac{\alpha(r)}{r}, \ \alpha(r) = \text{runningcoupl.} (1)$$

Quarkonium ($Q\bar{Q}$)	1S	1P ₁	2S
Charmonium ($c\bar{c}$)	J/ψ(3097)	χ_{c1} (3510)	ψ^\prime (3686)
Bottomonium ($b\bar{b}$)	Ύ (9460)	χ_{b1} (9892)	Ύ′ (10023)

Schroedinger Eqn: bound & scattering states

Quarkonia bound states at finite *T*:

$$[-\nabla^2/m_Q + V_{\text{eff}}(r,T)]\psi(r,T) = E_B(T)\psi(r,T)$$

Binding energy vanishes $E_B(T_{Mott}) = 0$: Mott effect

Scattering states:

$$\frac{d\delta_S(k,r,T)}{dr} = -\frac{m_Q V_{\rm eff}}{k} \sin(kr + \delta_S(k,r,T))$$

Levinson theorem:

Phase shift at threshold jumps by π when bound state \rightarrow resonance at $T = T_{Mott}$

Blaschke, Kaczmarek, Laermann, Yudichev EPJC 43, 81 (2005); [hep-ph/0505053]

PHASEDIAGRAM OF QCD: CHIRAL MODEL FIELD THEORIES

CHIRAL MODEL FIELD THEORY FOR QUARK MATTER

• Partition function as a Path Integral (imaginary time $\tau = i t$)

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left\{-\int_{V}^{\beta} d\tau \int_{V} d^{3}x [\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m - \gamma^{0}\mu)\psi - \mathcal{L}_{\text{int}}]\right\}$$

- Current-current interaction (4-Fermion coupling) $\mathcal{L}_{\text{int}} = \sum_{M=\pi,\sigma,\dots} G_M (\bar{\psi}\Gamma_M \psi)^2 + \sum_D G_D (\bar{\psi}^C \Gamma_D \psi)^2$
- Bosonization (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int \mathcal{D}M_M \mathcal{D}\Delta_D^{\dagger} \mathcal{D}\Delta_D \exp\left\{-\sum_M \frac{M_M^2}{4G_M} - \sum_D \frac{|\Delta_D|^2}{4G_D} + \frac{1}{2} \operatorname{Tr} \ln S^{-1}[\{M_M\}, \{\Delta_D\}]\right\}$$

- Collective (stochastic) fields: Mesons (M_M) and Diquarks (Δ_D)
- Systematic evaluation: Mean fields + Fluctuations
 - -Mean-field approximation: order parameters for phase transitions (gap equations)
 - -Lowest order fluctuations: hadronic correlations (bound & scattering states)
 - -Higher order fluctuations: hadron-hadron interactions

NJL MODEL FOR NEUTRAL 3-FLAVOR QUARK MATTER

,

$$\begin{split} \Omega(T,\mu) &= \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} \text{Fermion determinant (Tr ln D = ln det D)} \\ &- T\sum_n \int \frac{d^3p}{(2\pi)^3 2} \text{Tr} \ln\left(\frac{1}{T}S^{-1}(i\omega_n,\vec{p})\right) \quad \text{Indet} \left(\frac{1}{T}S^{-1}(i\omega_n,\vec{p})\right) = 2\sum_{a=1}^{18} \ln\left(\frac{\omega_n^2 + \lambda_a(\vec{p})^2}{T^2}\right). \\ &+ \Omega_e - \Omega_0. \quad \text{Result for thermodynamic potential} \end{split}$$

Inverse propagator of Nambu-Gorkov spinors

$$S^{-1}(i\omega_n, \vec{p}) = \begin{bmatrix} \not p - M + \mu \gamma^0 & \widehat{\Delta} \\ \widehat{\Delta}^{\dagger} & \not p - M - \mu \gamma^0 \end{bmatrix}$$

with diquark gaps ($\Delta_{ur} = \Delta_{ds}, ...$)

$$\Delta_{k\gamma} = 2G_D \langle \bar{q}_{i\alpha} i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} q^C_{j\beta} \rangle.$$

as elements of the gap matrix

$$\widehat{\Delta} = i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} \Delta_{k\gamma}.$$

Result for thermodynamic potential

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D}$$
$$- \int \frac{d^3p}{(2\pi)^3} \sum_{a=1}^{18} \left(\lambda_a + 2T \ln\left(1 + e^{-\lambda_a/T}\right)\right)$$
$$+ \Omega_e - \Omega_0.$$

Neutrality conditions: $n_Q = n_8 = n_3 = 0$,

$$n_i = -\frac{\partial\Omega}{\partial\mu_i} = 0,$$

Equation of state: $P = -\Omega$, etc.

ORDER PARAMETERS: MASSES AND DIQUARK GAPS

Masses (M) and Diquark gaps (Δ) as a function of the chemical potential at T = 0

Left: Gap in excitation spectrum (T = 0) Right: 'Gapless' excitations (T = 60 MeV)

MOTT EFFECT: NJL MODEL PRIMER

RPA-type resummation of quark-antiquark scattering in the mesonic channel M,

defines Meson propagator

$$D_M(P_0, P; T) \sim [1 - J_M(P_0, P; T)]^{-1}$$

by the complex polarization function J_M \rightarrow Breit-Wigner type spectral function

$$\mathcal{A}_{M}(P_{0}, P; T) = \frac{1}{\pi} \text{Im } D_{M}(P_{0}, P; T)$$

$$\sim \frac{1}{\pi} \frac{\Gamma_{M}(T) M_{M}(T)}{(s - M_{M}^{2}(T))^{2} + \Gamma_{M}^{2}(T) M_{M}^{2}(T)}$$

For $T < T_{Mott}$: $\Gamma \to 0$, i.e. bound state $\mathcal{A}_M(P_0, P; T) = \delta(s - M_M^2(T))$

Light meson sector:

Blaschke, Burau, Volkov, Yudichev: EPJA 11 (2001) 319

Charm meson sector:

Blaschke, Burau, Kalinovsky, Yudichev, Prog. Theor. Phys. Suppl. **149** (2003) 182

PHASEDIAGRAM OF QCD: HEAVY-ION COLLISIONS

PHASEDIAGRAM OF QCD: LATTICE VS. HEAVY-ION COLLISIONS

Statistical model describes composition of hadron yields in Heavy-Ion Collisions with few freeze-out parameters.

$$\ln Z[T, V, \{\mu\}] = \pm V \sum_{i} \frac{g_i}{2\pi^2} \int_0^\infty dp \ p^2 \ln[1 \pm \lambda_i \exp(-\beta \varepsilon_i(p))]$$
$$\lambda_i(T, \{\mu\}) = \exp[\beta(\mu_B B_i + \mu_S S_i + \mu_Q Q_i)]$$

Braun-Munzinger, Redlich, Stachel, in *QGP III* (2003)

$$\implies$$
 Turko (DM 9,11), \implies Gorenstein (HIC 6, 8)

A SNAPSHOP OF THE SQGP

Horowitz et al. PRD (1985), D.B. et al. PLB (1985), Röpke, Blaschke, Schulz, PRD (1986) Thoma, Quark Matter '05; [hep-ph/0509154]

- Strong correlations present: hadronic spectral functions above T_c (lattice QCD)
- Finite width due to rearrangement collisions (higher order correlations)
- Liquid-like pair correlation function (nearest neighbor peak)

Quantum kinetic approach to J/ ψ breakup

Inverse lifetime for Charmonium states

$$\begin{aligned} \tau^{-1}(p) &= \Gamma(p) = \Sigma^{>}(p) \mp \Sigma^{<}(p) \\ \Sigma^{\stackrel{>}{<}}(p,\omega) &= \int_{p'} \int_{p_1} \int_{p_2} (2\pi)^4 \delta_{p,p';p_1,p_2} |\mathcal{M}|^2 \, G_{\pi}^{\stackrel{>}{<}}(p') \, G_{D_1}^{\stackrel{>}{<}}(p_1) \, G_{D_2}^{\stackrel{>}{<}}(p_2) \\ G_h^{>}(p) &= [1 \pm f_h(p)] A_h(p) \text{ and } G_h^{<}(p) = f_h(p) A_h(p) \\ \tau^{-1}(p) &= \int \frac{d^3 \mathbf{p}'}{(2\pi)^3} \int ds' \quad f_{\pi}(\mathbf{p}',s') \, A_{\pi}(s') v_{\rm rel} \, \sigma^*(s) \end{aligned}$$

In-medium breakup cross section

$$\sigma^*(s) = \int ds_1 \, ds_2 \, A_{D_1}(s_1) \, A_{D_2}(s_2) \, \sigma(s; s_1, s_2)$$

Medium effects in spectral functions A_h and $\sigma(s; s_1, s_2)$

$$A_{h}(s) = \frac{1}{\pi} \frac{\Gamma_{h}(T) \ M_{h}(T)}{(s - M_{h}^{2}(T))^{2} + \Gamma_{h}^{2}(T) M_{h}^{2}(T)} \longrightarrow \delta(s - M_{h}^{2})$$

resonance \Leftarrow Mott-effect \Leftarrow bound state

Blaschke et al., Heavy Ion Phys. 18 (2003) 49

"Anomalous" J/ ψ suppression in Mott-Hagedorn gas

Survival probability for J/ψ

$$S(E_T)/S_N(E_T) = \exp\left[-\int_{t_0}^{t_f} dt \ \tau^{-1}(n(t))\right]$$

Threshold: Mott effect for hadrons

Blaschke and Bugaev, Prog. Part. Nucl. Phys. 53 (2004) 197

In progress: full kinetics with gain processes (D-fusion), HIC simulation

PHASEDIAGRAM OF DEGENERATE QUARK MATTER

PHASEDIAGRAM OF DEGENERATE QUARK MATTER

QUARK MATTER IN COMPACT STARS

Rüster et al: PRD 72 (2005) 034004 Blaschke et al: PRD 72 (2005) 065020

The phases are characterized by 3 gaps:

- NQ: $\Delta_{ud} = \Delta_{us} = \Delta_{ds} = 0$;
- NQ-2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$, $0 \le \chi_{2SC} \le 1$;
- **2SC**: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$;
- uSC: $\Delta_{ud} \neq 0$, $\Delta_{us} \neq 0$, $\Delta_{ds} = 0$;
- CFL: $\Delta_{ud} \neq 0$, $\Delta_{ds} \neq 0$, $\Delta_{us} \neq 0$;

Result:

- Gapless phases only at high T,
- CFL only at high chemical potential,
- At T \leq 25-30 MeV: mixed NQ-2SC phase,
- Critical point (T_c , μ_c)=(48 MeV, 353 MeV),
- Strong coupling, $\eta = 1$, changes?.
- \implies Buballa (DM 1, 6, 6+)

QUARK MATTER IN COMPACT STARS: MASS-RADIUS CONSTRAINT

Solve TOV Eqn. \rightarrow Hybrid stars fulfill constraint!

Klähn et al: Constraints on the high-density EoS ... PRC 74 (2006); [nucl-th/0602038], [astro-ph/0606524] \implies Grigorian (Ast 5) Isolated Neutron star RX J1856: M-R constraint from thermal emission

 Low-mass X-ray binary 4U 0614: Mass constraint from ISCO obs.

QUARK MATTER IN COMPACT STARS: COOLING CONSTRAINT

• Neutrinos carry energy off the star, Cooling evolution (schematic) by

$$\frac{dT(t)}{dt} = -\frac{\epsilon_{\gamma} + \sum_{j=Urca,\dots} \epsilon_{\nu}^{j}}{\sum_{i=q,e,\gamma,\dots} c_{V}^{i}}$$

Most efficient process: Urca

- Exponential suppression by pairing gaps! $\Delta \sim 10...100 \text{ keV}$
- \implies Popov (Ast 6, 8)
 - \implies Grigorian (Ast 9)

SUMMARY

- Mott-Hagedorn model as alternative interpretation of Lattice data
- Microscopic formulation of the hadronic Mott effect within a chiral quark model
- Mesonic (hadronic) correlations important for $T > T_c$
- Step-like enhancement of threshold processes due to Mott effect
- Reaction kinetics for strong correlations in plasmas applicable @ SPS and RHIC
- Prospects for LHC: Plasma diagnostics with bottomonium

LECTURE II: BCS/BEC CROSSOVER IN QUARK MATTER

- Nozieres–Schmitt-Rink theory for relativistic fermion system
- Thermodynamics of the BEC/BCS crossover
- Pair fluctuation transport: Gross-Pitaevskii equation and shear viscosity
- Density dependence of T_c and role of quantum fluctuations