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Outline
• Nuclear matter - a strongly interacting quantum liquid
  where it occurs, what do we know: nuclei, stars, HIC

• Many-particle theory: Equation of state
   QCD? Effective interactions, Green functions, spectral functions

• Low-density limit: cluster formation
   Mass action law, nuclear statistical equilibrium, virial expansion

• Near saturation: medium effects
  mean-field and quasiparticles, dissolution of bound states

• Quantum condensates:
  transition from BEC to BCS, Hoyle states, pairing and quartetting



Supernova
Crab nebula, 1054 China, PSR 0531+21

M1, the Crab Nebula. Courtesy of NASA/ESA



Supernova explosion

T.Janka



Core-collapse supernovae

Density. 

electron fraction, and

temperature profile

of a 15 solar mass supernova
at 150 ms after core bounce
as function of the radius.

Influence of cluster formation 
on neutrino emission 
in the cooling region and
on neutrino absorption
in the heating region ?

K.Sumiyoshi et al.,
Astrophys.J. 629, 922 (2005)



Nuclear matter phase diagram
Core collapse supernovae

T. Fischer, GSI Darmstadt



Symmetric nuclear matter: Phase diagram



JRandrup: Dubna School 2010

Phase diagram

Equation of state:
           pT(r )

Nuclear matter

meta
    stable

stable

unstable



Nucleon-nucleon interaction

Weak interaction - beta equilibrium?   Coulomb interaction?

QCD?  Effective Lagrangians, interaction potentials

    singlet (nn, pp): a = -23.678 fm, r = 1.726 fm
       triplet (pn): a = 5.396 fm, r = 2.729 fm, E = -2.225 MeV
Separable interaction
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Many-particle theory



Many-particle theory



Different approximations



Different approximations



Cluster decomposition
 of the self-energy

T-matrices: bound states, scattering states
Including clusters like new components
chemical picture,
mass action law, nuclear statistical equilibrium (NSE)
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Medium effects:
Quasiparticle approximation

• Skyrme / Gogny

• relativistic mean field (RMF)
    Lagrangian: non-linear sigma, TM1 parameters,
     single particle modifications, energy shift, effective mass

• DD-RMF [S.Typel, Phys. Rev. C 71, 064301 (2007)]:
    expansion of the scalar field and the vector fields
     in powers of proton/neutron densities

• Dirac-Brueckner Hartree Fock (DBHF)

• Diffusion Monte Carlo EOS calculation [S. Gandolfi et al.,
Mon.Not.R.Astron.Soc., 2010]



Nuclear matter properties

S. Typel, 2012



Quasiparticle picture: RMF and DBHF

J.Margueron et al., Phys.Rev.C 76,034309 (2007)



Diffusion Monte Carlo EOS calculation

S. Gandolfi, A. Yu. Illarionov, et al., Mon.Not.R.Astron.Soc., 2010



Quasiparticle approximation for nuclear matter

Klaehn et al., PRC 2006

But:
cluster 
formation

Incorrect
low-density 
limit



Different approximations

Ideal Fermi gas:
protons, neutrons, 
(electrons, neutrinos,…)

Quasiparticle quantum liquid:
mean-field approximation
Skyrme, Gogny, RMF

Nuclear statistical equilibrium:
ideal mixture of all bound states 
(clusters:) chemical equilibrium

medium effects

bound state formation

Inclusion of the light clusters (d,t,3He,4He)
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Nuclear statistical equilibrium
(NSE)

Chemical picture:
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Physical picture:
"elementary" constituents
and their interaction

Interaction between the components
internal structure: Pauli principle

Quantum statistical (QS) approach,
quasiparticle concept, virial expansion



Different approximations
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Ideal mixture of reacting nuclides

mass number A,
charge ZA,
energy EA,ν,K,
ν internal quantum number,
~K center of mass momentum



Alpha-particle fraction in the low-density limit
 symmetric matter, T=2, 4, 8 MeV

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

LS, Shen:
higher clusters,
excluded volume



Effective wave equation
for the deuteron in matter
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Fermi distribution function

Pauli-blocking

BEC-BCS crossover:
Alm et al.,1993

Add self-energy

Thouless criterion
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Ed (T,µ) = 2µ

In-medium two-particle wave equation in mean-field approximation



Few-particle Schrödinger equation
in a dense medium

4-particle Schrödinger equation with medium effects

! 

E HF (p1) + E HF (p2) + E HF (p3) + E HF (p4 )[ ]( )"n,P (p1, p2, p3, p4 )
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Shift of the deuteron binding energy

G.R., NP A 867, 66 (2011) 

Dependence on nucleon density, various temperatures,
zero center of mass momentum 

thin lines:

fit formula 



Shift of the deuteron binding energy
Dependence on center of mass momentum,
various densities, T=10 MeV

 G.R., NP A 867, 66 (2011) 
thin lines:

fit formula 



Different approximations



 Chemical picture and medium corrections

• low-density limit: ideal mixture of reacting components:
  Nuclear statistical equilibrium (NSE)
• interactions: virial expansion (cluster virial expansion)
• higher densities: quasiparticle concept,
  medium modification of components (cluster mean-field approximation)

Nuclear matter at given temperature T,
baryon density nB,
proton fraction (asymmetry) Ye= np/nB:   equation of state

• nucleons as quasiparticles: 
  Skyrme, relativistic mean-field (RMF), Dirac Brueckner Hartree-Fock
• light elements (d,t,h,alpha) as quasiparticles:
  shift of energy (self-energy, Pauli blocking), Mott effect.
  - excluded volume [M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210]
  - quantum statistical approach (QS): EA,Z(p;T,nB,Ye)



Composition of dense nuclear matter

mass number A
charge ZA
energy EA,ν,K
ν: internal quantum number

• Inclusion of excited states and continuum correlations

• Medium effects:
  self-energy and Pauli blocking shifts of binding energies,
  Coulomb corrections due to screening (Wigner-Seitz,Debye)

• Bose-Einstein condensation



Shift of Binding Energies of Light Clusters

G.R., PRC 79, 014002 (2009)
S. Typel et al., 
PRC 81, 015803 (2010)

Symmetric matter



Light Cluster Abundances

S. Typel et al.,
PRC 81, 015803 (2010)



Application to Heavy Ion Reactions
• Test the EOS
      (NSE, virial,… at low densities,
      Skyrme, DBHF, RMF,… near saturation)
• Unifying quantum statistical approach, medium effects, Mott effect
• Symmetry energy
• Bose enhancement?

Nimrod @ TAMU,
40Ar + 112,124Sn,
64Zn + 112,124Sn;    47 A MeV

Open questions: freeze-out model or dynamical transport models?
Identification of the source? - yields of p, (n), d, t, 3He, 4He,…



Data analysis

• asymmetry: 3H/3He fraction (Yt/Yh)

• temperature: Albergo thermometer (YaYd/YtYh)

• density: Natowitz densitometer

This is motivated from NSE. Medium effects?



Albergo Temperature Misfit

S. Shlomo, G. R., J.B. Natowitz,
PRC 79, 034604 (2009)



Albergo Density Misfit

S. Shlomo, G. R., J.B. Natowitz,
PRC 79, 034604 (2009)



Density determination from light cluster yields



EOS at low densities

Bose enhancement?

chemical constants



QS versus NSE: comparison with data



Determination of thermodynamic parameters 
                 from light cluster yields



Cluster yields in HIC

in-medium binding energies



Mott points from cluster yields

K. Hagel et al., PRL 108, 062702 (2012)



Composition of dense nuclear matter

mass number A
charge ZA
energy EA,ν,K
ν: internal quantum number

• Inclusion of excited states and continuum correlations

• Medium effects:
  self-energy and Pauli blocking shifts of binding energies,
  Coulomb corrections due to screening (Wigner-Seitz,Debye)

• Bose-Einstein condensation



Different approximations

Ideal Fermi gas:
protons, neutrons, 
(electrons, neutrinos,…)

Quasiparticle quantum liquid:
mean-field approximation
Skyrme, Gogny, RMF

Nuclear statistical equilibrium:
ideal mixture of all bound states 
(clusters:) chemical equilibrium

Chemical equilibrium 
with quasiparticle clusters:
self-energy and Pauli blocking

Second virial coefficient:
account of continuum contribution,
scattering phase shifts, Beth-Uhl.E.

Generalized Beth-Uhlenbeck 
formula:
medium modified binding energies,
medium modified scattering phase shifts

medium effects

bound state formation

continuum contribution

M. D. Voskresenskaya, S. Typel, Nucl. Phys. A 887 (2012) 42



Beth-Uhlenbeck formula



Different approximations



Cluster virial expansion
within a quasistatistical

G.R., N. Bastian, D. Blaschke, et al., in preparation

Generating functional

Avoid double counting

Generalized Beth-Uhlenbeck approach



Chemical potential of symmetric matter
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thin lines: NSE



Proton fraction in symmetric matter

Isotherms

thin lines: NSE
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Light Cluster Abundances

S. Typel et al.,
PRC 81, 015803 (2010)



Internal energy per nucleon

T[MeV]
    20
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Isotherms

thin lines: NSE

S. Typel et al., PRC 81, 015803 (2010)



Internal symmetry energy



Symmetry energy
Heavy-ion collisions, spectra of emitted clusters,
temperature (3 - 10 MeV), free energy

S. Kowalski et al.,
PRC 75, 014601 
(2007)



Symmetry energy,
comparison experiment with theories

J.Natowitz et al., PRL 2010



Symmetry Energy

Scaled internal symmetry energy as a function of the scaled total density.
MDI: Chen et al., QS: quantum statistical, Exp: experiment at TAMU

J.Natowitz et al. PRL, May 2010



Symmetry energy at medium densities

Coalescence parameter,
Mekjian model

R. Wada et al., Phys. Rev. C 85, 064618 (2012).



Free symmetry energy

symmetry entropy Internal symmetry energy

R. Wada et al., Phys. Rev. C 85, 064618 (2012).



Liquid-vapor phase transition

blue: no light cluster, green: with light clusters, QS, red: cluster-RMF
S. Typel et al., PRC 81, 015803 (2010)



Experimental determination of
critical temperature and density

Critical Scaling of
Two-component Systems
from Quantum Fluctuations

J. Mabiala, et al., arXiv:12083280v1 [nucl-ex]



Different approximations

Ideal Fermi gas:
protons, neutrons, 
(electrons, neutrinos,…)

Quasiparticle quantum liquid:
mean-field approximation
Skyrme, Gogny, RMF

Nuclear statistical equilibrium:
ideal mixture of all bound states 
(clusters:) chemical equilibrium

Chemical equilibrium 
with quasiparticle clusters:
self-energy and Pauli blocking

Second virial coefficient:
account of continuum contribution,
scattering phase shifts, Beth-Uhl.E.

Generalized Beth-Uhlenbeck 
formula:
medium modified binding energies,
medium modified scattering phase shifts

Quasiparticle cluster virial approach:
all bound states (clusters)
scattering phase shifts of all pairs of clusters

medium effects

bound state formation

continuum contribution



Conclusion I

• Due to the interaction, cluster are formed in nuclear matter that are
of significance in the low-density limit. Here, the nuclear statistical
equilibrium or cluster virial expansions can be used to describe the
thermodynamic properties.

• Medium effects become of relevance for densities > 10-4 fm-3. Single
nucleon quasiparticle energies can be introduced. In addition, Pauli
blocking modifies the cluster properties so that they are dissolved with
increasing density.

• Properties of nuclear matter such as the symmetry energy are
determined in the low-density region by the formation of bound states.



Symmetric nuclear matter: Phase diagram
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Symmetric nuclear matter: Phase diagram



Nuclear statistical equilibrium
(NSE)

Chemical picture:
Ideal mixture of reacting components
Mass action law

Physical picture:
"elementary" constituents
and their interaction

Interaction between the components
internal structure: Pauli principle

Quantum statistical (QS) approach,
quasiparticle concept, virial expansion



Shift of Binding Energies of Light Clusters

G.R., PRC 79, 014002 (2009)
S. Typel et al., 
PRC 81, 015803 (2010)

Symmetric matter
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Pauli blocking and Mott effect
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Fermionic substructure: phase space occupation, “excluded volume”



Many-particle system
• Hamiltonian (non-relativistic)

• fermions in states
• interaction: Coulomb, nuclear, …
• bound states (bosons)
• quantum condensates
• homogeneous system in equilibrium:
• variation in time and space
    (finite systems? non-equilibrium?)
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Effective wave equation
for the deuteron in matter
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Ed (T,µ) = 2µ

In-medium two-particle wave equation in mean-field approximation



Quantum condensates: Outline
1. Many-particle system
        - Mean field approach: self-energy and Pauli blocking
        - Generalized Beth-Uhlenbeck equation
        - Mott effect and transition from BEC to BCS
        - Self-consistent solutions and pseudogap

2.   Correlations: account of higher clusters
      - Cluster expansion of the self-energy
        - Cluster - mean field approximation
        - Quantum condensates: Pairing and quartetting

3.   Finite systems: 4-n nuclei
      - Cluster formation in dilute nuclei
        - BEC states: Hoyle state and THSR wave function
        - Suppression of the condensate at increasing density



Composition of symmetric nuclear matter

Fraction of
correlated matter
(virial expansion,
Generalized Beth-
Uhlenbeck approach,
contribution
of bound states,
of scattering states,
phase shifts)

H. Stein et al., 
Z. Phys. A351, 259 (1995) 



Quantum condensate

Bose-Einstein-
Condensation
of deuterons
(BEC)

Bardeen-Cooper
Schrieffer
pairing
(BCS)





Bose -
Einstein

Condensation
     Int. Workshop BEC 93
           Levico Terme
Ed.: Griffin, Snoke,  Stringari
Cambridge Univ. Press, 1995

“This is the first book
devoted to Bose - Einstein
Condensation (BEC) as an
interdisciplinary subject,
covering atomic and
molecular physics, laser
physics, low temperature
physics, nuclear physics
and astrophysics.”



Many-particle system
• Hamiltonian (non-relativistic)

• Entropy
• cluster decomposition, non-equilibrium
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Many-particle system
• Hamiltonian (non-relativistic)

• Entropy
• cluster decomposition, equilibrium! 
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BEC - BCS crossover
in mean-field approximation

only single-particle contributions to the entropy
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Effective wave equation
for the deuteron in matter
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Few-particle Schrödinger equation
in a dense medium

4-particle Schrödinger equation with medium effects
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quartetting: 

! 

En,0 (T,µ) = 4µ



α-cluster-condensation
(quartetting)



α-cluster-condensation
(quartetting)

G.Röpke, A.Schnell, P.Schuck, and P.Nozieres, PRL 80, 3177 (1998)



Quasiparticle picture: RMF and DBHF

J.Margueron et al., Phys.Rev.C 76,034309 (2007) C.Ducoin, J.Margueron, C.Providencia,I. Vidana
arXiv:1102.1283 (7 Feb 2011) 



Internal energy per nucleon

EOS for symmetric matter - low density region? 

    Quantum
statistical
approach:

    Cluster ?

    Condensate?



Internal energy per nucleon

EOS for symmetric matter - low density region? 

    Quantum
statistical
approach:

    Cluster ?

    Condensate?



Correlations in the medium



Cluster - mean field approximation

Cluster (A) interacting with a distribution of clusters (B) in the medium,
fully antisymmetrized
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Self-consistent RPA
Two-time cluster Matsubara Green's functions

Equation of motion method

Effective Hamiltonian is split into an instantaneous and a dynamic part

J.Dukelsky, G. Roepke, and P.Schuck, NPA 628, 17 (1998)
P. Schuck, D.S. Delion, J.Dukelsky, and G. Roepke,  in preparation



Single nucleon distribution function

Dependence on density

Alm et al., PRC 53, 2181 (1996)

T = 10 MeV



Single nucleon distribution function
Dependence on temperature 

Alm et al., PRC 53, 2181 (1996)

saturation density



Chemical potential

preliminary



Free energy per nucleon

preliminary



Clustering phenomena in nuclear
matter below the saturation density

Hiroki Takemoto et al.,

PR C 69, 035802 (2004)

•FIG. 8. Energy curves of DFSs due to a and 16O clustering in
•the symmetric nuclear matter by the use of the BB sB4d force. The
•density of matter is normalized by the saturation density of the
•uniform matter with the Fermi sphere, r0=0.206 fm−3. The presentation
•of the curves is similar to that in Fig. 4.



Alpha matter and quartetting

• Matter at low densities, low temperatures:
• Quartetting in nuclei
• Condensate in heavy ion collisions
• Neutron star crust

•  Suppression of the condensate with increasing density
•  Dissolution of clusters with increasing density
•  Formation of larger clusters (C, O, Si,…Fe, Ni, …)

Where it appears? 
                (Pairing is well understood: 
                 nuclear structure: Bethe-Weizsaecker formula, surface…

                    neutron stars)    



Alpha cluster structure of Be 8

Contours of constant density, plotted in cylindrical coordinates, for 8Be(0+) . 
The left side is in the laboratory frame while the right side is in the intrinsic frame.

R.B. Wiringa et al.,
PRC 63, 034605 (01)



Self-conjugate 4n nuclei



Self-conjugate 4n nuclei



Quantum condensate

A. Tohsaki et al., PRL 87, 192501 (2001)



Variational ansatz



3 α variational energy



4 α variational energy

A. Tohsaki et al., PRL 87, 192501 (2001)



Energy surface, variational ansatz



Results

M. Chernykh et al., PRL 98, 032501 (07);              Y. Funaki et al., PRL 101, 082502 (08)



Estimation of condensate fraction
in zero temperature α-matter



BEC of α clusters in the same S-orbit? 



Estimation of condensate fraction
in zero temperature α-matter



Suppresion of condensate fraction

• Alpha-alpha interaction
(Ali/Bodmer),

     no Pauli blocking:
• Variational calculation

(Clark/Jastrow approach
      to the alpha-particle

condensate amplitude)
     (crosses)
• First order approximation
     (full line)

• Yamada/Schuck’s
     result for condensate
     in C12 - O2+
     (stars)

Y. Funaki et al., PRC 77, 064312 (08)



Supernova explosion

T.Janka



α cluster in astrophysics

Crust of neutron
stars

Protons in droplets
(heavy nuclei)

α−cluster outside,
at the surface,
condensate?

S. Typel, GSI



Summary
• Correlations (cluster formation, quantum condensates) are  essential
   in low-density  matter. They are suppressed with increasing density (Pauli blocking).

• The low-density limit of the nuclear matter EoS can be rigorously treated.
   The Beth-Uhlenbeck virial expansion is a benchmark.

•  An extended quasiparticle approach can be given for single nucleon
   states and nuclei. In a first approximation, self- energy and Pauli blocking
   is included. An interpolation  between low and high densities is possible.

•  Compared with the standard quasiparticle approach, significant changes
   arise in the low-density limit due to clustering. Examples are Bose-Einstein
   condensation (quartetting), and the behavior of the symmetry energy.



 Problems
• Quantum statistical approach to correlations (cluster formation) in dense

matter. Larger clusters? Droplets?

• Condensation energy for Bose condensate state (compare pairing)?
    „strict“ solution of the 4-nucleon equation including Pauli blocking?

•  Clusters in a clusterized medium: cluster mean-field,
      correlations in quantum  condensates,
      transport with cluster formation

•  Thermodynamics - finite systems, nonequilibrium

•  Instability of homogeneous matter at low temperatures

•  α−decay of heavy elements



Thanks

to   D. Blaschke, C. Fuchs, Y. Funaki, H. Horiuchi,
 J. Natowitz, T. Klaehn, S. Shlomo, P. Schuck,

       A. Sedrakian, K. Sumiyoshi, A. Tohsaki, S. Typel,
H. Wolter, T. Yamada

for collaboration

      to you
for attention

                                                                              D.G.



Energy of α-Matter at T=0

F.Carstoiu, S.Misicu, PLB, 2009

Total energy calculated with the cluster expansion
within the HNC/0 (circles) and HNC/4 (solid lines) approximation.
Different interaction potentials 



α-α scattering phase shifts

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)



Clusters in nuclei

• Low-density isomers
• Alpha matter at low densities
• Quartetting
• Condensate wave function

•  Suppression of the condensate with increasing density
•  Dissolution of clusters with increasing density



Astrophysical Applications

• Supernova explosions
• Neutrino transport
• Neutron star structure
•  Equation of state (EOS)
•  Composition
•  Transport properties (cross sections)



Composition of supernova core

Mass fraction X of light clusters for a post-bounce supernova core

K.Sumiyoshi,
G. R.,
PRC 77,
055804 (2008)



Rms-dependence
 of condensate energies

Variational energy for the Gaussian condensate of 4 alpha



T=10 MeV, asymmetry 0.42, as function of  baryon density

Heavy nuclei abundances in nuclear matter

n, p, d, t, He3, He4, Li5,…



Separated phases:

Mixed phase:

JRandrup: Dubna School, 2010



common tangent
  = Maxwell line

uniform
 matter

mixed phasemixed phase
mixed phase

Coexisting uniform phases

JRandrup: Dubna School, 2010
JRandrup: Dubna School,
2010



Hadron Gas versus Quark-Gluon Plasma

JRandrup: Dubna School, 2010



alpha-fraction in symmetric matter



Deuterons in nuclear matter

T=10 MeV, P: center of mass momentum



Scattering phase shifts in matter



Deuteron quasiparticle properties
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Pseudogap

Precritical Pair Fluctuations and Formation of a
Pseudogap in Low-Density Nuclear Matter

                               A. Schnell, G. Roepke, P. Schuck, PRL 83, 1926 (1999)

• Self-consistent solution of the two-nucleon Bethe Salpeter equation
and evaluation of the density of states
• above the critical temperature: depletion near the chemical potential
  instead opening of the gap



Density of states near phase transition

T=5 MeV, rho=rho0/3: T-matrix in quasiparticle approximation,
 compared with BCS and BHF. Also shown: BCS at T=0



Density of states near phase transition

rho=rho0/3:  T-matrix, self-consistent spectral function



Variational ansatz



Variational ansatz


