Dubna, 1./3. 9. 2012

HISS: Dense Matter in Heavy-Ion Collisions and Astrophysics

Cluster Formation and Liquid-Gas Transition in Nuclear Matter

Gerd Röpke, Rostock

Outline

- Nuclear matter a strongly interacting quantum liquid where it occurs, what do we know: nuclei, stars, HIC
- Many-particle theory: Equation of state QCD? Effective interactions, Green functions, spectral functions
- Low-density limit: cluster formation Mass action law, nuclear statistical equilibrium, virial expansion
- Near saturation: medium effects

mean-field and quasiparticles, dissolution of bound states

• Quantum condensates:

transition from BEC to BCS, Hoyle states, pairing and quartetting

Supernova Crab nebula, 1054 China, PSR 0531+21

M1, the Crab Nebula. Courtesy of NASA/ESA

Supernova explosion

Core-collapse supernovae

Density.

electron fraction, and

temperature profile

of a 15 solar mass supernova at 150 ms after core bounce as function of the radius.

Influence of cluster formation on neutrino emission in the cooling region and on neutrino absorption in the heating region ?

K.Sumiyoshi et al., Astrophys.J. **629**, 922 (2005)

Nuclear matter phase diagram

Symmetric nuclear matter: Phase diagram

Nuclear matter

JRandrup: Dubna School 2010

Nucleon-nucleon interaction

QCD? Effective Lagrangians, interaction potentials

singlet (nn, pp): a = -23.678 fm, r = 1.726 fm $k \cot \delta = -\frac{1}{a} + r_0 \frac{k^2}{2}$ triplet (pn): a = 5.396 fm, r = 2.729 fm, E = -2.225 MeV

Separable interaction

• general form:

$$egin{aligned} V_lpha(p,p') &= \sum\limits_{i,j=1}^N w_{lpha i}(p)\lambda_{lpha ij}w_{lpha j}(p') & ext{ uncoupled} \ & ext{ and } \ & V^{LL'}_lpha(p,p') &= \sum\limits_{i,j=1}^N w^L_{lpha i}(p)\lambda_{lpha ij}w^{L'}_{lpha j}(p') & ext{ coupled} \end{aligned}$$

- p, p' in- and outgoing relative momentum
- α ... channel
- N ... rank
- $\lambda_{lpha i j}$. coupling parameter
- L, L' orbital angular momentum

Weak interaction - beta equilibrium? Coulomb interaction?

Many-particle theory

• equilibrium correlation functions e.g. equation of state $n(\beta, \mu) = \frac{1}{\Omega_0} \sum_1 \langle a_1^{\dagger} a_1 \rangle$

density matrix $\langle a_1^{\dagger} a_1^{\bullet} \rangle = \int \frac{\mathrm{d}\omega}{2\pi} \,\mathrm{e}^{-i\omega t} f_1(\omega) A(1,1',\omega)$

• Spectral function

 $A(1,1',\omega) = \operatorname{Im} \left[G(1,1',\omega+i\eta) - G(1,1',\omega-i\eta) \right]$

Matsubara Green function

$$G(1,1',iz_{
u}), \qquad z_{
u}=rac{\pi
u}{eta}+\mu, \quad
u=\pm 1,\pm 3,\cdots$$

$$1 \equiv \{\mathbf{p}_1, \sigma_1, c_1\}, \quad f_1(\omega) = \frac{1}{\mathrm{e}^{\beta(\omega-\mu)}+1}, \quad \Omega_0 - \text{volume}$$

Many-particle theory

• Dyson equation and self energy (homogeneous system)

$$G(1, iz_{\nu}) = \frac{1}{iz_{\nu} - E(1) - \Sigma(1, iz_{\nu})}$$

• Evaluation of $\Sigma(1, iz_{\nu})$: perturbation expansion, diagram representation

 $A(1,\omega) = \frac{2 \text{Im } \Sigma(1,\omega+i0)}{[\omega - E(1) - \text{Re } \Sigma(1,\omega)]^2 + [\text{Im } \Sigma(1,\omega+i0)]^2}$ approximation for self energy approximation for equilibrium correlation functions

alternatively: simulations, path integral methods

• Expansion for small Im $\Sigma(1, \omega + i\eta)$

$$A(1,\omega) \approx \frac{2\pi\delta(\omega - E^{\text{quasi}}(1))}{1 - \frac{d}{dz}\text{Re }\Sigma(1,z)|_{z=E^{\text{quasi}}-\mu_1}} -2\text{Im }\Sigma(1,\omega + i\eta)\frac{d}{d\omega}\frac{P}{\omega + \mu_1 - E^{\text{quasi}}(1)}$$

quasiparticle energy $E^{\text{quasi}}(1) = E(1) + \text{Re} \left[\Sigma(1, \omega) \right]_{\omega = E^{\text{quasi}}}$

• chemical picture: bound states $\hat{=}$ new species

low density limit:

(

$$G_{2}^{L}(12, 1'2', i\lambda) = \sum_{n\mathbf{P}} \Psi_{n\mathbf{P}}(12) \frac{1}{i\omega_{\lambda} - E_{n\mathbf{P}}} \Psi_{n\mathbf{P}}^{*}(12)$$
$$\sum_{n\mathbf{P}} \mathbf{T}_{2}^{L}$$

$$n(\beta,\mu) = \sum_{1} f_1(E^{\text{quasi}}(1)) + \sum_{2,n\mathbf{P}}^{\text{bound}} g_{12}(E_{n\mathbf{P}}) + \sum_{2,n\mathbf{P}} \int_0^\infty \mathrm{d}k \,\,\delta_{\mathbf{k},\mathbf{p}_1-\mathbf{p}_2} g_{12}(E^{\text{quasi}}(1) + E^{\text{quasi}}(2)) 2\,\sin^2\delta_n(k) \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}k} \delta_n(k)$$

• generalized Beth-Uhlenbeck formula correct low density/low temperature limit: mixture of free particles and bound clusters

Cluster decomposition of the self-energy

T-matrices: bound states, scattering states Including clusters like new components chemical picture,

mass action law, nuclear statistical equilibrium (NSE)

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Quasiparticle cluster virial approach:

all bound states (clusters) scattering phase shifts of all pairs of clusters

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Medium effects: Quasiparticle approximation

- Skyrme / Gogny
- relativistic mean field (RMF)

Lagrangian: non-linear sigma, TM1 parameters, single particle modifications, energy shift, effective mass

- DD-RMF [S.Typel, Phys. Rev. C 71, 064301 (2007)]: expansion of the scalar field and the vector fields in powers of proton/neutron densities
- Dirac-Brueckner Hartree Fock (DBHF)
- Diffusion Monte Carlo EOS calculation [S. Gandolfi et al., Mon.Not.R.Astron.Soc., 2010]

Nuclear matter properties

binding energy per nucleon near saturation:

$$\frac{E}{A}(n,\beta) = \frac{\varepsilon}{n} = a_V + \frac{K}{18}x^2 + \frac{K'}{162}x^3 + \beta^2\left(J + \frac{L}{3}x + \dots\right) + \dots$$

with $x=(n-n_{\rm sat})/n_{\rm sat}$, asymmetry $\beta=1-2Y_p$ and

nuclear matter parameters

- $\bullet~n_{\rm sat}$ saturation density
- $\bullet \ a_V$ bulk energy
- $\bullet~K$ incompressibility
- $\bullet \ K' \ {\rm skewness}$
- $\bullet~J$ bulk symmetry energy
- $\bullet \ L$ symmetry energy slope

RMF DD2, T = 0 MeV 80 $Y_{p} = 0.0$ [MeV] 00 $Y_{p} = 0.1$ E/A $Y_{p} = 0.4$ energy per nucleon 40 $Y_{n} = 0.5$ 20 -20 L 0.0 0.3 0.1 0.2 0.4 density n [fm⁻³]

S. Typel, 2012

Quasiparticle picture: RMF and DBHF

J.Margueron et al., Phys.Rev.C 76,034309 (2007)

Diffusion Monte Carlo EOS calculation

S. Gandolfi, A. Yu. Illarionov, et al., Mon.Not.R.Astron.Soc., 2010

Quasiparticle approximation for nuclear matter

Equation of state for symmetric matter

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Inclusion of the light clusters (d,t,³He,⁴He)

Nuclear statistical equilibrium (NSE)

Chemical picture:

Ideal mixture of reacting components Mass action law

Interaction between the components internal structure: Pauli principle

Nuclear statistical equilibrium (NSE)

Chemical picture:

Ideal mixture of reacting components Mass action law

Interaction between the components internal structure: Pauli principle

Physical picture:

"elementary" constituents and their interaction

Quantum statistical (QS) approach, quasiparticle concept, virial expansion

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Ideal mixture of reacting nuclides

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A,
$$f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$$

charge Z_A ,
energy $E_{A,v,K}$,
 v internal quantum number,
 $\sim K$ center of mass momentum

Alpha-particle fraction in the low-density limit

symmetric matter, T=2, 4, 8 MeV

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation

$$\left(\frac{p_1^2}{2m_1} + \Delta_1 + \frac{p_2^2}{2m_2} + \Delta_2\right) \Psi_{d,P}(p_1, p_2) + \sum_{p_1', p_2'} (1 - f_{p_1} - f_{p_2}) V(p_1, p_2; p_1', p_2') \Psi_{d,P}(p_1', p_2')$$

Add self-energy

Pauli-blocking

$$= E_{d,P} \Psi_{d,P}(p_1,p_2)$$

Thouless criterion $E_d(T,\mu) = 2\mu$

Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

BEC-BCS crossover: Alm et al.,1993

Few-particle Schrödinger equation in a dense medium

4-particle Schrödinger equation with medium effects

$$\begin{split} & \left(\left[E^{HF}(p_{1}) + E^{HF}(p_{2}) + E^{HF}(p_{3}) + E^{HF}(p_{4}) \right] \right) \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4}) \\ & + \sum_{p_{1}^{'},p_{2}^{'}} (1 - f_{p_{1}} - f_{p_{2}}) V(p_{1},p_{2};p_{1}^{'},p_{2}^{'}) \Psi_{n,P}(p_{1}^{'},p_{2}^{'},p_{3},p_{4}) \\ & + \left\{ permutations \right\} \\ & = E_{n,P} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4}) \end{split}$$

Shift of the deuteron binding energy

Dependence on nucleon density, various temperatures, zero center of mass momentum

G.R., NP A 867, 66 (2011)
Shift of the deuteron binding energy

Dependence on center of mass momentum, various densities, T=10 MeV

G.R., NP A 867, 66 (2011)

Different approximations

• Expansion for small Im $\Sigma(1, \omega + i\eta)$

$$A(1,\omega) \approx \frac{2\pi\delta(\omega - E^{\text{quasi}}(1))}{1 - \frac{d}{dz}\text{Re }\Sigma(1,z)|_{z=E^{\text{quasi}}-\mu_1}} -2\text{Im }\Sigma(1,\omega + i\eta)\frac{d}{d\omega}\frac{P}{\omega + \mu_1 - E^{\text{quasi}}(1)}$$

quasiparticle energy $E^{\text{quasi}}(1) = E(1) + \text{Re} \left[\Sigma(1, \omega) \right]_{\omega = E^{\text{quasi}}}$

• chemical picture: bound states $\hat{=}$ new species

Chemical picture and medium corrections

Nuclear matter at given temperature T,

baryon density n_B,

proton fraction (asymmetry) $Y_e = n_p/n_B$: equation of state

- Iow-density limit: ideal mixture of reacting components: Nuclear statistical equilibrium (NSE)
- interactions: virial expansion (cluster virial expansion)
- higher densities: quasiparticle concept, medium modification of components (cluster mean-field approximation)
 - nucleons as quasiparticles:
 - Skyrme, relativistic mean-field (RMF), Dirac Brueckner Hartree-Fock
 - light elements (d,t,h,alpha) as quasiparticles: shift of energy (self-energy, Pauli blocking), Mott effect.
 - excluded volume [M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210]
 - quantum statistical approach (QS): $E_{A,Z}(p;T,n_B,Y_e)$

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
v: internal quantum number
 $f_A(z) = \frac{1}{\exp(z/T) - (-1)^A}$

- Inclusion of excited states and continuum correlations
- Medium effects:

self-energy and Pauli blocking shifts of binding energies, Coulomb corrections due to screening (Wigner-Seitz,Debye)

Bose-Einstein condensation

Shift of Binding Energies of Light Clusters

Light Cluster Abundances

S. Typel et al., PRC **81**, 015803 (2010)

Application to Heavy Ion Reactions

Test the EOS

(NSE, virial,... at low densities,

Skyrme, DBHF, RMF,... near saturation)

- Unifying quantum statistical approach, medium effects, Mott effect
- Symmetry energy
- Bose enhancement?

Nimrod @ TAMU, 40Ar + 112,124Sn, 64Zn + 112,124Sn; 47 A MeV

Open questions: freeze-out model or dynamical transport models? Identification of the source? - yields of p, (n), d, t, 3He, 4He,...

Data analysis

- asymmetry: ${}^{3}H/{}^{3}He$ fraction (Y_{t}/Y_{h})
- temperature: Albergo thermometer $(Y_a Y_d / Y_t Y_h)$
- density: Natowitz densitometer

$$K_c(A, Z) = \rho_{(A,Z)} / [(\rho_p)^Z (\rho_n)^N]$$

This is motivated from NSE. Medium effects?

Albergo Temperature Misfit

S. Shlomo, G. R., J.B. Natowitz, PRC **79**, 034604 (2009)

Albergo Density Misfit

PRC 79, 034604 (2009)

Density determination from light cluster yields

Natowitz densitometer, preliminary

EOS at low densities

QS versus NSE: comparison with data

40Ar124Sn K_{alpha}

Determination of thermodynamic parameters from light cluster yields

Cluster yields in HIC

PRL 108, 062702 (2012)

PHYSICAL REVIEW LETTERS

week ending 10 FEBRUARY 2012

Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

K. Hagel,¹ R. Wada,^{2,1} L. Qin,¹ J. B. Natowitz,¹ S. Shlomo,¹ A. Bonasera,^{1,3} G. Röpke,⁴ S. Typel,⁵ Z. Chen,² M. Huang,² J. Wang,² H. Zheng,¹ S. Kowalski,⁶ C. Bottosso,¹ M. Barbui,¹ M. R. D. Rodrigues,¹ K. Schmidt,¹ D. Fabris,⁷ M. Lunardon,⁷ S. Moretto,⁷ G. Nebbia,⁷ S. Pesente,⁷ V. Rizzi,⁷ G. Viesti,⁷ M. Cinausero,⁸ G. Prete,⁸ T. Keutgen,⁹ Y. El Masri,⁹ and Z. Majka¹⁰

Mott points from cluster yields

FIG. 3. Comparison of experimentally derived Mott point densities and temperatures with theoretical values. Symbols represent the experimental data. Estimated errors on the temperatures are 10% and on the densities 20%. Lines show polynomial fits to the Mott points presented in Ref. [1].

K. Hagel et al., PRL 108, 062702 (2012)

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
v: internal quantum number
 $f_A(z) = \frac{1}{\exp(z/T) - (-1)^A}$

- Inclusion of excited states and continuum correlations
- Medium effects:

self-energy and Pauli blocking shifts of binding energies, Coulomb corrections due to screening (Wigner-Seitz,Debye)

Bose-Einstein condensation

Different approximations

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Beth-Uhlenbeck formula

rigorous results at low density: virial expansion

Beth-Uhlenbeck formula

$$n(T,\mu) = \frac{1}{V} \sum_{p} e^{-(E(p)-\mu)/k_{B}T} + \frac{1}{V} \sum_{nP} e^{-(E_{nP}-2\mu)/k_{B}T} + \frac{1}{V} \sum_{\alpha P} \int_{0}^{\infty} \frac{dE}{2\pi} e^{-(E+P^{2}/4m-2\mu)/k_{B}T} \frac{d}{dE} \delta_{\alpha}(E) + \dots$$

 $\delta_{\alpha}(E)$: scattering phase shifts, channel α

Different approximations

low density limit:

(

$$G_{2}^{L}(12, 1'2', i\lambda) = \sum_{n\mathbf{P}} \Psi_{n\mathbf{P}}(12) \frac{1}{i\omega_{\lambda} - E_{n\mathbf{P}}} \Psi_{n\mathbf{P}}^{*}(12)$$
$$\sum_{n\mathbf{P}} \mathbf{T}_{2}^{L}$$

$$n(\beta,\mu) = \sum_{1} f_1(E^{\text{quasi}}(1)) + \sum_{2,n\mathbf{P}}^{\text{bound}} g_{12}(E_{n\mathbf{P}}) + \sum_{2,n\mathbf{P}} \int_0^\infty \mathrm{d}k \,\,\delta_{\mathbf{k},\mathbf{p}_1-\mathbf{p}_2} g_{12}(E^{\text{quasi}}(1) + E^{\text{quasi}}(2)) 2\,\sin^2\delta_n(k) \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}k} \delta_n(k)$$

• generalized Beth-Uhlenbeck formula correct low density/low temperature limit: mixture of free particles and bound clusters

Cluster virial expansion within a quasistatistical

Generalized Beth-Uhlenbeck approach

$$n_1^{\rm qu}(T,\mu_p,\mu_n) = \sum_{A,Z,\nu} \frac{A}{\Omega} \sum_{\substack{\vec{P} \\ P > P_{\rm Mott}}} f_A(E_{A,Z,\nu}(\vec{P};T,\mu_p,\mu_n),\mu_{A,Z,\nu})$$

$$n_{2}^{qu}(T,\mu_{p},\mu_{n}) = \sum_{A,Z,\nu} \sum_{A',Z',\nu'} \frac{A+A'}{\Omega} \sum_{\vec{p}} \sum_{c} g_{c} \frac{1+\delta_{A,Z,\nu;A',Z',\nu'}}{2\pi} \times \int_{0}^{\infty} dE f_{A+A'} \left(E_{c}(\vec{P};T,\mu_{p},\mu_{n}) + E,\mu_{A,Z} + \mu_{A',Z'} \right) 2 \sin^{2}(\delta_{c}) \frac{d\delta_{c}}{dE}$$

Avoid double counting

Generating functional

G.R., N. Bastian, D. Blaschke, et al., in preparation

Chemical potential of symmetric matter

Proton fraction in symmetric matter

Light Cluster Abundances

S. Typel et al., PRC **81**, 015803 (2010)

Internal energy per nucleon

Internal symmetry energy

Symmetry energy

Heavy-ion collisions, spectra of emitted clusters, temperature (3 - 10 MeV), free energy

Symmetry energy, comparison experiment with theories

J.Natowitz et al., PRL 2010

Symmetry Energy

Scaled internal symmetry energy as a function of the scaled total density. MDI: Chen et al., QS: quantum statistical, Exp: experiment at TAMU

J.Natowitz et al. PRL, May 2010

Symmetry energy at medium densities

The Nuclear Matter Symmetry Energy at $0.03 \le \rho/\rho_0 \le 0.2$

R. Wada,^{1,2} K. Hagel,² L. Qin,² J. B. Natowitz,² Y. G. Ma,³ G. Röpke,⁴ S. Shlomo,² A. Bonasera,^{2,5} S.

Typel,⁶ Z. Chen,^{2,1} M. Huang,^{2,1} J. Wang,^{2,1} H. Zheng,² S. Kowalski,⁷ C. Bottosso,² M. Barbui,²

M. R. D. Rodrigues,² K. Schmidt,² D. Fabris,⁸ M. Lunardon,⁸ S. Moretto,⁸ G. Nebbia,⁸ S. Pesente,⁸

V. Rizzi,⁸ G. Viesti,⁸ M. Cinausero,⁹ G. Prete,⁹ T. Keutgen,¹⁰ Y. El Masri,¹⁰ and Z. Majka¹¹

Free symmetry energy

symmetry entropy

Internal symmetry energy

R. Wada et al., Phys. Rev. C 85, 064618 (2012).

Liquid-vapor phase transition

blue: no light cluster, green: with light clusters, QS, red: cluster-RMF S. Typel et al., PRC **81**, 015803 (2010)

Experimental determination of critical temperature and density

m_s	T_c (MeV)	$\rho_c ~({\rm fm}^{-3})$	$P_c~({\rm MeV}/{\rm fm^3})$	$P_c/ ho_c T_c$	ΔH (MeV)
0.065	12.12 ± 0.39	0.070 ± 0.006	0.211 ± 0.002	0.25 ± 0.02	31.50 ± 1.01
0.115	12.51 ± 0.35	0.066 ± 0.005	0.209 ± 0.001	0.25 ± 0.02	32.53 ± 0.90
0.165	13.11 ± 0.30	0.064 ± 0.004	0.232 ± 0.001	0.27 ± 0.02	31.46 ± 0.71
0.215	13.39 ± 0.21	0.061 ± 0.002	0.258 ± 0.002	0.31 ± 0.01	32.13 ± 0.50

TABLE I: Critical values and thermodynamic quantities for the four m_s bins.

Critical Scaling of Two-component Systems from Quantum Fluctuations

J. Mabiala, et al., arXiv:12083280v1 [nucl-ex]

Different approximations

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Quasiparticle cluster virial approach:

all bound states (clusters) scattering phase shifts of all pairs of clusters

Conclusion I

• Due to the interaction, cluster are formed in nuclear matter that are of significance in the low-density limit. Here, the nuclear statistical equilibrium or cluster virial expansions can be used to describe the thermodynamic properties.

• Medium effects become of relevance for densities > 10⁻⁴ fm⁻³. Single nucleon quasiparticle energies can be introduced. In addition, Pauli blocking modifies the cluster properties so that they are dissolved with increasing density.

• Properties of nuclear matter such as the symmetry energy are determined in the low-density region by the formation of bound states.

Symmetric nuclear matter: Phase diagram

Dubna, 1./3. 9. 2012

HISS: Dense Matter in Heavy-Ion Collisions and Astrophysics

Cluster Formation and Liquid-Gas Transition

in Nuclear Matter

Gerd Röpke, Rostock

Outline

- Nuclear matter a strongly interacting quantum liquid where it occurs, what do we know: nuclei, stars, HIC
- Many-particle theory: Equation of state QCD? Effective interactions, Green functions, spectral functions
- Low-density limit: cluster formation Mass action law, nuclear statistical equilibrium, virial expansion
- Near saturation: medium effects

mean-field and quasiparticles, dissolution of bound states

• Quantum condensates:

transition from BEC to BCS, Hoyle states, pairing and quartetting

Conclusion I

• Due to the interaction, cluster are formed in nuclear matter that are of significance in the low-density limit. Here, the nuclear statistical equilibrium or cluster virial expansions can be used to describe the thermodynamic properties.

• Medium effects become of relevance for densities > 10⁻⁴ fm⁻³. Single nucleon quasiparticle energies can be introduced. In addition, Pauli blocking modifies the cluster properties so that they are dissolved with increasing density.

• Properties of nuclear matter such as the symmetry energy are determined in the low-density region by the formation of bound states.

Symmetric nuclear matter: Phase diagram

Nuclear statistical equilibrium (NSE)

Chemical picture:

Ideal mixture of reacting components Mass action law

Interaction between the components internal structure: Pauli principle

Physical picture:

"elementary" constituents and their interaction

Quantum statistical (QS) approach, quasiparticle concept, virial expansion

Shift of Binding Energies of Light Clusters

Different approximations

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid:

mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Quasiparticle cluster virial approach:

all bound states (clusters) scattering phase shifts of all pairs of clusters

Pauli blocking and Mott effect

Two different fermions (a,b: proton, neutron) form a bound state (c: deuteron).

$$c_{q} = \sum_{p} F(q,p)a_{p}b_{q-p}$$
Is the bound state a boson? Commutator relation
$$\begin{bmatrix} c_{q}, c_{q'}^{+} \end{bmatrix}_{-} = \sum_{p,p'} F(q,p)F^{*}(q',p') \begin{bmatrix} a_{p}b_{q-p}, b_{q'-p'}^{+}a_{p'}^{+} \end{bmatrix}_{-}$$

$$\frac{a_{p}b_{q-p}b_{q'-p'}^{+}a_{p'}^{+} + a_{p}b_{q'-p'}^{+}b_{q-p}a_{p'}^{+} - a_{p}b_{q'-p'}^{+}b_{q-p}a_{p'}^{+} - b_{q'-p'}^{+}a_{p}b_{q-p}a_{p'}^{+} + b_{q'-p'}^{+}a_{p}a_{p'}^{+}b_{q-p} - b_{q'-p'}^{+}a_{p}a_{p'}^{+}b_{q-p} - b_{q'-p'}^{+}a_{p}b_{q-p} - b_{$$

$$\left\langle \left[c_{q},c_{q'}^{+}\right]_{-}\right\rangle = \delta_{q,q'} \left[1 - \sum_{p} F(q,p)F^{*}(q,p)\left(\left\langle a_{p}^{+}a_{p}\right\rangle + \left\langle b_{q-p}^{+}b_{q-p}\right\rangle\right)\right]\right]$$

Fermionic substructure: phase space occupation, "excluded volume"

Many-particle system

• Hamiltonian (non-relativistic)

$$H = \sum_{1}^{1} E(1)a_{1}^{+}a_{1} + \frac{1}{2}\sum_{12,1'2'}^{1} V(12,1'2')a_{1}^{+}a_{2}^{+}a_{2'}a_{1'}$$

- fermions in states $\{1\} = \{p, \sigma, \tau\}$
- interaction: Coulomb, nuclear, ...
- bound states (bosons)
- quantum condensates
- homogeneous system in equilibrium: $\rho = \exp[-S/k_B]$
- variation in time and space (finite systems? non-equilibrium?)

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation

$$\left(\frac{p_1^2}{2m_1} + \Delta_1 + \frac{p_2^2}{2m_2} + \Delta_2\right) \Psi_{d,P}(p_1, p_2) + \sum_{p_1', p_2'} (1 - f_{p_1} - f_{p_2}) V(p_1, p_2; p_1', p_2') \Psi_{d,P}(p_1', p_2')$$

Add self-energy

Pauli-blocking

$$= E_{d,P} \Psi_{d,P}(p_1,p_2)$$

Thouless criterion $E_d(T,\mu) = 2\mu$

Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

BEC-BCS crossover: Alm et al.,1993

Quantum condensates: Outline

1. Many-particle system

- Mean field approach: self-energy and Pauli blocking
- Generalized Beth-Uhlenbeck equation
- Mott effect and transition from BEC to BCS
- Self-consistent solutions and pseudogap

2. Correlations: account of higher clusters

- Cluster expansion of the self-energy
- Cluster mean field approximation
- Quantum condensates: Pairing and quartetting
- 3. Finite systems: 4-n nuclei
 - Cluster formation in dilute nuclei
 - BEC states: Hoyle state and THSR wave function
 - Suppression of the condensate at increasing density

Composition of symmetric nuclear matter

Fraction of correlated matter (virial expansion, Generalized Beth-Uhlenbeck approach, contribution of bound states, of scattering states, phase shifts)

H. Stein et al., Z. Phys. **A351**, 259 (1995)

Quantum condensate

D. W. Snoke and G. Baym

Table 1. Bosons under study

Particle	Composed of	In	Coherence seen in
	isenspero.	maismus-	204
Cooper pair	e ⁻ , e ⁻	metals	superconductivity
Cooper pair	h+, h+	copper oxides	high-T _c superconductivity
exciton	e ⁻ , h ⁺	semiconductors	luminescence and drag-free transport in Cu ₂ O
biexciton	2(e ⁻ , h ⁺)	semiconductors	luminescence and optical phase coherence in CuCl
positronium	e ⁻ , e ⁺	crystal vacancies	(proposed)
hydrogen	e ⁻ , p ⁺	magnetic traps	(in progress)
⁴ He	⁴ He ²⁺ , 2e ⁻	He-II	superfluidity
³ He pairs	2(³ He ²⁺ , 2e ⁻)	³ He-A,B phases	superfluidity
cesium	¹³³ Cs ⁵⁵⁺ , 55e ⁻	laser traps	(in progress)
interacting bosons	nn or pp	nuclei	excitations
nucleonic pairing	nn or pp	nuclei neutron stars	moments of inertia superfluidity and pulsar glitches
chiral condensates	$\langle ar q q angle$	vacuum	elementary particle structure
meson condensates	pion condensate = $\langle \bar{u}d \rangle$, etc. kaon condensate = $\langle \bar{u}s \rangle$	neutron star matter	neutron stars, supernovae (proposed)
Higgs boson	$\langle \bar{t}t \rangle$ condensate (proposed)	vacuum	elementary particle masses

Bose -Einstein Condensation

Int. Workshop BEC 93 Levico Terme Ed.: Griffin, Snoke, Stringari Cambridge Univ. Press, 1995

"This is the first book devoted to Bose - Einstein Condensation (BEC) as an interdisciplinary subject, covering atomic and molecular physics, laser physics, low temperature physics, nuclear physics and astrophysics."

Many-particle system

• Hamiltonian (non-relativistic)

$$H = \sum_{1}^{1} E(1)a_{1}^{+}a_{1} + \frac{1}{2}\sum_{12,1'2'}^{1} V(12,1'2')a_{1}^{+}a_{2}^{+}a_{2'}a_{1'}$$

• Entropy
$$\rho(t) = \exp[-S(t)/k_B]$$

• cluster decomposition, non-equilibrium $S(t) = S_0(t) + S_1(t) + S_2(t)$

$$\begin{split} S_1(t) &= \sum_{1,2} \xi(12,t) a_2^+ a_1 + \frac{1}{2} \sum_{1,2} \psi(12,t) a_1^+ a_2^+ + c \, c \, . \\ S_2(t) &= \frac{1}{2} \sum_{12,1'2'} \omega(12,1'2',t) a_1^+ a_2^+ a_{2'} a_{1'} \end{split}$$

Lagrange parameter ξ, ψ, ω are determined by $\langle a_2^+ a_1 \rangle^t, \langle a_2 a_1 \rangle^t, \dots$

Many-particle system

• Hamiltonian (non-relativistic)

$$H = \sum_{1}^{1} E(1)a_{1}^{+}a_{1} + \frac{1}{2}\sum_{12,1'2'}^{1} V(12,1'2')a_{1}^{+}a_{2}^{+}a_{2'}a_{1'}$$

• Entropy
$$\rho(t) = \exp[-S(t)/k_B]$$

• cluster decomposition, equilibrium $S = S_0 + S_1 + S_2$

$$S_{1} = \sum_{1} (E(1) - \mu) / Ta_{1}^{+}a_{1}$$
$$S_{2} = \frac{1}{2} \sum_{12,1'2'} V(12,1'2') / Ta_{1}^{+}a_{2}^{+}a_{2'}a_{1'}$$

Lagrange parameter *T*, μ are determined by $\langle H \rangle$, $\langle N \rangle$

BEC - BCS crossover in mean-field approximation

only single-particle contributions to the entropy

$$S_1(t) = \sum_{1,2} \xi(12,t) a_2^+ a_1 + \frac{1}{2} \sum_{1,2} \psi(12,t) a_1^+ a_2^+ + c c.$$

Lagrange multipliers are determined by the given mean values

$$\langle a_2^+ a_1 \rangle^t = \delta_{12} n(1,t)$$
 $\langle a_2 a_1 \rangle^t = F(12,t) = \delta_{p_1 + p_2, 2q} \chi(12) e^{i\alpha_p(t)} F(p,t)$

diagonalization by Bogoliubov-Valatin transformation

$$a_{p+q,\uparrow} = u_p b_{q+p,\uparrow} + v_p b_{q-p,\downarrow}^+ \qquad 2 |u_p|^2 = 1 + (1 + \theta_p^2)^{-1/2}$$

 $\theta_p = \frac{\sqrt{2} |F(12)|}{1 - n(1) - n(2)}$ the anomalous mean values $\langle b_2 b_1 \rangle^t$ vanish

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation

$$\left(\frac{p_1^2}{2m_1} + \Delta_1 + \frac{p_2^2}{2m_2} + \Delta_2\right) \Psi_{d,P}(p_1, p_2) + \sum_{p_1', p_2'} (1 - f_{p_1} - f_{p_2}) V(p_1, p_2; p_1', p_2') \Psi_{d,P}(p_1', p_2')$$

Add self-energy

Pauli-blocking

$$= E_{d,P} \Psi_{d,P}(p_1,p_2)$$

Thouless criterion $E_d(T,\mu) = 2\mu$

Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

BEC-BCS crossover: Alm et al.,1993

Crossover from BEC to BCS

Phase transition to the superfluid state

fermionic model system with separable interaction, $T^* = T/E_0, n^* = n(\hbar^2/mE_0)^{3/2}$

NSR^a: blocking by single-particle distribution function

thick line^b: including the interaction with the correlated component of the medium

^a P. Nozieres, S. Schmitt-Rink, J. Low Temp. Phys. 59, 159 (1985)

^b G. Röpke, Ann. Phys. (Leipzig) 3, 145 (1994)

Few-particle Schrödinger equation in a dense medium

4-particle Schrödinger equation with medium effects

$$\begin{split} & \left(\left[E^{HF}(p_{1}) + E^{HF}(p_{2}) + E^{HF}(p_{3}) + E^{HF}(p_{4}) \right] \right) \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4}) \\ & + \sum_{p_{1}^{'},p_{2}^{'}} (1 - f_{p_{1}} - f_{p_{2}}) V(p_{1},p_{2};p_{1}^{'},p_{2}^{'}) \Psi_{n,P}(p_{1}^{'},p_{2}^{'},p_{3},p_{4}) \\ & + \left\{ permutations \right\} \\ & = E_{n,P} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4}) \end{split}$$

quartetting: $E_{n,0}(T,\mu) = 4\mu$

α-cluster-condensation (quartetting)

α-cluster-condensation (quartetting)

G.Röpke, A.Schnell, P.Schuck, and P.Nozieres, PRL 80, 3177 (1998)

Quasiparticle picture: RMF and DBHF

J.Margueron et al., Phys.Rev.C 76,034309 (2007)

C.Ducoin, J.Margueron, C.Providencia, I. Vidana arXiv:1102.1283 (7 Feb 2011)

Internal energy per nucleon

EOS for symmetric matter - low density region?

Internal energy per nucleon

EOS for symmetric matter - low density region?

Correlations in the medium

+

æ

+

æ

ac,

+

Cluster - mean field approximation

Cluster (A) interacting with a distribution of clusters (B) in the medium, fully antisymmetrized

$$\sum_{1'\dots A'} \{H_A^0(1\dots A, 1'\dots A') + \sum_i \Delta_i^{A,mf} \delta_{k,k'} + \frac{1}{2} \sum_{i,j} \Delta V_{ij}^{A,mf} \delta_{l,l'} - E_{AvP} \delta_{k,k'} \} \psi_{AvP}(1'\dots A') = 0$$

self-energy

$$\Delta_1^{A,mf}(1) = \sum_2 V(12,12)_{ex} f^*(2) + \sum_{BvP} \sum_{2...B'} f_B(E_{BvP}) \sum_i V_{1i}(1i,1'i') \psi_{BvP}^*(1...B) \psi_{BvP}(1'...B')$$

effective interaction

$$\Delta V_{12}^{A,mf} = -\frac{1}{2} [f^*(1) + f^*(2)] V(12,1'2') - \sum_{B\nu P} \sum_{2^* \dots B^*} f_B(E_{B\nu P}) \sum_i V_{1i} \psi_{B\nu P}^*(22^* \dots B^*) \psi_{B\nu P}(2'2" \dots B")$$

phase space occupation $f^*(1) = f_1(1) + \sum_{B \lor P} \sum_{2...B} f_B(E_{B \lor P}) |\psi_{B \lor P}(1...B)|^2$

Self-consistent RPA

Two-time cluster Matsubara Green's functions

$$G_{\alpha\beta}^{\tau-\tau'} = -\langle TrA_{\alpha}(\tau)A_{\beta}^{\dagger}(\tau')\rangle = -Tr\left[\rho_{G}T_{\tau}e^{\tau K}A_{\alpha}e^{-(\tau-\tau')K}A_{\beta}^{\dagger}e^{-\tau'K}\right]$$

Equation of motion method

$$-\frac{\partial}{\partial \tau} G^{\tau-\tau'}_{\alpha\beta} = \delta_{\tau-\tau'} \langle [A_{\alpha}, A^{\dagger}_{\beta}] \rangle - \langle Tr[A_{\alpha}, K]^{\tau} A^{\dagger}_{\beta}(\tau') \rangle$$
$$= \delta_{\tau-\tau'} N_{\alpha\beta} + \sum_{\gamma} \int d\tau'_{1} \mathcal{H}^{\tau-\tau'_{1}}_{\alpha\gamma} G^{\tau'_{1}-\tau'}_{\gamma\beta} .$$

Effective Hamiltonian is split into an instantaneous and a dynamic part

$$\mathcal{H}_{\alpha\beta}^{\tau-\tau'} = \sum_{\beta'} \left\{ \delta_{\tau-\tau'} \langle [[A_{\alpha}, K], A_{\beta'}^{\dagger}] \rangle - \langle Tr[A_{\alpha}, K]^{\tau}[K, A_{\beta'}^{\dagger}]^{\tau'} \rangle_{irr} \right\} N_{\beta'\beta}^{-1}$$
$$\equiv \mathcal{H}_{\alpha\beta}^{(0)} \delta_{\tau-\tau'} + \mathcal{H}_{\alpha\beta}^{(r)\tau-\tau'} .$$

J.Dukelsky, G. Roepke, and P.Schuck, NPA **628**, 17 (1998) P. Schuck, D.S. Delion, J.Dukelsky, and G. Roepke, in preparation

Single nucleon distribution function

Dependence on density

T = 10 MeV

Alm et al., PRC 53, 2181 (1996)

Single nucleon distribution function

Dependence on temperature

saturation density

Alm et al., PRC 53, 2181 (1996)

Chemical potential

preliminary

Free energy per nucleon

preliminary

Clustering phenomena in nuclear matter below the saturation density

Hiroki Takemoto et al., PR C **69**, 035802 (2004)

Alpha matter and quartetting

Where it appears?

(Pairing is well understood:

nuclear structure: Bethe-Weizsaecker formula, surface...

neutron stars)

- Matter at low densities, low temperatures:
- Quartetting in nuclei
- Condensate in heavy ion collisions
- Neutron star crust
- Suppression of the condensate with increasing density
- Dissolution of clusters with increasing density
- Formation of larger clusters (C, O, Si,...Fe, Ni, ...)

Alpha cluster structure of Be 8

R.B. Wiringa et al., PRC **63**, 034605 (01)

Contours of constant density, plotted in cylindrical coordinates, for 8Be(0+). The left side is in the laboratory frame while the right side is in the intrinsic frame.
Self-conjugate 4n nuclei

¹²C:

 0^+ state at 0.39 MeV above the 3α threshold energy: α cluster interact predominantly in relative S waves, gaslike structure

 α -particle condensation in low-density nuclear matter $(\rho \le \rho_0/5)$

 $n\alpha$ cluster condensed states - a general feature in N = Z nuclei?

Self-conjugate 4n nuclei

nα nuclei: ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ... Single-particle shell model, or Cluster type structures ground state, excited states

 $n\alpha$ break up at the threshold energy $E_{n\alpha}^{\text{thr}} = nE_{\alpha}$

Quantum condensate

Ideal Bose condensate : $|0\rangle = b_0^{\dagger} b_0^{\dagger} \cdots b_0^{\dagger} |vac\rangle$

 α -particle condensate : $|\Phi_{\alpha C}\rangle = C^{\dagger}_{\alpha}C^{\dagger}_{\alpha}\cdots C^{\dagger}_{\alpha}|vac\rangle$

In *r*-space : $\langle \vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{4n} | \Phi_{\alpha C} \rangle = \mathcal{A} \{ \Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) \Phi(\vec{r}_5, \vec{r}_6, \vec{r}_7, \vec{r}_8) \cdots \Phi(\vec{r}_{4n-3}, \vec{r}_{4n-2}, \vec{r}_{4n-1}, \vec{r}_{4n}) \}$

In comparison with pairing :

$$\langle \vec{r_1}, \vec{r_2}, \cdots | \text{BCS} \rangle = \mathcal{A} \left\{ \Phi \left(\vec{r_1}, \vec{r_2} \right) \Phi \left(\vec{r_3}, \vec{r_4} \right) \cdots \right\}$$

A. Tohsaki et al., PRL 87, 192501 (2001)

Variational ansatz

Variational ansatz for $\Phi(\vec{r_1}, \vec{r_2}, \vec{r_3}, \vec{r_4}) : \Phi(\vec{r_1}, \vec{r_2}, \vec{r_3}, \vec{r_4}) = e^{-\frac{2}{B^2}\vec{R}^2} \phi_{\alpha}(\vec{r_i} - \vec{r_j})$

Center of mass :
$$\vec{R} = \frac{1}{4} (\vec{r_1} + \vec{r_2} + \vec{r_3} + \vec{r_4})$$

Intrinsic α -wave function :

$$\phi_{\alpha}\left(\vec{r_{i}}-\vec{r_{j}}\right) = e^{-\frac{1}{8b^{2}}\left\{\left(\vec{r_{4}}-\vec{r_{1}}\right)^{2}+\left(\vec{r_{4}}-\vec{r_{2}}\right)^{2}+\left(\vec{r_{4}}-\vec{r_{3}}\right)^{2}+\cdots\right\}}$$

Two variational parameters : B, b

Two limits : B = b $|\Phi_{\alpha C}\rangle =$ Slater determinant $B \gg b$ $|\Phi_{\alpha C}\rangle =$ gas of independent α -particles

Two dimensional surface : $E(B,b) = \frac{\langle \Phi_{\alpha C} | H | \Phi_{\alpha C} \rangle}{\langle \Phi_{\alpha C} | \Phi_{\alpha C} \rangle}$

3α variational energy

4 α variational energy

A. Tohsaki et al., PRL 87, 192501 (2001)

Energy surface, variational ansatz

Results

		E_k	E _{exp}	$E_k - E_{n\alpha}^{\rm thr}$	$(E-E_{nlpha}^{ m thr})_{ m exp}$	$\sqrt{\langle r^2 angle}$	$\sqrt{\langle r^2 \rangle}_{exp}$
		(MeV)	(MeV)	(MeV)	(MeV)	(fm)	(fm)
^{12}C	k = 1	-85.9	$-92.16(0_1^+)$	-3.4	-7.27	2.97	2.65
	k = 2	-82.0	$-84.51~(0_2^+)$	+0.5	0.38	4.29	
	$E^{ thr}_{3lpha}$	-82.5	-84.89				
¹⁶ O	k = 1	-124.8	$-127.62(0_1^+)$	-14.8	-14.44	2.59	2.73
		(-128.0)*		(-18.0)*			
	k = 2	-116.0	$-116.36~(0_3^+)$	-6.0	-3.18	3.16	
	k = 3	-110.7	$-113.62(0_5^+)$	-0.7	-0.44	3.97	
	$E_{4lpha}^{ m thr}$	-110.0	-113.18				
Be	• • • • • • • • • • • • • • • • • • •			- 0.17	+ 0.1		

Tabelle 1: Comparison of the generator coordinate method calculations with experimental values. $E_{n\alpha}^{\text{thr}} = nE_{\alpha}$ denotes the threshold energy for the decay into α -clusters, the values marked by * correspond to a refined mesh.

M. Chernykh et al., PRL **98**, 032501 (07); Y. Funaki et al., PRL **101**, 082502 (08)

Estimation of condensate fraction in zero temperature α -matter

 α -cluster condensate in ¹²C, ¹⁶O: resonating group method \sim constant α -orbits in ¹²C

	RMS radii	S-orbit	D-orbit	G-orbit
O_{1}^{+} (g.s.)	2.44 fm	1.07	1.07	0.82
O_2^+	4.31 fm	2.38	0.29	0.16

80 % condensate at 1/8 nuclear matter density T.Yamada, P. Schuck: (2.16 - normal)/3 = 60%

BEC of α clusters in the same S-orbit?

 α -particle density matrix :

$$ho_{lpha}(ec{R},ec{R'}), \quad ec{R}\,:\, {
m c.m.}\,\, {
m of}\,\, lpha$$

Diagonalization :

$${}^{12}C: O_2^+$$

70% S-wave occupancy

Estimation of condensate fraction in zero temperature α -matter

$$n_0 = rac{\langle \Psi | a_0^\dagger a_0 | \Psi
angle}{\langle \Psi | \Psi
angle}$$

destruction of the BEC of the ideal Bose gas: thermal excitation, but also correlations

"excluded" volume for α -particles $\approx 20 \text{ fm}^3$ size that at nucleon density $\rho = 0.048 \text{ fm}^{-3}$ filling factor $\approx 28 \%$ (liquid ⁴He: 8 % condensate), destruction of the condensate at $\approx \rho_0/3$

Suppresion of condensate fraction

Supernova explosion

α cluster in astrophysics

Summary

- Correlations (cluster formation, quantum condensates) are essential in low-density matter. They are suppressed with increasing density (Pauli blocking).
- The low-density limit of the nuclear matter EoS can be rigorously treated. The Beth-Uhlenbeck virial expansion is a benchmark.
- An extended quasiparticle approach can be given for single nucleon states and nuclei. In a first approximation, self- energy and Pauli blocking is included. An interpolation between low and high densities is possible.
- Compared with the standard quasiparticle approach, significant changes arise in the low-density limit due to clustering. Examples are Bose-Einstein condensation (quartetting), and the behavior of the symmetry energy.

Problems

- Quantum statistical approach to correlations (cluster formation) in dense matter. Larger clusters? Droplets?
- Condensation energy for Bose condensate state (compare pairing)? "strict" solution of the 4-nucleon equation including Pauli blocking?
- Clusters in a clusterized medium: cluster mean-field, correlations in quantum condensates, transport with cluster formation
- Thermodynamics finite systems, nonequilibrium
- Instability of homogeneous matter at low temperatures
- α -decay of heavy elements

Thanks

to D. Blaschke, C. Fuchs, Y. Funaki, H. Horiuchi,
J. Natowitz, T. Klaehn, S. Shlomo, P. Schuck,
A. Sedrakian, K. Sumiyoshi, A. Tohsaki, S. Typel,
H. Wolter, T. Yamada
for collaboration

to you

for attention

Energy of α -Matter at T=0

Total energy calculated with the cluster expansion within the HNC/0 (circles) and HNC/4 (solid lines) approximation. Different interaction potentials

F.Carstoiu, S.Misicu, PLB, 2009

α - α scattering phase shifts

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

Clusters in nuclei

- Low-density isomers
- Alpha matter at low densities
- Quartetting
- Condensate wave function
- Suppression of the condensate with increasing density
- Dissolution of clusters with increasing density

Astrophysical Applications

- Supernova explosions
- Neutrino transport
- Neutron star structure
- Equation of state (EOS)
- Composition
- Transport properties (cross sections)

Composition of supernova core

Mass fraction X of light clusters for a post-bounce supernova core

Rms-dependence of condensate energies

Variational energy for the Gaussian condensate of 4 alpha

Heavy nuclei abundances in nuclear matter

T=10 MeV, asymmetry 0.42, as function of baryon density

n, p, d, t, He3, He4, Li5,...

Hadron Gas versus Quark-Gluon Plasma

$$p^{H} = p_{\pi} + p_{N} + p_{\bar{N}} + p_{w} \qquad p^{Q} = p_{g} + p_{q} + p_{\bar{q}} - B$$

$$p_{\pi}(T) = -g_{\pi} \int_{m_{\pi}}^{\infty} \frac{p\epsilon d\epsilon}{2\pi^{2}} \ln[1 - e^{-\beta\epsilon}] \qquad p_{g} = g_{g} \frac{\pi^{2}}{90} T^{4}$$

$$p_{q} + p_{\bar{q}} = g_{q} \left[\frac{7\pi^{2}}{360} T^{4} + \frac{1}{12} \mu_{q}^{2} T^{2} + \frac{1}{24\pi^{2}} \mu_{q}^{4} + \frac{1}{24\pi^{2}} \mu$$

JRandrup: Dubna School, 2010

alpha-fraction in symmetric matter

Deuterons in nuclear matter

T=10 MeV, P: center of mass momentum

Scattering phase shifts in matter

Deuteron quasiparticle properties

$$E_{d}^{qu}(P) = E_{d}^{free} + \Delta E_{d} + \frac{\hbar^{2}}{2m_{d}^{*}}P^{2} + O(P^{4})$$

$$\Delta E_{d}^{\text{Pauli}}(T, n_{B}, \alpha) = \delta E_{d}^{(0)}(T, \alpha)n_{B} + O(n_{B}^{2})$$
$$\frac{m_{d}^{*}}{m_{d}}(T, n_{B}, \alpha) = 1 + \delta m_{d}^{(0)}(T, \alpha)n_{B} + O(n_{B}^{2})$$

Т	delta E	delta m*	
[MeV]	[MeV fm ³]	[fm ³]	
10	364.3	21.3	
4	712.9	87.1	

$$E_d^{\text{free}} = -2.225 \text{MeV}$$

G.R., PRC 79, 014002 (2009)

Pseudogap

Precritical Pair Fluctuations and Formation of a Pseudogap in Low-Density Nuclear Matter

A. Schnell, G. Roepke, P. Schuck, PRL 83, 1926 (1999)

- Self-consistent solution of the two-nucleon Bethe Salpeter equation and evaluation of the density of states
- above the critical temperature: depletion near the chemical potential instead opening of the gap

Density of states near phase transition

T=5 MeV, rho=rho $_0/3$: T-matrix in quasiparticle approximation, compared with BCS and BHF. Also shown: BCS at T=0

Density of states near phase transition

rho=rho $_0/3$: T-matrix, self-consistent spectral function

Variational ansatz

$$|\Phi_{n\alpha}\rangle = \left(C_{\alpha}^{\dagger}\right)^{n} |\mathrm{vac}\rangle$$
 .

 α - particle creation operator

$$C_{\alpha}^{\dagger} = \int d^{3}R e^{-\vec{R}^{2}/R_{0}^{2}}$$
$$\times \int d^{3}r_{1} \dots d^{3}r_{4} \phi_{0s}(\vec{r_{1}} - \vec{R}) a_{\sigma_{1}\tau_{1}}^{\dagger}(\vec{r_{1}}) \dots \phi_{0s}(\vec{r_{4}} - \vec{R}) a_{\sigma_{4}\tau_{4}}^{\dagger}(\vec{r_{4}})$$

with

1.15

$$\phi_{0s}(\vec{r}) = rac{1}{(\pi b^2)^{3/4}} e^{-\vec{r}^2/(2b^2)}$$

Variational ansatz

total $n\alpha$ wave function

$$egin{aligned} &\langle ec{r}_1 \sigma_1 au_1 \dots ec{r}_{4n} \sigma_{4n} au_{4n} | \Phi_{nlpha}
angle \ &\propto \mathcal{A} \left\{ e^{-rac{2}{B^2} (ec{X}_1^2 + ... ec{X}_n^2)} \phi(lpha_1) \dots \phi(lpha_n)
ight\} \end{aligned}$$

where
$$B^2 = (b^2 + 2R_0^2)$$
, $\vec{X}_i = \frac{1}{4} \Sigma_n \vec{r}_{in}$,
 $\phi(\alpha_i) = e^{-\frac{1}{8b^2} \sum_{m>n}^4 (\vec{r}_{im} - \vec{r}_{in})^2}$ - internal α wave function

A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, PRL 87, 192501 (2001)