Helmholtz International Summer School
Dense Matter in Heavy Ion Collisions and Astrophysics JINR, Dubna, Russia, August 28 - September 8, 2012

Spinodal Instabilities in Phase Transitions

Jørgen Randrup (LBNL)

Lecture I: Phase coexistence (equilibrium) TUE 11:30-12:30
Lecture II: Phase separation (non-equilibrium) tHU 10:00-11:00
Seminar: Problem Solving, Discussion FRI 17:00-18:00
Lecture III: Nuclear collisions (fresh results) SAT 11:30-12:30

HELMHOLTZ |ASSOCIATION E 표 II

Possible (ρ, T) phase diagram of strongly interacting matter

JRandrup: Dubna School, 2010

Lecture I: Phase coexistence (equilibrium)

Thermodynamics:
large \& uniform systems

JRandrup: Dubna School II, 2012

Lecture II: Phase separation (non-equilibrium)

Equation of state:
interpolate between hadron gas and quark-gluon plasma

Spinodal instabilities:
fluid dynamics, growth rates

Equation of State

Confined phase: Hadron gas

Deconfined phase:
Quark-gluon plasma

JRandrup: Dubna School II, 2012

Hadron Gas versus Quark-Gluon Plasma

$$
p^{H}=p_{\pi}+p_{N}+p_{\bar{N}}+p_{w}
$$

Free pions, nucleons, and antinucleons:

$$
\begin{aligned}
& p_{\pi}(T)=-g_{\pi} \int_{m_{\pi}}^{\infty} \frac{p \epsilon d \epsilon}{2 \pi^{2}} \ln \left[1-\mathrm{e}^{-\beta \epsilon}\right] \\
& p_{N}\left(T, \mu_{0}\right)=g_{N} \int_{m \otimes \infty}^{\infty} \frac{p \epsilon d \epsilon}{2 \pi^{2}} \ln \left[1+\mathrm{e}^{-\beta\left(\epsilon-\mu_{0}\right)}\right] \\
& p_{\bar{N}}\left(T, \mu_{0}\right)=g_{N} \int_{m_{N}}^{\infty} \frac{p \epsilon d \epsilon}{2 \pi^{2}} \ln \left[1+\mathrm{e}^{-\beta\left(\epsilon+\mu_{0}\right)}\right]
\end{aligned}
$$

+ compressional energy density:
$w(\rho)=\left[-A\left(\frac{\rho}{\rho_{s}}\right)^{\alpha}+B\left(\frac{\rho}{\rho_{s}}\right)^{\beta}\right] \rho$
$p_{w}(\rho)=\rho \partial_{\rho} w(\rho)-w(\rho)$
$\mu=\mu_{0}+\partial_{\rho} w=3 \mu_{q}$
$p^{Q}=p_{g}+p_{q}+p_{\bar{q}}-B$
Free gluons, quarks, and antiquarks:

$$
\begin{aligned}
& p_{g}=g_{g} \frac{\pi^{2}}{90} T^{4} \\
& p_{q}+p_{\bar{q}}=g_{q}\left[\frac{7 \pi^{2}}{360} T^{4}+\frac{1}{12} \mu_{q}^{2} T^{2}+\frac{1}{24 \pi^{2}} \mu_{q}^{4}\right]
\end{aligned}
$$

Phase crossing:

Hadron Gas versus Quark-Gluon Plasma

Equation of state: Spline between HG and QGP

Free energy density $f_{T}(\rho)$

Equation of State: spline

JRandrup: Dubna School II, 2012

Thermodynamic relations

$$
\begin{aligned}
& \beta=\partial_{\varepsilon} \sigma(\varepsilon, \rho)=\sigma_{\varepsilon}=1 / T \\
& \sigma(\varepsilon, \rho) \quad \pi=\sigma-\beta \varepsilon-\alpha \rho=p / T \\
& \alpha=\partial_{\rho} \sigma(\varepsilon, \rho)=\sigma_{\rho}=-\mu / T \\
& f=\varepsilon-T \sigma \\
& \begin{aligned}
\mu_{T}(\rho) & =\partial_{\rho} f_{T}(\rho) \\
\sigma_{T}(\rho) & =-\partial_{T} f_{T}(\rho)
\end{aligned} \\
& p_{T}(\rho)=\rho \partial_{\rho} f_{T}(\rho)-f_{T}(\rho) \\
& \varepsilon_{T}(\rho)=f_{T}(\rho)-T \partial_{T} f_{T}(\rho) \\
& h_{T}(\rho)=p_{T}(\rho)+\varepsilon_{T}(\rho)=\rho \partial_{\rho} f_{T}(\rho)-T \partial_{T} f_{T}(\rho) \quad \text { Enthalpy density } \\
& v_{s}^{2}=\frac{\rho}{h}\left(\frac{\partial p}{\partial \rho}\right)_{s}=-\frac{T}{h}\left[h^{2} \sigma_{\varepsilon \varepsilon}+2 h \rho \sigma_{\varepsilon \rho}+\rho^{2} \sigma_{\rho \rho}\right] \quad \text { Isentropic sound speed } \\
& v_{T}^{2}=\frac{\rho}{h}\left(\frac{\partial p}{\partial \rho}\right)_{T}=-\frac{\rho}{h} \frac{\rho T}{\sigma_{\varepsilon \varepsilon}}\left[\sigma_{\varepsilon \varepsilon} \sigma_{\rho \rho}-\sigma_{\varepsilon \rho}^{2}\right] \quad \text { Isothermal sound speed }
\end{aligned}
$$

7 Ideal fluid dynamics without conserved charges

$\eta, \zeta, \kappa=0$
Energy-momentum tensor: $\quad T^{\mu \nu}=(\varepsilon+p) u^{\mu} u^{\nu}-p g^{\mu \nu}$

$$
u^{\mu}=(\gamma, \gamma \mathbf{v})
$$

$$
0=\partial_{\mu} T^{\mu \nu} \begin{cases}\nu=0: & 0=\partial_{\mu} T^{\mu 0}=\partial_{t}\left(\varepsilon+p v^{2}\right) \gamma^{2}+\partial_{i}(\varepsilon+p) \gamma^{2} v^{i} \\ \nu=i: & 0=\partial_{\mu} T^{\mu i}=\partial_{t}(\varepsilon+p) \gamma^{2} v^{i}+\partial_{j}(\varepsilon+p) \gamma^{2} v^{j} v^{i}+\partial^{i} p\end{cases}
$$

$$
\text { Non-relativistic flow }(v \ll 1): \begin{cases}\nu=0: & \partial_{t} \varepsilon=-\partial_{i}(\varepsilon+p) v^{i} \\ \nu=i: & \partial_{t}(\varepsilon+p) v^{i}=-\partial^{i} p\end{cases}
$$

$$
\partial_{t} E-\partial_{i} M:
$$

$$
\partial_{t}^{2} \varepsilon(x)=\partial_{i} \partial^{i} p(x)
$$

Sound equation
Equation of state: $p_{0}(\varepsilon)$

$$
p(x)=p_{0}(\varepsilon(x)) \Rightarrow \partial_{i} \partial^{i} p(x)=\frac{\partial p_{0}(\varepsilon)}{\partial \varepsilon} \partial_{i} \partial^{i} \varepsilon(x)
$$

$$
v_{s}^{2} \equiv \partial_{\varepsilon} p_{0}
$$

(sound speed) ${ }^{2}$

Evolution of small disturbances

Small disturbance in a uniform stationary fluid

$$
\varepsilon(x, t)=\varepsilon_{0}+\delta \varepsilon(x, t), \delta \varepsilon \ll \varepsilon_{0}
$$

$$
\left\{\begin{array}{l}
\partial_{t} \delta \varepsilon(x, t) \approx\left(\varepsilon_{0}+p_{0}\right) \partial_{x} v_{x}(x, t) \quad \Downarrow=>v \ll 1 \\
\left(\varepsilon_{0}+p_{0}\right) \partial_{t} v_{x}(x, t) \approx \partial_{x} p(x, t) \approx \frac{\partial p_{0}}{\partial \varepsilon_{0}} \partial_{x} \delta \varepsilon(x, t)
\end{array}\right.
$$

Sound equation:

$$
\partial_{t}^{2} \delta \varepsilon(x, t)=\frac{\partial p_{0}}{\partial \varepsilon_{0}} \partial_{x}^{2} \delta \varepsilon(x, t)
$$

$$
v_{s}^{2}=\frac{\partial p}{\partial \epsilon}
$$

Harmonic disturbance: $\quad \delta \varepsilon_{k}(x, t) \sim \mathrm{e}^{i k x-i \omega_{k} t}$

Dispersion relation:

JRandrup: Dubna School II, 2012

Ideal fluid dynamics with one conserved charge

$$
\begin{aligned}
& \left.\begin{array}{l}
\varepsilon(x)=\varepsilon_{0}+\delta \varepsilon(x) \\
\rho(x)=\rho_{0}+\delta \rho(x)
\end{array}\right\}|v(x)| \ll 1 \\
& T^{\mu \nu}(x): \quad T^{00} \approx \varepsilon \quad T^{i 0}=T^{0 i} \approx(\varepsilon+p) v^{i} \quad T^{i j}=T^{j i} \approx \delta_{i j} p \\
& \text { E } \\
& 0 \doteq \partial_{\mu} T^{\mu 0}=\partial_{t} T^{00}+\partial_{i} T^{i 0}=\partial_{t} \varepsilon+(\varepsilon+p) \partial_{i} v^{i} \Rightarrow \omega \varepsilon_{k} \doteq\left(\varepsilon_{0}+p_{0}\right) k v_{k} \\
& 0 \doteq \partial_{\mu} T^{\mu i}=\partial_{t} T^{0 i}+\partial_{j} T^{j i}=(\varepsilon+p) \partial_{t} v^{i}+\partial_{j} T^{j i} \\
& \partial_{t} \rho \doteq-\rho \partial_{i} v^{i} \Rightarrow \omega \rho_{k} \doteq \rho_{0} k v_{k} \\
& \text { Continuity equation } \\
& \mathrm{E} \& \mathrm{C}=>\quad\left(\varepsilon_{0}+p_{0}\right) \rho_{k}=\rho_{0} \varepsilon_{k} \quad \rho \text { tracks } \varepsilon \text { when } \kappa=0 \\
& \partial_{t} E-\partial_{i} M \Rightarrow \partial_{t}^{2} \varepsilon=\partial_{i} \partial_{j} T^{j i}=\partial_{i} \partial^{i} p \quad \Rightarrow \quad \omega^{2} \varepsilon_{k}=k^{2} p_{k} \quad \text { Sound equation } \\
& p(\varepsilon, \rho) \Rightarrow \quad p_{k}=\frac{\partial p}{\partial \varepsilon} \varepsilon_{k}+\frac{\partial p}{\partial \rho} \rho_{k}=\left[\frac{\partial p}{\partial \varepsilon}+\frac{\rho_{0}}{\varepsilon_{0}+p_{0}} \frac{\partial p}{\partial \rho}\right] \varepsilon_{k}=v_{s}^{2} \varepsilon_{k} \quad v_{s}^{2} \equiv \frac{\rho}{\varepsilon+p}\left(\frac{\partial p}{\partial \rho}\right)_{s} \\
& \text { => } \quad \omega_{k}^{2}=v_{s}^{2} k^{2} \quad \Rightarrow \quad \gamma_{k}=\left|v_{s}\right| k \quad \text { Dispersion relation }
\end{aligned}
$$

Inclusion of gradient correction

$$
\begin{aligned}
& \tilde{f}_{T}(\boldsymbol{r})=f_{T}(\tilde{\rho}(\boldsymbol{r}))+\frac{1}{2} C(\boldsymbol{\nabla} \tilde{\rho}(\boldsymbol{r}))^{2} \\
=> & p(\boldsymbol{r}) \approx p_{0}(\varepsilon(\boldsymbol{r}), \rho(\boldsymbol{r}))-C \rho_{0} \nabla^{2} \rho(\boldsymbol{r}) \\
& \rho(r, t)=\rho_{0}+\delta \rho(x, t) \doteq \rho_{0}+\rho_{k} \mathrm{e}^{i k x-i \omega t} \\
= & p_{k} \rightarrow p_{k}+C \rho_{0} k^{2} \rho_{k} \\
=> & \omega_{k}^{2}=v_{s}^{2} k^{2}+C \frac{\rho_{0}^{2}}{\varepsilon_{0}+p_{0}} k^{4} \\
= & \left.\gamma_{k}^{2}=\left|v_{s}^{2}\right| k^{2}-C \frac{\rho_{0}^{2}}{\varepsilon_{0}+p_{0}} k^{2}\right] \varepsilon_{k}
\end{aligned}
$$

Viscous fluid dynamics with one conserved charge

\nearrow
 $\eta, \zeta>0$
 $\kappa=0$

$$
\left.\begin{array}{r}
\varepsilon(x)=\varepsilon_{0}+\delta \varepsilon(x) \\
\rho(x)=\rho_{0}+\delta \rho(x)
\end{array}\right\} \quad|v(x)| \ll 1
$$

$T^{\mu v}(x): \quad\left\{\begin{array}{l}T^{00} \approx \varepsilon \quad T^{i 0}=T^{0 i} \approx(\varepsilon+p) v^{i} \\ T^{i j}=T^{j i} \approx \delta_{i j} p-\eta\left[\partial_{i} v^{j}+\partial_{j} v^{i}-\frac{2}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{v}\right]-\zeta \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{v}\end{array}\right.$

$$
=\quad \boldsymbol{\nabla} \cdot \boldsymbol{T} \approx \boldsymbol{\nabla} p-\eta \boldsymbol{\Delta} v-\left[\frac{1}{3} \eta+\zeta\right] \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{v})
$$

E

$$
0 \doteq \partial_{\mu} T^{\mu 0}=\partial_{t} T^{00}+\partial_{i} T^{i 0}=\partial_{t} \varepsilon+(\varepsilon+p) \partial_{i} v^{i} \Rightarrow \omega \varepsilon_{k} \doteq\left(\varepsilon_{0}+p_{0}\right) k v_{k}
$$

M

$$
0 \doteq \partial_{\mu} T^{\mu i}=\partial_{t} T^{0 i}+\partial_{j} T^{j i}=(\varepsilon+p) \partial_{t} v^{i}+\partial_{j} T^{j i}
$$

C

$$
\partial_{t} \rho \doteq-\rho \partial_{i} v^{i} \Rightarrow \omega \rho_{k} \doteq \rho_{0} k v_{k}
$$

Continuity equation

$$
\mathrm{E} \& \mathrm{C} \Rightarrow>\quad\left(\varepsilon_{0}+p_{0}\right) \rho_{k}=\rho_{0} \varepsilon_{k}
$$

$$
\rho \text { tracks } \varepsilon \text { when } \kappa=0
$$

$$
\begin{aligned}
\partial_{t} E-\partial_{i} M & \Rightarrow \partial_{t}^{2} \varepsilon=\partial_{i} \partial_{j} T^{j i}=\partial_{i} \partial^{i}\left[p-\left(\frac{4}{3} \eta+\zeta\right) \partial_{j} v^{j}\right] \quad \text { Sound equation } \\
=> & \omega^{2} \varepsilon_{k}=k^{2} p_{k}-i \xi k^{3} v_{k}=v_{s}^{2} k^{2} \varepsilon_{k}-i \xi \frac{\omega}{\varepsilon_{0}+p_{0}} k^{2} \varepsilon_{k} \quad \xi \equiv \frac{4}{3} \eta+\zeta \\
\Rightarrow & \gamma_{k}^{2}=\left|v_{s}^{2}\right| k^{2}-C \frac{\rho_{0}^{2}}{\varepsilon_{0}+\rho_{0}} k^{4}-\xi \frac{k^{2}}{\varepsilon_{0}+p_{0}} \gamma_{k} \quad \text { Dispersion relation }
\end{aligned}
$$

$\eta, \zeta, \kappa>0 \rightarrow$ Dissipative fluid dynamics

Energymomentum

$$
T^{00} \approx \varepsilon \quad \& \quad T^{0 i} \approx(\varepsilon+p) v^{i}+q^{i} \quad \&
$$

$$
\text { A Muronga, PRC 76, } 014909 \text { (2007) }
$$ tensor:

$$
T^{i j} \approx \delta_{i j} p-\eta\left[\partial_{i} v^{j}+\partial_{j} v^{i}-\frac{2}{3} \delta_{i j} \partial^{k} v^{k}\right]-\zeta \delta_{i j} \partial^{k} v^{k} \quad\left|\rho_{k}\right| \ll \rho_{0} \Rightarrow|v| \ll 1
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{T} \approx \boldsymbol{\nabla} p-\eta \Delta \boldsymbol{v}-\left[\frac{1}{3} \eta+\zeta\right] \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{v}) \asymp \partial_{x} p-\left[\frac{4}{3} \eta+\zeta\right] \partial_{x}^{2} v
$$

Eckart frame

Equations of motion:

$$
\left\{\begin{array}{l}
C: \partial_{t} \rho \doteq-\rho_{0} \boldsymbol{\nabla} \cdot \boldsymbol{v} \Rightarrow \omega \rho_{k} \doteq \rho_{0} k v_{k} \\
\boldsymbol{M}: h_{0} \partial_{t} \boldsymbol{v} \doteq-\boldsymbol{\nabla}[p-\zeta \boldsymbol{\nabla} \cdot \boldsymbol{v}]-\boldsymbol{\nabla} \cdot \boldsymbol{\pi}-\partial_{t} \boldsymbol{q} \\
E: \partial_{t} \varepsilon \doteq-h_{0} \boldsymbol{\nabla} \cdot \boldsymbol{v}-\boldsymbol{\nabla} \cdot \boldsymbol{q}
\end{array}\right.
$$

of
charge momentum energy

Sound equation:

Heat flow:
Equation of state:
$\partial_{t} E-\boldsymbol{\nabla} \cdot \boldsymbol{M}: h_{0} \partial_{t}^{2} \varepsilon \doteq \Delta[p-\zeta \boldsymbol{\nabla} \cdot \boldsymbol{v}]+\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \cdot \boldsymbol{\pi})$

$$
\Rightarrow \quad \omega^{2} \varepsilon_{k} \doteq k^{2} p_{k}-i\left[\frac{4}{3} \eta+\zeta\right] \frac{\omega}{\rho_{0}} k^{2} \rho_{k} \quad \xi \equiv \frac{4}{3} \eta+\zeta
$$

$$
\boldsymbol{q} \approx-\kappa\left[\boldsymbol{\nabla} T+T_{0} \partial_{t} \boldsymbol{v}\right]: \quad q_{k}=-i \kappa\left[k T_{k}-\frac{T_{0}}{\rho_{0}} \frac{\omega^{2}}{k} \rho_{k}\right] \quad T_{k} \approx \frac{1}{1+i \kappa k^{2} / \omega c_{v}} \frac{T_{0}}{\rho_{0}}\left(\frac{\partial p}{\partial \varepsilon}\right)_{\rho} \rho_{k}
$$

$$
p_{T}(\rho) \Rightarrow p_{k}=\left(\frac{\partial p}{\partial \varepsilon}\right)_{\rho} c_{v} T_{k}+\frac{h_{0}}{p_{0}} v_{T}^{2} \rho_{k}
$$

Dispersion equation:

$$
\omega^{2} \doteq v_{T}^{2} k^{2}+C \frac{\rho_{0}^{2}}{h_{0}} k^{4}-i \xi \frac{\omega}{h_{0}} k^{2}+\frac{v_{s}^{2}-v_{T}^{2}}{1+i \kappa k^{2} / \omega c_{v}} k^{2}
$$

Transport coefficients

$$
\begin{aligned}
\eta_{0} & \geq 1 \\
\kappa_{0} & \geq 1
\end{aligned}
$$

1) Bulk viscosity §: Ignore

$$
\zeta \ll \eta \Rightarrow \xi \equiv \frac{4}{3} \eta+\zeta \approx \frac{4}{3} \eta
$$

2) Shear viscosity η :

$$
\rho=0: h \equiv p+\varepsilon=T \sigma
$$

$$
\rho>0, T \ll m c^{2}: h \asymp m c^{2} n \gg T \sigma
$$

*)

$$
\rho=0: \eta \geq \frac{\hbar}{4 \pi} \sigma=\frac{\hbar}{4 \pi} \frac{h}{T}
$$

$$
\rho=0: \quad n \sim T^{3} \Rightarrow \frac{\hbar c}{T}=4 \pi c_{0} d
$$

$\eta(\rho, T)=\eta_{0} \frac{c_{0}}{c} d(\rho, T) h(\rho, T)$

$$
\lambda_{\text {wisc }} \equiv \frac{1}{c} \frac{\xi(\rho, T)}{h(\rho, T) / c^{2}} \approx \frac{4}{3} \eta_{0} c_{0} d(\rho, T)
$$

3) Heat conductivity κ :

$$
\begin{array}{cccc}
\eta \approx \frac{1}{3} n \bar{p} \ell & \frac{\kappa}{\eta} \approx \frac{c_{v}}{h / c^{2}} & \bar{p}=m \bar{v} & h \asymp m c^{2} n \\
\kappa \approx \frac{1}{3} \bar{v} \ell c_{v} & c_{v} \equiv \partial_{T} \varepsilon_{T}(\rho) & c_{v} \asymp \frac{3}{2} n
\end{array}
$$

JRandrup: Dubna School II, 2012
*) V Koch \& J Liao, PRC81, 014902 (2010)

$$
c_{0}=\frac{1}{4 \pi}\left[\left(g_{g}+\frac{3}{3} g_{q}\right) \frac{\zeta(3)}{\pi^{2}}\right]^{\frac{1}{3}} \approx 0.12779
$$

Evolution of density fluctuations with dissipative fluid dynamics

$A_{k} \sim \exp \left(-i \omega_{k} t\right)$

$$
\omega_{k}=\epsilon_{k}+i \gamma_{k}
$$

Dispersion equations:

> Ideal fluid
> dynamics:
> + gradient term:

$$
\omega^{2} \doteq v_{s}^{2} k^{2}
$$

$$
\omega^{2} \doteq v_{s}^{2} k^{2}+C \frac{\rho_{0}^{2}}{h_{0}} k^{4} \quad<=\quad p_{k} \rightarrow p_{k}+C \rho_{0} k^{2} \rho_{k}
$$

+ shear \& bulk
viscosity:

$$
\omega^{2} \doteq v_{s}^{2} k^{2}+C \frac{\rho_{0}^{2}}{h_{0}} k^{4}-i \xi \frac{\omega}{h_{0}} k^{2} \quad<=\quad \xi \equiv \frac{4}{3} \eta+\zeta
$$

+ heat conduction:

$$
\omega^{2} \doteq v_{T}^{2} k^{2}+C \frac{\rho_{0}^{2}}{h_{0}} k^{4}-i \xi \frac{\omega}{h_{0}} k^{2}+\frac{v_{s}^{2}-v_{T}^{2}}{1+i \kappa k^{2} / \omega c_{v}} k^{2} \quad<=\quad \kappa
$$

Spinodal growth rates

Fastest growth rates:

