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Plan:

Phase transitions in different systems including HIC. A general description.

Mean field description. Relativistic bosons in external fields. Il and | order
phase transitions. Dynamical description.

Phenomenological description of Il and | order phase transitions in non-
relativistic systems. Dynamical description.

Role of fluctuations of the order parameter and of noise. Example of color
superconducting transition.

Manifestation of instabilities in solution of quasiparticle kinetic equation

(on example of Bose-Einstein condensation in pion gas with elastic
collisions) and in solution of Kadanoff-Baym equation in case of finite
particle mass-width (on example of pion condensation in nuclear matter).

Back to dynamics of mean field but now for phase transition to the state
with finite momentum.

Hydrodynamical description of | order phase transition of the liquid-gas type
(on example of the hadron-quark | order phase transition). Demonstration of

important role of non-zero viscosity and thermal conductivity.

(if remains a time) Example of stationary state. Mixed phase vs. Maxwell
construction in neutron stars. Quark-hadron pasta, nuclear pasta, kaon
pasta.



Phase Transition Phenomena

Condensed matter
Early Universe
Supernovas
Neutron stars
Heavy Ion collisions



Phase Diagrams
Water and Nuclear Matter
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A general description of phase-tansition
dynamics
Above critical point: Short-range excitations and soft collective modes.

Dyson equations for non-equilibrium Green functions should be considered with inclusion of effects
of initial correlations — should be used but not done.

Dyson equations for non-equilibrium Green functions with suppression of effects of initial
correlations (valid for t>>t., ~fm)— formulated but not solved.

Quasiclassical approximation for Dyson equations --
generalized Kadanoff-Baym (KB) kinetic equations for virtual particles with widths: (for t~t

>>t oo tnicro~1/E1) --in use in some codes in an approximation by test particles.

cor! *micro

Quasiparticle limit of KB kinetics —in use
Equations of non-ideal hydrodynamics (valid for t>>t ) —in use

But most often simplified versions are used: Boltzmann-like (perturbative) kinetic equations,
ideal hydro with phenomenologically introduced friction, etc.



Below critical point: Short-range excitations and soft collective modes+ mean
fields (order parameters) and their long-range fluctuations.

Dyson equations for non-equilibrium Green functions in presence of mean fields with
Inclusion of long-range fluctuations + equations for mean fields coupled with
all fluctuations with inclusion of effects of initial correlations — not done.

Dyson equations for non-equilibrium Green functions in presence of mean fields with
Inclusion of long-range fluctuations + equations for mean fields coupled with
all fluctuations with suppression of effects of initial correlations (for t>>t.,~fm)-
formulated but not solved.

Quasiclassical (Kadanoff-Baym) approximation for Dyson equations --

generalized KB kinetic equations for virtual particles in presence of mean fields with
inclusion of long-range fluctuations + equations for mean fields coupled with
all fluctuations : (for t~tg >>t.,) -- formulated but not solved.

Quasiparticle limit kinetic equations in presence of mean fields with inclusion of
long-range fluctuations + equations for mean fields coupled with all
fluctuations : (for t~t. o >>t.,) -- formulated but not solved.

Equations of non-ideal hydrodynamics with mean fields (for t>>t ) —In use

Dynamics of mean fields with effects of long-range fluctuations —in use

Dynamics of mean fields without effects of long-range fluctuations —is
most extensively used



Mean field description of the
phase transition dynamics



Il order phase transition for relativistic
bosons:

0 In external scalar field deep well
-U>m?



| order phase transition for relativistic
bosons:
0 in external scalar field U
In presence of a small scalar charge



Landau Phenomenological

Description of Phase Transitions

Simplest case: one order parameter, F “%
homogeneous matter. Expand free energy in @ | O
and then coefficients, in T-T_, near critical point: |

a b C
F = Const + §¢.2+ §¢3+ Z¢4+h¢

Either cubic or linear term can be eliminated by the shift of the

order parameter. N
Il order phase transition:

Specific heat C,, has finite value in crit. point =——> near critical point
= - 0(T-T,,)?/4c, o~T-T,, a=a(T-T.,), b=h=0

| order phase transition: @ has finite value, h+0 (USU)a”yb Is put
Zero



Il order phase transition




| order phase transition

ap +cdp> +h =0



l-order phase transition. Pressure isotherms

10- T | T | T |
3 OA — homogeneous gas phase,

T>T 1 dP/dn >0;

1 >D - homogeneous liquid phase,
dP/dn >0;
BC — mechanically unstable,
dP/dn <0;
AB(supercooled wapor),
CD (overheated liquid) —
Inhomogeneous, metastable,
mechanically stable dP/dn >0,
finite lifetime




For slightly spatially iInhomogeneous
configurations

F = Const—l—/d% ( (Vo)? +§¢2+g¢3+§¢4+h¢)



Dynamical description

In condensed matter there always exist slowly dissipating modes:

> a—';b — —F(A) 5—F deviation from equilibrium

dt ) @ is proportional to
thermodynamical force
F(A) = dag — a1A IS expanded in gradients

a,=0 for description of conserved order parameter (like entropy)
a, =0 for non-conserved order parameter (like density)

SF
560 —mAO +a +bd* +cd> +h



Dynamics on examp
conserved order

e of the non-
parameter

Il order phase transition:

O~exp(-iwt): iIfw=a (T-T, ) for small @, so, amplitude

of the order parameter grows with time in the whole system
| order phase transition:

Dynamics of the order parameter is

more specific

D= Dy, 1=t/ ty, @ ~T, =T, ty~L/(T-T), € =rlly, lg~L1/(T - T) V2

3_1,1/ — AW + ZW(l — 2) _|_E| First time derivative (!) compared
0T E 8 to example of relativistic bosons
—1 1 . = considered above

A= — %3¢ =
52 L4 : o ek ;6 =S|

See A. Patashinsky, B. Shumilo, JETP 50 (1979) 712



Different solutions for €=0:

d=1, €=0: no curvature, 6_1& _ 3_2 2
surface tension =0, or  0&2 ¥+ 29(1 — %)
stationary kink ¢ = ttanh(§ — &), & = const.

o 9% d—10y

d>1, £=0: ar — oVt TE g AV

Curvature,
surface tension i = L tanh(§ — &), & = &l(7).
0 d—1
:> EgO(T) — _50(7_)
In case of Il order phase transition (€=0)
size of the seed diminishes with time owing to surface tension




Solution in the metastable region




 slabs (d=1) have no critical size

* For d>1, rods (d=2) and droplets/bubbles

(d=3) have critical sizes: only seeds produced in
metastable matter in fluctuations with overcritical size

may grow to stable phase



Boiling process
(close to T, , when overcritical seeds are
produced rapidly)




Beyond mean field: fluctuations

* Long-range fluctuations of the order
parameter (very important at least near critical
point)

* Short-range fluctuations (renormalize

coefficients of Landau functional, and produce
noise term in equation for the order parameter)



Fluctuation region near T

Ginzburg criterion: W~exp(-O0F(T)/T),
6 F~ a?(T-T.)%/c, I,~1/(T,-T)Y?

At T=T; the fluctuation forming in a minimal volume
~lo3is probable (W~1).

Then fluctuations dominate for T near T,
estimated by Ginzburg number Gi = [T, —T4 |[/T, ~1

Ginzburg—Levanyuk criterion: C,MF~ C\ 1



CSC fluctuations for T>T.

D.V. Phys. Rev C69 (2004) 06529
(.) In some models T.,.~100 MeV. At T<TCSC

| or/and Il order CSC phase transitions are possible.
Fluctuation region,Gi ~1,can be very broad: (0.5-1.5)T .
A hope to observe CSC fluctuation effects at T above T ¢!

(.) Coherence length 1,~0.2 fm |(T-T)/T,, |¥? is shortat T not
too close to T, .Thus fluctuations of density with

p()>p, and T < T (p(t)) in ~I,3 volume are rather probable
and may result in accumulation of CSC domains

with p(t) -p., << P dissolving slowly in time since
to~1/|T,-T| ~1/(p- p.;) s sufficiently large.

In such a way a kind of mixed phase with

Inhomogeneous T-p profile could be formed if system
lived sufficiently large time (1?)



* Main role of the noise term s that it
generates initial fluctuations which then
either grow or diminish with time



oy 0 | 5
E—agzw | 2?70(1—7,D )‘|‘€—|—9

The noise term describes the short-distance fluctuations. The
correlation radii both in space and time 1s negligible in comparison to

correlation radii of order parameter. Thus the noise can be considered
to be delta-correlated:

(21, 11)0(Ta, t2)) = AS(T) — To)O(t1 — t2)

E .
¥ = Ftanh(§ — &o) + 1 +[x (&, 7) —Amplitude
o d—1
Y = — 1+ 3/2¢ — O (&, —Radius
5 0(1) = —gy £3/2 - RET]
8X R o th : Noise also affects
AfX 4y + 0 esponse to the noise

seed shape

or




Conclusion to above sects.

* There are similarities and differences In
description of the dynamics of the | order
phase transitions for relativistic bosons In
external fields and for the order parameter

IN non-relativistic systems.

Main difference is connected with 2-time derivative of the
field in eg. of motion in considered above relativistic case

and with 1-time derivative for non-relativistic systems.



Manifestation of phase transition
instabilities in solutions of kinetic
equations

Consider appearance of instabilities in
particle distributions

« Quasiparticle description
* Beyond quasiparticle approximation



Quasiparticle limit

The standard Landau gp. kin. eq. can be derived from KB kin. eq. integrating the
latter in €, in the limit for particle mass width [' — 0:

| Oe( X, | ofe(X,
afe(X,p)+ E( p)dxf@(X p) — xe(X,p) fép’p)

C*(X,p) = C(F = A?Pfqp, ).

The qp dispersion relation for the energies (X, p) follows from the retarded eq.:

4 (X,p)=m*+p*+Re 1" (X.e(X,p).p).

=C"(X,p),

This dispersion eq. may have several solutions (branches) which contribute separately.
Note: Relativistic Boltzmann eq. is obtained only in perturbative limit:

e(X,p) =~ /m?+ p?, with simplest < ff(1 — f)(1 — f) collision term.



Kinetics of Bose-Einstein condensation

D.V., Phys.Atom. Nucl. 59 (1996) 2015
Consider evolution of initially non-equilibrium spatially homogeneous 7 gas with

only elastic collisions of quasiparticles, L;,; = — g /4,
3
2 * 2 2 fP d
e=m""+p. m — m? +
p b g 2¢, (2m)?

d’py &ps d’py
(2m)? (27)3 (27)°

F[f] — (1 + fp)(l + fpﬂ)fPprfl - (1 + fp3)(1 + fp‘-‘l)fplf;ﬂ?

Integrating in angles in € variables we get

Stlfy] = QZ/F[f](QTF)45(4J(p + p2 — p3 — pa)

2

Of. = = /F[ﬂDdESdEila €+ € = €3+ €

Gdm3e

1 .
D = Ernln[p,Pl:PzaPB:M]



Kinetics of Bose-Einstein condensation

Let us characterize f(€) by two parameters of initial distribution f(¢ = 0) = fp, the
amplitude ng and the energy scale €. Simplifying further put m* ~ m.
In dimensionless variables y = f(€)/ng and € = (e — m) /e :

d
d_)': — /F[X]Dd?gdg_l ()k)
with x(€ — 0) — 1,

,_ Brty/m? 4 p?

B g2e2ng(1 + ng)

T.

Fx] = (xaxa — xx2 + nol(x1 + x2)xaxa — (x3 + xa)xxe]) /(1 4+ no)
depends only weakly on ng.
In thermal equilibrium

= {exp (( m? + p? —p!)/T) - 1}_1



Kinetics of induced Bose-Einstein condensation

Equating number of particles and energy in initial and equilibrium configurations
for g = m we determine critical parameter n§ for occurring of induced Bose-Einstein

condensation in the course of equilibration process. Condensation occurs for ng > ng'.
Take initial distribution in the form:

2 -
fo = —n[}arctge "(1_5"}6”), v = b.
T
Numerical solution f(t) (see D. Semikoz, 1. Tkachev, Phys.Rev. D55 (1977) 489) for
ng= 1< n ~ 2.8 is as follows:

10' g

T
‘

{

T T TN

SRR

0 1 2 3

Solid line is equilibrium distribution

Strong enhancement of the distribution at small momenta for 7~10



Kinetics of Bose-Einstein condensation

For ng > 1 there exists a self-similar solution of kinetic equation

fle,r) = A1) f.(6), €= (e—m)/A(r), B=const>0
where

fs(€) obeys equation:

df(€)
de

BI(E) + &= = S (e))/C

and

A(T) = 2C(1, — 7)(B = D)YEEN) O = const > 0

For finite time 7, the distribution function becomes singular due to condensation. For
T > 7. kinetic equation should be modified with taking into account of the accumulation
of the condensate mean field.



Kinetics of Bose-Einstein condensation

Our kinetic equation (*) allows for stationary solutions

fle)=1(e)™ 0< € =e—m< €0

with

a =0 (describes equilibrium state with u < m),

a = 1 (describes equilibrium state with g = m),

and for f > 1 there appear new two solutions with

a = 7/6 (describes turbulence of classical waves and corresponds to the constant
flow of particles towards the region of small momenta)

and

a=3/2.

In reality the later two stationary regimes may not be reached since for 7 > 7, there
appears Bose condensate. Numerical analysis shows that for e < 1072%¢ the power
law corresponds to o ~ 1.24 and solution is not vet stationary but self-similar.



Kinetics of Bose-Einstein condensation

Solid line is numerical solution, dash line is self-similar solution f (E! = 0,7) x
(1. — 7)72° corresponding to o ~ 1.24

x(€'=0,1)
10°
108 - |
- I
10° .
e |
1 --l- 1 ] 1 1 1 ] 1 1 1
0 4 8 12 16 20



Typical values of parameters

For p(t=0)~6p, and g,~2m_. (A-isobar region for pion
production), ny~7>>n,

t.ong (T—20)<t,,,~(10-20) fm (time of fireball evolution)

At e>2m distribution reaches equilibrium for r>1

~or 102 m<e-m<<m turbulence regime

—or e-m<< 102 m for r>14 self-similar solution

~or 71 =19 there appears singularity at e=m
signhalizing start of Bose-Einstein condensation




« Kinetics of the pion condensation phase
transition, solution of KB equation




Density dependence of the effective pion
gap in symmetric nuclear matter
Pion has attractive p wave interaction to nucleon. Rell* oc —ppyt(p) and
o = —min|p|Rer(E = 0,|p|) = m? +p°, + Rell¥(e = 0, p,,)

changes sign at some critical density p = p, and becomes negative that signalizes pion

condensation phase transition.
1.0

0.8 -
0.6 -

(4] =

0.4
04
(Y]
2

g 92 _
o s T

-0.2 |-

-0.4

0 1 . 2
/P,

Pg is nuclear saturation density



P~Pc Plon condensation is example of
condensation to inhomogeneous state

For p>p., upper branch corresponds to metastable state,

lower, to stable one.

| order phase transition due to pion fluctuations
See D.V,, |. Mishustin, Sov.J.Nucl.Phys.35 (1982) 667,
A.B.Migdal, E.Saperstein, M.Troitsky, D.V. Phys.Rept.192 (1990) 179.-

With taking into account fluctuations always (!) | order phase transition

Note that quarkyonic phase
has much similar with the pion condensate one



Transport scheme. Wigner transformation

Separate in Dyson equations slow space-time macro-motion X = %(3:1 + x9) and
rapid relative motion £ = x1 — x5 related to micro- processes, e.g. for t.or < tmicro ™~
l/ep < 1/T. For any two-point function

FI(X;p) = / dEe™ FU (X +€/2,X —€/2), i.j € {—+}

Gradient approximation (for Ap,AX# > h) converts
ih

/ dgetr* ( / de(LZJtP(z,y)) = (eXp [2 (9,0x" — axapr)] f(X:p)s-ﬂ(X",p’))

~ X P)o(Xop) + 5 L(Xp) 0, p)).

where the first order terms are given by Poisson brackets

_Of Bp  Of Oy
UXop) e Xop)k = 55, ~ axvap,

In such a way one obtains Kadanoff-Baym kinetic equation.

Pr:P-:X!:-X




Generalized kinetic eq. in physical notation

Within the first-order gradient approximation, the KB eq. is
DF(X,p) — {I,,.ReG"} = C(X,p),
Here the differential drift operator
D ( C?REHH> o ORell O

v, — v+ describes drag flow in a mean field

a OpH OXH dp,
The Poisson bracketed term describes back flow due to fluctuations.
Cf. a toy-ship moving in a bath: drag flow near ship and back flow at edges.
Case ' = 0: Vlasov collision-less dynamics. Also C' = 0 is fulfilled for thermal
equilibrium when 0y F' = 0. The collision term:

P

C(X,p) =Lin(X,p)F(X,p) — Dow(X,p)F(X.,p) = Al'ly — f].
F(X,p) = AX.p)f(X,p) = (F)IGH(X,p).

o

F(X,p) = AX,p)[1F f(X,p) =iG"(X,p),
I is 4-phase-space probability — a generalized virtual particle distribution function.
AX,p) = 2mGR(X,p) = F+ F=i(G" - G™)

Clearly we deal with a generalized kinetic equation!



Pion cond. phase transition in dense nucleon system

Consider relaxation of a pion distribution in (quasi)equilibrium nucleon environment.
Assume p, < py. Using also that m,/my ~ 1/7 < 1 we can neglect a feedback of
pions onto nucleons.

Thus we may drop pion distrib. dependence in all self-energy terms.

Distribution of virtual pions (e is not connected with p) is found from the Kadanoft-
Baym kinetic equation:

Fﬂ' e T ™
EB#ngf:'r(E:pataT) — Fin _ r f?ra

B = A, |(2pr — BAL) _ pppo12s] i - ion, T
B=A, [( i, oo ) M5, s the normalized spectral function, I'; i1s the
width, A, is ordinary spectral function, I'7 is the gain term which does not depend
on d f in our approximation, M, = ¢ —m? — p* — RellZ.

Assuming fr(e,p,t,7) = fSUe) + 0 fr(e,p,t,7), fS9(e) is equilibrium distribution,
we find

%Bﬂffé}ﬁé‘f:’r + 5f7r =0,

whereas for space-homogeneous case it follows the solution:

dfr=(e.p) = b fole, p)e_Zf/Bn(f?P)

See Yu. Ilvanoy, J. Knoll, H. van Hees, D.V. Phys.Atom.Nucl.64 (2001) 652.



Pion cond. phase transition in a dense nucleon system

For small €, and |p| ~ p,, the pion width I'; = B(py,)e, with G(p,,) = const > 0,
and the second term proves to be dominant in 5.
This case is not described by gp. approx. (!).
Thus B = %—2 and
5f?r('€5p) = 6f[}EXp(—EJZt/[3>

Initial virtual pion fluctuation (for small € and p # 0) is damped for p < p.. (when
©? > 0) and it grows in time for p > p,,. (when & < 0).

¢ Initial correlations are disregarded in the KB kin.eq. Therefore in case &° < 0, to
generate initial pion distribution one needs to add a noise term in the kinetic eq.
The corresponding term is added in phenomenological treatment of the dynamics
of phase transitions.

¢/ In this particular example the pion width drives the phase transition.



We demonstrated only onset of instability for
p>p., Whereas solution of the problem requires
to Incorporate interaction with the mean field,
e.g. to the diagrams

O 2
—+ —+
(=) (b) (c) - #(d) () .

one should add

diagrams with mean field ””Qg} +Q(m Qx:m




Conclusion to “Kinetic description”
Sect.

* Dynamics of Bose-Einstein condensation
In case of elastic collisions

and of condensation in presence of
dissipative processes are very different.

In the latter case we have shown solution of
the KB equation beyond the guasiparticle
approximation.



Back to dynamics of mean field but now for phase
transition to the state with finite momentum
A.B.Migdal, E.Saperstein, M.Troitsky, D.V. Phys.Rept.192 (1990) 179.

The mean field free energy density for the phase transition
to innomogeneous state (Il order phase transition)

Consider charged pion condensation
Alko)

OF = — (8 + 2k — K] [¥ [+ =21y 1%, 2,<0

Similar to A-phase of smectic liquid crystals

Different structures with the same volume energy
but different surface energies:

the plane layers the disordered phase
— ikox 1 AL .
e "N { Y. a exp [ikoy/(x — x)* + (v — y)* + (z — 2)°]
the cylindrical layers N li=1
_ N
Y = ae'*or, + Y g exp [iko/(x — x)* + (v — y)?]
the spherical layers h N
Y = ael*or + aoc"‘“”}, N>»1, N7'3 af =a?
¥ i=0



Finite size effects

For simplest model, the running wave ¥ = al(r) exp [ik,t] corresponds to the
minimum of the surface energy

ﬂ4Az§ - 4(koV)%!4€ + Agg — ﬁgé*ﬁz = 0, ﬂz = ﬁu/{\

In half-snace medium z<0 there are solutions of two types:
z2—1z

J — a tanh [ ﬁla}m, 1 = (—das k3] Ao D2,
i

corresponds to &, || z, and the second solution

2
Vo~ a{l — C,e*™ cos (i + C:z) _G RN This solution corresponds
I 10 to smaller surface energy

X [1 + sin? (IE- + cz)] - ...}eiku}'
L

relates to k, L z. Here, I, = (—22,)"* Ay ¥4, C; ~ /2 and
C, ~ n/4.



Finite size effects

For spherical system of the radius R to the minimum
of the surface energy corresponds solution:

IZI-—\/R’—f—}’z] ko
¢=atanh[ g'to®
V21

An elongation of the nucleus along k, direction is energetically favorable



Dynamics of the | order phase transition
to Inhomogeneous state

D.V. Phys.Scripta 47 (1993) 333

With taking into account fluctuations — always | order phase
transition ©—=> add h-term to the Free energy density:

4 '
§F=E¢F+N;&—I-h¢\/%-hw*\/% L=-8) a8+ K,

8,8 =281 — &) + ki + L&

Here, the new dimensionless variables are introduced:
F=r{(—8k3ay/Ag)/?, h=2h/Ayy,,

Vo =/Ag/A, F=1T A2,

L=n¥)? — « B2, n=kylky, o=Ay4k2



Dynamics of the | order phase transition
to Inhomogeneous state

For initially spherical seed of radius Ry >R, Kg]|X
h

= —tanh (|%| — V1RE — p?|v — 3AD + .,

v = 5gIn (EU - .E']:

&{r, O) = — tanh (| X —\ﬁﬁﬁ—-ﬁziﬂ—kg,
é(ﬁﬂ:- O)ﬁu

For t-0 we have v,—0, while for - we obtain
v, = v,. S0, an initially spherical germ is elongated in an
ellipsoid of the eccentricity

¢ = [(FhD° + RET"*/3ht + R

The maximum of eccentricity, £,,, = I/ﬁ, is achieved at
the characteristic time f = ZRD;’BP? Thene¢— 1 for t - oo.

Stick-like structures are observed in A-smectics near critical point



Dynamics of initially non-spherical seeds

For parallelepiped-like shape
W = e"‘“"wo<tanh [Fo — | ¥l + 2AT]

+ 2 _ exp (LA %1 — )T — 2671V,

x v, cOs (Ii—lf_ o _ -i-ﬁ'f)

AL

—exp {[Z]| — Zo )/, — 3hATIv,}
X Vv, COS (szj_'— Zo , %f;f)>,
A

v, = sgn (f.;. Elil + -}ﬁ'f),

VvV, = Sgn (ZOF 1= +-3-f:'f), I, = at* < 1.
A

The velocity is ;= $h, while 3, =7, = 3hI, <




Dynamics of initially non-spherical seeds

For cylindrical-like shape

Y = e"‘“’wn<tanh [Z, — | 2] + 3hE] + g

— exp {[(p — Poy/I, — 3hE1vs)

X V3 COS (’0 ; Po _ 3pz )>
L
V3 = Sgn (Pui + %ﬁf)
L

This solution describes a cylinder which rapidly elongates
and slowly expands in the perpendicular direction. One can
also find the dynamics of many other configurations.



Conclusion to sect. “Phase
transition to inhomogeneous state”
* There are many different structures with

the same volume energy and different
surface energies

* Even initially spherical overcritical seeds
grow anisotropically.



Hydrodynamical description

Hydrodynamical egs. are derived from
kinetical eq. for t>>t,,

Consider

l-order phase transition of the liquid-gas type
In condensed matter and in nuclear
systems e.g., liquid-gas and hadron-quark
| order phase transitions in HIC




Hydrodynamics of the first order
phase transition:

V.Skokov, D.V. , arXiv 0811.3868, JETP Lett. 90 (2009) 223;
Nucl. Phys. A828 (2009) 401; A846 (2010).

We solve the system of non-ideal hydro equations describing non-
trivial fluctuations (droplets/bubbles, aerosol) in d=2 space +1 time
dimensions numerically for van der Waals-like EoS, and for
arbitrary d in the vicinity of the critical point analytically.



Non-ideal non-relativistic
hydrodynamics

mn [Qyu; + (uV)u;| = =V, P

2
+Vi [?} (?kui + Viup — Eﬂlikdi‘vu) + qé-zkdlvu] GS:]
dn + div(nua) = 0, (9)

T [% + div(su)} = div(kVT)

2
+1 (ﬂui + Viug — 7 ikdivu) + C(divu)g. (10)

Here 1 and ( are shear and bulk viscosities; u 1s the ve-
locity of the element of the tluid; s is the entropy density;
ke 1s the thermal conductivity; d is the dimensionality of
space.

Dynamics of the phase transition is controlled by the slowest mode

In collective processes u is usually small,
therefore in analytical treatment we neglect u? terms



Qualitative analysis and rough estimates

typical time for density fluctuation: t , ~ R (constant velocity)

p
R (t) is the size of evolving seed

typical time for heat transport  t 1~ R? c,/K,c, Isspecific heat density

We introduce Rfog -- typical seed size at Whichtp =t7
to >ty for RO<Re: Density evolution stage
(isothermal)
tt >tyfor R()>R Heat transport stage

Seeds with R~ R (,, are accumulated with passage of time: :> fog stage

for H-QGP phase transition Ry,,~ 0.1-1 fm, for liquid-gas ~1-10 fm, fireball
evolution time t o, ~ 10 fm

Thermal conductivity effects should be incorporated in hydro simulations of HIC

Next Is coalescence stage (occurs at still larger time scale),
see Lifshiz, Pitaevsky, Physical Kinetics. v. X



Supercooled gas; overheated liquid; aerosol-like mixture in spinodal region
Expand the Landau free

3 2 WAV 2 2
energyin §p = p— p, SF — / d°z [C[V((SP)] e Aop)*  A(0p)” e8p
and & T near the reference Pr 2 \ 4 T 2
point, closeto p ¢r, Ter .

§P = 0 5{FL (Ta ())0)] ,[Sel::]ace UQ ~ (Tcr — T)
p=mn 0(0p) T In mean field treatment
6frel — 5fL/fL(Tc7‘a pm) 5P‘I‘€l — 5P/P(T(Ta pc-r)

isotherms at critical point
‘ | ' | ' T i 1.5 . : : :
0.4 ‘ e>0 ' 7] [ — - 50
. - 8<8 . 1t 858 1 —
L &= ' ! &=0 21N
0.2 l 0.5F / \ _
[ ] oL N_._._.
5 OF | - %E ol \ i
S | ] ¥
02F - 0.5 \.\_/. .
0.4 7 T spinodal )
0.6+ - = . pO/ . ' 1 | 2




Constant entropy trajectories

iIneeal hydro

region ofinstability ““E\

0.2 ¥ N
- SN
D i i I M H.
O 0.5 1 1.5 2 2.5 3
n/n
cr
- - - isothermal spinodal, - . - . - Isoentropic spinodal, == Maxwell construction

-

max

=0.6 T, for van der Waals EoS




Is fluctuation region broad or
narrow?

For the hadron quark phase transition we estimate

(1 E: l+4{ 100 MeV fn’l_g,f{fl‘@}ﬁ 9, is surface tension

For the liquid-gas transition

Gi~ 10(T,,/18.6 MeV)®

In both cases fluctuation region might be very broad

In thermodynamical description fluctuation effects should be incorporated in EoS.



Mean field vs. fluctuations

For Gi>|

stationary system is not uniform due to permanently
creating and decaying fluctuations (it looks like

a sup right before boiling)

For dynamical system (like fireball in HIC)

since typical time for developing of critical fluctuations
is large, t~|T-T.|* (atleast near critical point),
fluctuations may have not sufficient time to appear ——>

One can consider mean field EoS provided fireball
evolution time T, <l

(argument by Zeldovich, Mikhailov UFN (1987) in description of explosion phenomena)



Dynamics of | order phase transition
near critical point

From NaV|er Stokes and continuity equations viscosities
neglecting u?  terms:
620 9 3 1 (4 80}0
5 P_A [cA5p+)\U o0p — A(0p)° + € — p, 3771+C1 Bt
See D.V. Phys.Scripta 47 (1993) 333 0p=p— pr
In dimensionless variables 8% oY
op=v1, &E=uxi/l, T=1/t
[ — ( 2c ) /2 y 2(% T + Cl) = 2€ 3 CpIQ‘
— 5 O —_— p , = — —_—
Av? Av2py Av3 (37 + G:)?
vo< [T —Ty|V?2 | — | tgox [T — T

processes in the vicinity of the critical point prove to be very slow



Peculiarities of hydro- description

Eq. is the 2-order in time derivatives -- beyond the standard
Ginzburg-Landau description where:

((r’:r}r + (; ) ()hp ! [F(T Q’OH 7. thermodynamical force
ot 0(0p)

However for a produced fluctuation two initial conditions
should be fulfilled

. I L P plt,
op(t = 0,7) = op(0, 1), - ;{;{f F}|T o>~ 0 >

Initial stage of fluctuation dynamics is not described in GL
approximation; at large t one can use the GL description




Flow-experiments at RHIC indicate on very low viscosity
Conformal theories show minimum n/s ~1/4r:
n/s ratio is under extensive discussion in the literature

However n/s does not appear in equations of motion for fluctuations

Dynamics of the density mode is controlled by another parameter 3, which enters
together with the second derivative in time. This parameter is expressed in terms of
the surface tension and the viscosity

2
ﬁ:

oim
32T (3 + G2

0t =32m p- T c
surface tension
The larger viscosity and the smaller surface tension,
the effectively more viscous is the fluidity of seeds.

B<<1 is the regime of effectively viscous fluidity
B >>1 is the regime of perfect fluidity

for liquid-gas phase transition 3~0.01;
for H-QGP phase transition: ~0.02-0.2 , even for n/s ~1/41r:

:> Effectively very viscous fluidity of density fluctuations in
the course of the phase transition!



Equation for the density fluctuation is supplemented by
the heat transport equation
for the variations of the entropy and temperature

For small u:
T 485 = si(ne) ™ k| = ke AST.
The variation of the temperature is related to the variation of the entropy density s[n, T'] by

8T = ﬂ[{'v,l-‘.l_J (c"?.a' — (ds/dn a;_ran).



Stage t | >>t ., limit of a large thermal

conductivity, seeds evolve at almost constant T

an(f,ry =

(1) — R (T
f '[imj n (1)

:| + (6n)cor
m

2her T (T)

[ }mr Is a small correction responsible for the baryon number conservation
b 7 i)
interior o =x  exterior 2 dt? e (T) Ry 1 dt

Rey =4l v (T)/(3€). First the bubble/droplet size R, (f) > R, grows with an
acceleration and then it reaches a steady grow regime with a constant velocity uqs = ﬁ
wep U
|'”"
Vellor = T‘]M+ (for t>>155)

das v(T) r— R, (1) €
s = — =+l 81 ) cor
’ (Bn )T{ m [ : [ T Q:‘LWUE(TJ] (O }

seeds with R<R , disolve




Hadron-QGP phase transition: droplet/bubble evolution from metastable phases

Fort, <ty , R<R, |
1.5 y
S droplet
O- -+ -+ -
0.5 §
) t=5=25 fm,
0.5 t/L. : L5 undercritical
___ seedsdissolve
| more rapidly,
overcritical-slowl
1.5 i . d
0 bubble
a
0.5 .
05 1 15
/L

(T, —T)/T, =0.15; T,=162 MeV; L=5 fm; 3 =0.2



Change of the seed shape with time

Iso-lines of the density n/nCr with increment 0.25

1 y/L -1 <05 0 05 1
— 1 T T T I|:.[:} — 1 Tr T 7T tl=l.L___ — 1 T 1 1 1-'_3._]_‘
0.5F .. T s -
2 o ‘ ‘ /ﬁ:;_?ﬁ* //"’ff H‘%I\l
= — 1.75 -+ i . L_sf,_j | (s -
osl — 1 \Q‘ai\“ 5?/

=51 ----' =2{}L

N1 72N 7))

- 15 | - | | | ;:l'.l?] I,.ll:: 4 || | | 1?#. |||

=\ I\ %

Initially anisotropic droplet slowly acquires spherical form B =0.1<<1



Change of the seed shape with time

1 y/L 1 <05 0 05
- - { :jj'_J._' 1 'y v rr— 1 /1T _¥F

o 'y == 0"
= OF \\_@l 7 N T ||'.|Li-f/|||| J
o5} == __:\&//J_ __

N\

For almost perfect fluid the process is more peculiar and still more
slow B=1000>>1



Limit of zero thermal conductivity

€

(s — R, (t
61;{I.r}2m|:j:lhr f (}—I—

m

— :|‘|‘{§”}n;«r~

20P maxV”(5)

but now at fixed entropy per baryon rather than at fixed T

b5 =0 = '[3-‘7?4’5',;;1:{.1' — 'TPJJ‘.'HI&H }; ”E:'JH{.'.T



An illustration: a metastable state with
growing droplets of overcritical size

(occurs provided T, ,~>>1, )

Inhomogeneous matter

CookingClub.ru

CoaokingClubiru
£ -

SookifigClub.ru

CookingClub.ru




An illustration: a metastable state

(att evol << 0 )

overcritical droplets/bubbles have no time to be prepared and to grow
almost homogeneous matter

I

Our calculations show that most probably namely this case is realized in
actual HIC when trajectory passes metastable OL or SV regions



Instabilities In spinodal region

aerosol-like mixture of bubbles and droplets (mixed phase)
dn = dngexplytr +ipr].
ds = dsgexplytr + ipr],

' =T. + bTgexplyt + ipr] T.isthe emperature of the uniform matter

From equations of non-ideal hydro:

7 22
2 22 (dn+¢)y 2 y — Uy
y ==plur T -~ TP T T

ué =m~ (9P /in); and u% =m~Y(3P/in)r are speeds of sound

V.Skokov, D.V. , arXiv 0811.3868, JETP Lett. 90 (2009) 223; Nucl. Phys. A828 (2009)
401; A846 (2010); J. Randrup, PRC79 (2009) 024601, arXiv arXiv:1007.1448



Three solutions

For small momenta:

i [ us In+ ¢ p°
L ;
V92 = :I:;.”E"r} _|_ |: ( 1- _ ]) _ / 5 ] / ‘ DenSIty mode

cv o\ uz 1 2
i I | 2 2 :
KU p- Uy — U= KU l;u'J + O)icus
e — I | T 5 s T T
V3= — 2 o 7 2 ( 7 9 1”
”3{ W ”_'iTHT H - I.f ncCy H.—

Thermal mode

Does instability arise after the trajectory crosses the isothermal spinodal line or
adiabatic one?



Limit of large thermal conductivity k> veyy/e o v= s —up)/(<uf)
Instability arises for the density mode, when trajectory crosses
Isothermal spinodal line

amplitude of the growing modes oscillating modes for >>1
for most rapidly

I — growing modes: l e~ | .
P<P cr (—u%)mnw s -
Ym = ~ VT PN
QYB+Dn+o) | T~
) (—u%})\/ﬁ 1F :
fm: b ‘ p>pcr
(2yB+1)e
|:> Rm~1/pm

B=0.1 dash line, =10 solid line t=2L=10 fm

T's[l —n(ds/dn)r/s]
cvinl[l + &k /(cev)]

dTo = dno

Far from critical point time evolution is rapid —effect of warm Champagne



Limit of small thermal conductivity Kk L ey Je

Instability arises when trajectory crosses isothermal spinodal line, but now for

the thermal mode

4
MJ’T

!';';L;, = _”jr/(z'f-'L Vam = 73(Pm) = 7
decyus
Limit of k=0 (like in ideal hydro. calculations) is special:
no thermal mode

Instability arises for the density mode far below T
crosses adiabatic spinodal line

4 3 (Ji’ —|— r‘} ! 3
yjz—;l‘[xfg—l— F g:l—l—{.',r:v‘i|.

cr » only when trajectory

!

Solution is similar to that for the density modes at large k, but now the entropy per
baryon is fixed rather than the temperature.

> Ideal hydro (at least without taking of special care) cannot correctly
describe dynamics of the first-order phase transition.




Values of viscosities and thermal conductivity

There exist many (although very different)
estimates of viscosities in hadron and
guark matter and almost no appropriate
estimates of the heat conductivity



Viscosities iIn SHMC model: nadron phase

A.Khvorostukhin, V.Toneev, D.V. Nucl.Phys. A845:106 (2010)
(From V.Toneev presentation)

J: = E’har + Jl'f-lf:ﬂE-‘ + f’r_w

'ﬂ'bl-]]' — E |:le15 (':.:'il;a + 2 b Xuw ;.'LI_H) F:'# ‘I'Ib- - i".l’t; ‘I'Ib 1'Iri'J .
be:{bar) {b} = N(938), A(1232), A(1116), ¥£(1193),
=(1318), ¥+(1385), =*(1530), and 0(1672),

my [my = ©p(xo0) =1 — gop Xo o/my, b {b}

Lyr = Hﬂg;jﬂg — m';; - — Ule) — L :ﬂw‘“ 1sospin-symmetric hadronic matter
Wy = Ouwy — Oywy - m, My = |Pr(yeo)|, {m}=0w.
Brown-Rho scaling ansatz b=y =D, =P, =P, =1—f, f=gon xo o/mn
U =m_,1'._-|:§ 2+ i ft}.
L..= Z L.

fex}=m K, K;n(547): 0", ', o' K="(892), ' (958), ¢(1020)

bose {ex})



Two phase model

Quark-gluon phase, HQB model:  the [ of the massive quarks, antiquarks and gluons

':qHQB'{T- [hary Mstr ) = Z ELG'IT- te) + B H-EB?B[:T- Hbars fstr) = Z by ”;G (T, pta)
ac{q} as{g}

PYO(T e, prse ) = > Pi9(T, o) — B et (T pbars o) = Y Sa 10 (T pta)
wete) la} = .q,9 estal

Gibbs conditions:

PSHMC'{T- Libars Hstr) = PHQE[T' [bars Hstr ) -
. HORB
”-b:u'[T J“l::-ur Hstr) = @ ”];.E [T Hbars fstr ) + (1—a) ”EI;IIM [T har s Mstr )

)= nstr (T Ithar. fstr) + (1 — ) n?ﬁhm[:]ﬂ.ﬂbm. lstr) .

n_lHqu



(e-3P)T*
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Comparison of EoS with lattice data

energy density pressure entropy
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Viscosity behavior for y,,=0

| ' | ' | ' | ! | D|5 | ! | ' | ' | ' |

15+ .
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lower AdS/CFT bound [

nfs=1/4w — 0,0

1 1 1 1 D,D ] 1 ] 1 ] 1 ] 1 ]
100 120 140 160 180 100 120 140 160 180
T, MeV T, MeV
Excluded-volume hadron gas model: M. Gorenstein et al., Phys. Rev.
C77, 024911 (2008) 5 T

S _
' = 6ayxm 2

Resonance gas with Hagedorn states: J.Naronha-Hostler et al., Phys.
Rev. Lett. 103, 172302 (2009) p(-m) — m @ C}{p{mf"TH)
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Conclusions to sect. Hydro

The larger viscosity and the smaller surface tension
the effectively more viscous is the fluidity

Anomalies in thermal fluctuations near CEP
(which are under extensive discussion)
may have not sufficient time to develop

:> argument in favor of mean field EoS
Thus T, calculated in thermal models might be significantly higher than the
value which may manifest in fluctuations in HIC

Heat transport effects play important role

Effects of spinodal decomposition can be easier observed since they require
a shorter time to develop

Since in reality K is not zero, spinodal instabilities start to develop when the
trajectory crosses the isothermal spinodal line rather than the adiabatic one as
it were in ideal hydro, i.e. at much higher T. This favors observation of
manifestation of spinodal decomposition in the H-QGP phase transition in HIC



Concluding:

* One may hope to observe non-
monotonous behavior of different
observables in HIC due to manifestation of
non-trivial fluctuation effects (especially of
spinodal decomposition at | order
hadron-quark phase transition) at
monotonous increase of collision energies:

collision energy increase with a
certain energy step will be possible
at FAIR and NICA



What could be a final state in stationary
system?
Mixed phase vs. Maxwell construction

* One conserved charge — Maxwell
construction.

» Otherwise a possibility of mixed phase.

Baryon charge conservation, strangeness in strong interactions, lepton
charge in weak interactions

Consider example of stationary pasta
phases in cold neutron stars



Bulk calculations: Gibbs equilibrium
conditions

* In Maxwell construction P=P,;, Wy =MHpar

But from local charge neutrality condition on Maxwell construction

HQJ'OC F HQ,”'OC since charge densities in phases | and Il are different

N. Glendenning, Phys Rev. D46 (1992) 1274: must be Mg |=Hq ||

Charge can be conserved only globally
that allows to fulfill all Gibbs conditions. He concluded:

Always should exist a structured mixed phase
consisted of neutral Wigner-Seitz cells (predicted by
D.Rawenhall, Ch.Pethick, J. Wilson, Phys.Rev.Lett . 50 (1983) 2066)

Picture for m ;

d=3: droplets: | <R“' }

Finite size Coulomb+surface effects
were disregarded. However they
should be properly incorporated



Finite size effects
on example of droplets (D)

For a given volume fraction
factor f = (R/Rw)?, the total energy E may be written as the sum of the
volume energy FEy -, the Coulomb energy E~ and the surface energy Fg,

E=Eyv + Ec + Es. (1)

We further assume, for simplicity, that baryon number (p%) and charge
l:p%] densities are uniform in each phase o, « = [I.II. Then, Ey can
be written as Eyv /Viv = fel(ph) + (1 — el (pt) in terms of the energy
densities e*, a« = [.II. The surface energy FEg may be represented as
Es/Vw = f x 4wo/R in terms of the surface tension o. The Coulomb
energy FE is given by

1672

2
Ec/Vw = f < —= (pqo — P4 )" R (2)
The optimal value of R p is determined by the minimum condition,
o(E/Viv)
p— 01 3
o7 |, =" (3)

Ry~0%3/|6p|?® grows with o



g-m-n [ MeV-fm3)

200 —

100

Finite size effects

on example of hadron-quark phase transition
. Heiselberg, Ch. Pethick, E. Staubo, Phys.Rev.Lett. 70 (1993) 1355.

=

(b) Energy density of droplet
phase relative to values
for different o.

Only in hatched area
(for o< 70 MeV/fm? ) droplet phase
IS energetically favorable,

In disagreement with above
statement that mixed phase
should always exit.



Solution of puzzle: additional equation
for the electric potential
D.V., M. Yasuhira, T.Tatsumi Nucl.Phys.A723 (2003)291

The thermodynamic potential enjoys the invariance under a gauge trans-
formation, V(7) — V() — VO and p& — pu@ + NE*VO with an arbitrary
constant VY. Hence the chemical potential p$* acquires physical meaning
only after gauge fixing ©

V must fulfill Poisson eq. disregarded in bulk treatment of the mixed phase

AV (7) = dne” g™ (7 (8)

when we say y.g + ,u.g_I within the Maxwell construction. it

means nothing but the difference i the electron number density n. in two

phases, -ng - -n..g_I ; this is because n, = p2/(372), if the Coulomb potential

is absent. Once the Coulomb potential is taken into account, using eq. (8),
ne can be written as

nd = (e = VQ)S. (10)

€ I 72 StV

s i




Screening effect

For Rp>>A (Debye size) the Coulomb energy Is
reduced to the surface one:

. . ) h
The full surface tension oph, " then renders

-'"_';‘,U(_"l[][f_“l'[] - —]:/3]
3(1 + ﬂ[;?]g

spher I
{Ttﬂpt —] _|_ {TI' = J — ‘:\D

For o+0,,>0 — Maxwell construction instead of mixed phase
Have we mixed phase or Maxwell construction depends
on the value of surface tension.



Nuclear pasta (in RMF model)
structure of the inner crust of neutron stars

Thermodynamic potential

: 0 .
.8 C [F ot L
(}B _ [d ) Z o L d L\‘ Mmp +k ﬁg?x’a)]a
-li:Ji),,i'.l '-.“'Jll /
, [(Va) mie® o (Vwg)t miud (V) mipt
()” _ [d-lg'?' . + 0 _|_[_-'|'(}”| — - it P
| ) ) ) 2 . 2]

: 3., AVATAEAT
”t = [O]T _.\_gf'-.vh'uu],-' o

1 9 'I:“H'H:_fﬁ-tt\l-?

Vy = [ip = fle T Voo = QuN&o = NP0, Vn = [LB = JuNWo T GNP,
Mp = My — (o0,

The parameter set is chosen to reproduce nuclear matter saturation properties.



Nuclear pasta in RMF model

Toshiki Maruyama, T.Tatsumi, D.V., T.Tanigawa, S. Chiba, Ph.Rev.C72(2005) 015802.

()
Equations of motion §EEm &‘jm 0 (1 = 0, po, &0, Vouls Pus Pos o), WE get

. . dl/ .
—V“}J—f—mf,a = —d—+3f Nl ,u -|-,; )

2 2
VW rm Wy = gun -_,;.h-i-,r.?n,.
2 9 o ,
=Vopo+mupn = Gonlpp— po)

Vo = dne? Ia"charge density

Hp = [ = '\;“}—_n—'_?nB T+ 0w NWo = GpN PO

I
+

Py = 1B — [le = V’ 2 mb 4 govwo + goxpo — Vooul

2
— _I:ILI'E - ‘i'.{:‘”'”"__. I.-'Ir‘-_)h

Poisson eq. is non linear.

Wigner-Seitz cell approximation and numerical solution

We fitted parameters to describe finite nuclei properties:
No external surface tension parameter (!)
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Nuclear pasta structures

from T. Maruyama presentation

— Low density High density —

Drople Rod Slab Tube Bubble Umform



Nuclear pasta in the inner crust of NS

Coulomb screening effects

We compare 3 calculations:
(1) full calculation, * “No Coulomb interaction” result
(2) no e|ECTI’OH SCI’Q@HIHQ (U Hlf()r‘lﬂ Eﬂ@CTr‘Oﬂ), includes Coulomb interaction Only in

(3) no Coulomb interaction (corresponds to bulk calc). the total energy.
Neglect Voom to determine p. and .
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Kaon condensation pasta in RMF model

Toshiki Maruyama, T.Tatsumi, D.V., T.Tanigawa, T.Endo,S. Chiba,
Phys.Rev.C73 (2006) 035802

. T . T E— T
200 — fu1ll calculation —
'= 150 [ ragriet
L B e ]
= - b1
- LOO uniforim
(= - —— T
= 0 - = _-‘_-t,f“ v-f_—__,-:—-—" —]
= / —_—
- - | — I —
200 [ no Coulomb
T e —— — Gibbs
= 150 — — — IhdAdaxxwell ]
— I single phase
o .
= 100 ]
= E
30 — ~

“No Coulomb” means perturbative treatment of the Coulomb effect

without screening
Resulting EOS is much closer to that given by Maxwell construction than
to that of mixed phase with bulk calculations
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http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Tanigawa%2C%20Tomonori%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Tanigawa%2C%20Tomonori%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Tanigawa%2C%20Tomonori%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Chiba%2C%20Satoshi%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Chiba%2C%20Satoshi%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Chiba%2C%20Satoshi%22

Conclusions to sect. Pasta

« With inclusion of Coulomb screening
effects paradox: “Gibbs conditions vs
Maxwell construction”is resolved.

» Peculiar structures of “Pasta” affect
transport properties of neutron stars.

* Resulting EoS is closer to that given by
Maxwell construction.



