#### Color Superconducting Quark Matter

# Michael Buballa



Dubna International Advanced School for Theoretical Physics and HIC-for-FAIR School and Workshop "Dense QCD Phases in Heavy Ion Collisions",

JINR Dubna (Russia), August 21 - September 4, 2010.

イロト イヨト イヨト イヨト

# Motivation



- QCD phase diagram
- focus of this talk: large density, low temperature

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

→ color superconductivity ?

# Motivation



- QCD phase diagram
- focus of this talk: large density, low temperature
- → color superconductivity ?

- empirical information?
  - heavy-ion reactions: unlikely
  - o compact stars:

$$\rho_{center} = 3 - 10 \,\rho_0, \ T \approx 0 \quad (\checkmark)$$



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

# Motivation



- QCD phase diagram
- focus of this talk: large density, low temperature
- → color superconductivity ?

- empirical information?
  - heavy-ion reactions: unlikely
  - o compact stars:

$$\rho_{center} = 3 - 10 \,\rho_0, \ T \approx 0 \quad (\checkmark)$$

- QCD phase diagram under compact star conditions ?

# QCD phase diagram (short history)

• early conjecture:



Cabibbo & Parisi, PLB (1975)

I hadronic phase (confined)

II quark-gluon plasma (deconfined)

▲ロト▲圖ト▲目ト▲目ト 目 のへの

# QCD phase diagram (short history)





Cabibbo & Parisi, PLB (1975)

I hadronic phase (confined)

# II quark-gluon plasma (deconfined)

"The true phase diagram may actually be substantially more complex . . . "

・ロト・西ト・西ト・日下 ひゃぐ

# QCD phase diagram (short history)





Cabibbo & Parisi, PLB (1975)

I hadronic phase (confined)

II quark-gluon plasma (deconfined)

"The true phase diagram may actually be substantially more complex . . . "

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

۲

Collins & Perry, PRL (1975) "Also we might expect superfluidity or superconductivity."

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Color superconducting phases

- early work: Barrois (1977); Frautschi (1978); Bailin & Love (1984)
   "rediscovery": Alford, Rajagopal, Wilczek, PLB (1998); Rapp, Schäfer, Shuryak, Velkovsky, PRL (1998).
   Δ ~ 100 MeV → T<sub>c</sub> ~ 50 MeV
- suggested phase diagrams (schematic)



- early work: • "rediscovery":  $\Delta \sim 100 \text{ MeV}$ Barrois (1977); Frautschi (1978); Bailin & Love (1984) Alford, Rajagopal, Wilczek, PLB (1998); Rapp, Schäfer, Shuryak, Velkovsky, PRL (1998).  $\Delta \sim 100 \text{ MeV}$
- suggested phase diagrams (schematic)



2- and 3-flavor CS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- early work:
- "rediscovery":

- Barrois (1977); Frautschi (1978); Bailin & Love (1984)
- Alford, Rajagopal, Wilczek, PLB (1998); Rapp, Schäfer, Shuryak, Velkovsky, PRL (1998).
- $\Delta \sim 100 \text{ MeV} \Rightarrow T_c \sim 50 \text{ MeV}$
- suggested phase diagrams (schematic)



2- and 3-flavor CS

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

o crystalline CS

- early work:
- "rediscovery":

- Barrois (1977); Frautschi (1978); Bailin & Love (1984)
- Alford, Rajagopal, Wilczek, PLB (1998); Rapp, Schäfer, Shuryak, Velkovsky, PRL (1998).
- $\Delta \sim 100 \text{ MeV} \Rightarrow T_c \sim 50 \text{ MeV}$
- suggested phase diagrams (schematic)



- 2- and 3-flavor CS
- crystalline CS
- CS with kaon condensates

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- early work:
- "rediscovery":

- Barrois (1977); Frautschi (1978); Bailin & Love (1984)
- Alford, Rajagopal, Wilczek, PLB (1998); Rapp, Schäfer, Shuryak, Velkovsky, PRL (1998).
- $\Delta \sim 100 \text{ MeV} \Rightarrow T_c \sim 50 \text{ MeV}$
- suggested phase diagrams (schematic)



- 2- and 3-flavor CS
- crystalline CS
- CS with kaon condensates

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• "gapless" CS

- early work:
- "rediscovery":

- Barrois (1977); Frautschi (1978); Bailin & Love (1984)
- Alford, Rajagopal, Wilczek, PLB (1998); Rapp, Schäfer, Shuryak, Velkovsky, PRL (1998).
- $\Delta \sim 100 \text{ MeV}$   $\Rightarrow$   $T_c \sim 50 \text{ MeV}$
- suggested phase diagrams (schematic)



- 2- and 3-flavor CS
- o crystalline CS
- CS with kaon condensates

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- "gapless" CS
- Ο...

| overview | patterns | gap eqs. | realistic masses | inhomogeneous phases | selected topics |
|----------|----------|----------|------------------|----------------------|-----------------|
| Outline  |          |          |                  |                      |                 |

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- overview: phase diagrams
- 2 pairing patterns
- gap equations
- realistic quark masses, neutral matter
- inhomogeneous phases
- 6 ...

- ideal Fermi gas:
  - → pair creation @ Fermi surface with no free energy





◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- ideal Fermi gas:
  - → pair creation @ Fermi surface with no free energy
- (arbitrarily small) attraction:
  - → instability:

condensation of Cooper pairs



- ideal Fermi gas:
  - → pair creation @ Fermi surface with no free energy
- (arbitrarily small) attraction:
  - → instability:

condensation of Cooper pairs

- → reorganisation of the Fermi surface
- → gaps



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ideal Fermi gas:
  - → pair creation @ Fermi surface with no free energy
- (arbitrarily small) attraction:
  - → instability:

condensation of Cooper pairs

→ reorganisation of the Fermi surface

→ gaps



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• QCD: attractive qq interaction  $\rightarrow$  diquark condensates

• quark field operator: 
$$q(x) = \begin{pmatrix} q_1(x) \\ \vdots \\ q_{4N_fN_c}(x) \end{pmatrix}$$

- 4 Dirac  $\times N_f$  flavor  $\times N_c$  color components
- annihilates a quark or creates an antiquark

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• quark field operator: 
$$q(x) = \begin{pmatrix} q_1(x) \\ \vdots \\ q_{4N_fN_c}(x) \end{pmatrix}$$

- 4 Dirac  $\times N_f$  flavor  $\times N_c$  color components
- annihilates a quark or creates an antiquark

(ロ) (同) (三) (三) (三) (○) (○)

• transposed operator:  $q^T = (q_1, \ldots, q_{4N_fN_c})$ 

• quark field operator: 
$$q(x) = \begin{pmatrix} q_1(x) \\ \vdots \\ q_{4N_fN_c}(x) \end{pmatrix}$$

• 4 Dirac  $\times N_f$  flavor  $\times N_c$  color components

annihilates a quark or creates an antiquark

- transposed operator:  $q^T = (q_1, \ldots, q_{4N_fN_c})$
- adjoint operator:  $q^{\dagger}$ ,  $\bar{q} = q^{\dagger} \gamma^0$ 
  - annihilates an antiquark or creates a quark

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#### Quark-antiquark condensates

• quark-antiquark condensates:

$$\langle ar{q}\,\hat{\mathcal{O}}\,q
angle$$

(日) (日) (日) (日) (日) (日) (日)

•  $\hat{\mathcal{O}}$  = operator in color, flavor, and Dirac space (including derivatives)

#### Quark-antiquark condensates

• quark-antiquark condensates:

$$\langle ar{q}\,\hat{\mathcal{O}}\,q
angle$$

(日) (日) (日) (日) (日) (日) (日)

- $\hat{\mathcal{O}}$  = operator in color, flavor, and Dirac space (including derivatives)
- examples:
  - "chiral condensate":  $\langle \bar{q}q \rangle$
  - quark number density:  $\langle ar q \gamma^0 q 
    angle = \langle q^\dagger q 
    angle$
  - electric charge density:

$$\langle \bar{q} \, \hat{Q} \gamma^0 \, q \rangle = \frac{2}{3} n_u - \frac{1}{3} n_d - \frac{1}{3} n_s, \qquad \hat{Q} = \begin{pmatrix} \frac{2}{3} & 0 & 0\\ 0 & -\frac{1}{3} & 0\\ 0 & 0 & -\frac{1}{3} \end{pmatrix}_f$$

color charge densities

• diquark condensates:  $\langle q^T \hat{\mathcal{O}} q \rangle$ 





- diquark condensates:  $\langle q^T \hat{\mathcal{O}} q \rangle \equiv \langle g.s. | q^T \hat{\mathcal{O}} q | g.s. \rangle$ 
  - qq annihilates two quarks
    - → baryon number (formally) not conserved! (ground state does not have fixed baryon number.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- diquark condensates:  $\langle q^T \hat{\mathcal{O}} q \rangle \equiv \langle g.s. | q^T \hat{\mathcal{O}} q | g.s. \rangle$ 
  - qq annihilates two quarks
    - → baryon number (formally) not conserved! (ground state does not have fixed baryon number.)
- Bogoliubov rotation:

$$\begin{split} |g.s.\rangle &= \prod_{\vec{p},s,c,c'} \left[ \cos \theta^b_s(\vec{p}) + \varepsilon_{3cc'} \ e^{i\xi^b_s(\vec{p})} \ \sin \theta^b_s(\vec{p}) \ b^{\dagger}(\vec{p},s,u,c) \ b^{\dagger}(-\vec{p},s,d,c') \right] \\ & \left[ \cos \theta^d_s(\vec{p}) + \varepsilon_{3cc'} \ e^{i\xi^d_s(\vec{p})} \ \sin \theta^d_s(\vec{p}) \ d^{\dagger}(\vec{p},s,u,c) \ d^{\dagger}(-\vec{p},s,d,c') \right] |0\rangle \end{split}$$

 quasiparticles = superpositions of particles and holes (+ antiparticles) which annihilate  $|g.s.\rangle$ 

(日) (日) (日) (日) (日) (日) (日)

#### Diquark condensates

- diquark condensates:  $\langle q^T \hat{\mathcal{O}} q \rangle$
- Pauli principle:  $q_i q_j = -q_j q_i$

$$\Rightarrow q^T \hat{\mathcal{O}} q = q_i \hat{\mathcal{O}}_{ij} q_j = -q_j \hat{\mathcal{O}}_{ij} q_i = -q_j \hat{\mathcal{O}}_{ji}^T q_i = -q^T \hat{\mathcal{O}}^T q$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

#### **Diquark condensates**

- diquark condensates:  $\langle q^T \hat{\mathcal{O}} q \rangle$
- Pauli principle:  $q_i q_j = -q_j q_i$

$$\Rightarrow q^{T} \hat{\mathcal{O}} q = q_{i} \hat{\mathcal{O}}_{ij} q_{j} = -q_{j} \hat{\mathcal{O}}_{ij} q_{i} = -q_{j} \hat{\mathcal{O}}_{ji}^{T} q_{i} = -q^{T} \hat{\mathcal{O}}^{T} q$$

# • $\hat{\mathcal{O}}$ must be totally antisymmetric: $\hat{\mathcal{O}}^T = -\hat{\mathcal{O}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Operators in flavor and color space

• Pauli matrices (for two flavors):

$$\underbrace{\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{\text{symmetric triplet}}, \quad \underbrace{\tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}}_{\text{antisymm. singlet}}$$

#### Operators in flavor and color space

$$\underbrace{1\!\!\!1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{\text{symmetric triplet}}, \quad \underbrace{\tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}}_{\text{antisymm. singlet}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Gell-Mann matrices (for three flavors or colors):

$$\underbrace{1\!\!\!\!1,\ \lambda_1,\ \lambda_3,\ \lambda_4,\ \lambda_6,\ \lambda_8}_{\text{symmetric sextet}}, \qquad \underbrace{\lambda_2,\ \lambda_5,\ \lambda_7}_{\text{antisymmetric antitriplet}}$$

#### Operators in flavor and color space

• Pauli matrices (for two flavors):

.

$$\underbrace{1\!\!\!1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{\text{symmetric triplet}}, \quad \underbrace{\tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}}_{\text{antisymm. singlet}}$$

• Gell-Mann matrices (for three flavors or colors):

• antitriplet: The vector 
$$\langle q^T \begin{pmatrix} \lambda_7 \\ -\lambda_5 \\ \lambda_2 \end{pmatrix} q \rangle$$
 transforms like an antiquark  $\bar{q} = \begin{pmatrix} \bar{r} \\ \bar{g} \\ \bar{b} \end{pmatrix}$  under  $SU(3)_c$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### **Operators in Dirac space**

• hermitean basis of  $4 \times 4$  matrices: **1**,  $i\gamma_5$ ,  $\gamma^{\mu}$ ,  $\gamma^{\mu}\gamma_5$ ,  $\sigma^{\mu\nu}$ 

#### **Operators in Dirac space**

• hermitean basis of 4 × 4 matrices: 1,  $i\gamma_5$ ,  $\gamma^{\mu}$ ,  $\gamma^{\mu}\gamma_5$ ,  $\sigma^{\mu\nu}$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- charge conjugation matrix:  $C = i\gamma^2\gamma^0$ 
  - properties:  $C = C^* = -C^T = -C^{\dagger} = -C^{-1}$

#### Operators in Dirac space

• hermitean basis of  $4 \times 4$  matrices: 1,  $i\gamma_5$ ,  $\gamma^{\mu}$ ,  $\gamma^{\mu}\gamma_5$ ,  $\sigma^{\mu\nu}$ 

• charge conjugation matrix:  $C = i\gamma^2\gamma^0$ 

- properties:  $C = C^* = -C^T = -C^{\dagger} = -C^{-1}$
- antisymmetric:
  - $C\gamma_5$  (scalar)
  - C (pseudoscalar)
  - $C\gamma^{\mu}\gamma_5$  (vector)

- symmetric:
  - $C\gamma^{\mu}$  (axial vector)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•  $C\sigma^{\mu\nu}$  (tensor)

# Combined operators

|              | symmetric                                                          | antisymmetric                                |
|--------------|--------------------------------------------------------------------|----------------------------------------------|
| Dirac        | $C\gamma^{\mu}, \ C\sigma^{\mu u}$                                 | $C, C\gamma_5, C\gamma_5\gamma^{\mu}$        |
|              | A T                                                                | PS V                                         |
| <i>U</i> (2) | $\underbrace{1, \tau_1, \tau_3}_{2}$                               | $\xrightarrow{\tau_2}$                       |
|              | 3                                                                  | I                                            |
| <i>U</i> (3) | $\underbrace{1,\lambda_1,\lambda_3,\lambda_4,\lambda_6,\lambda_8}$ | $\underbrace{\lambda_2,\lambda_5,\lambda_7}$ |
|              | 6                                                                  | $\dot{\bar{3}}$                              |

# Combined operators

|              | symmetric                                                                   | antisymmetric                                      |
|--------------|-----------------------------------------------------------------------------|----------------------------------------------------|
| Dirac        | $C\gamma^{\mu},~C\sigma^{\mu u}$                                            | $C, C\gamma_5, C\gamma_5\gamma^{\mu}$              |
|              | A T                                                                         | PS V                                               |
| <i>U</i> (2) | $\underbrace{1, \tau_1, \tau_3}_{3}$                                        | $\underbrace{\tau_2}_{1}$                          |
| <i>U</i> (3) | $\underbrace{1, \lambda_1, \lambda_3, \lambda_4, \lambda_6, \lambda_8}_{0}$ | $\underbrace{\lambda_2, \lambda_5, \lambda_7}_{2}$ |
|              | 6                                                                           | 3                                                  |

• combination: Dirac  $\otimes$  flavor  $\otimes$  color totally antisymmetric =  $\begin{cases} (antisymmetric)^3 \\ (symmetric)^2 \times antisymmetric \end{cases}$ 

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・
# Combined operators

|              | symmetric                                                              | antisymmetric                                      |  |
|--------------|------------------------------------------------------------------------|----------------------------------------------------|--|
| Dirac        | $C\gamma^{\mu},~C\sigma^{\mu u}$                                       | $C, C\gamma_5, C\gamma_5\gamma^{\mu}$              |  |
|              | A T                                                                    | PS V                                               |  |
| <i>U</i> (2) | $\underbrace{1, \tau_1, \tau_3}_{3}$                                   | $\underbrace{\tau_2}_{1}$                          |  |
| U(3)         | $\underbrace{1,\lambda_1,\lambda_3,\lambda_4,\lambda_6,\lambda_8}_{0}$ | $\underbrace{\lambda_2, \lambda_5, \lambda_7}_{2}$ |  |
|              | 6                                                                      | 3                                                  |  |

• combination: Dirac  $\otimes$  flavor  $\otimes$  color totally antisymmetric =  $\begin{cases} (antisymmetric)^3 \\ (symmetric)^2 \times antisymmetric \end{cases}$ 

many possibilities . . .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

# Two-flavor color superconductors

• important example:

 $\langle q^T \, C \gamma_5 \, au_A \, \lambda_{A'} \, q \rangle$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Two-flavor color superconductors

important example:

 $\langle q^T \, C \gamma_5 \, \tau_A \, \lambda_{A'} \, q \rangle$ 

• spin 0, antisymmetric in color and flavor

・ コット (雪) ( 小田) ( コット 日)

# Two-flavor color superconductors

important example:

$$\langle q^T \, C \gamma_5 \, au_A \, \lambda_{A'} \, q 
angle$$

• spin 0, antisymmetric in color and flavor

• 2 flavors: 
$$q = \begin{pmatrix} u \\ d \end{pmatrix}$$
,  $\tau_A = \tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ 

# Two-flavor color superconductors

$$\langle q^T \, C \gamma_5 \, au_A \, \lambda_{A'} \, q 
angle$$

spin 0, antisymmetric in color and flavor

• 2 flavors: 
$$q = \begin{pmatrix} u \\ d \end{pmatrix}$$
,  $\tau_A = \tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$   
• 3 colors:  $q = \begin{pmatrix} r \\ g \\ b \end{pmatrix}$ ,  $\lambda_{A'} \stackrel{e.g.}{=} \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 

(ロ) (型) (主) (主) (三) の(で)

# Two-flavor color superconductors

$$\langle q^T \, C \gamma_5 \, au_A \, \lambda_{A'} \, q 
angle$$

• spin 0, antisymmetric in color and flavor

• 2 flavors: 
$$q = \begin{pmatrix} u \\ d \end{pmatrix}$$
,  $\tau_A = \tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$   
• 3 colors:  $q = \begin{pmatrix} r \\ g \\ b \end{pmatrix}$ ,  $\lambda_{A'} \stackrel{e.g.}{=} \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 

$$\langle q^T C\gamma_5 \tau_2 \lambda_2 q \rangle \sim \underbrace{(\uparrow \downarrow - \downarrow \uparrow)}_{\text{spin}} \otimes \underbrace{(ud - du)}_{\text{flavor}} \otimes \underbrace{(r g - g r)}_{\text{color}}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

only red and green quarks are paired:

$$\langle q^T \lambda_2 q \rangle \sim \langle rg - gr \rangle = \langle \bar{b} \rangle$$
 "antiblue"

- $\rightarrow$  SU(3)<sub>c</sub> "spontaneously" broken to SU(2)<sub>c</sub>
- → 5 of 8 gluons receive a mass ("Meissner effect")

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

only red and green quarks are paired:

$$\langle q^T \lambda_2 q \rangle \sim \langle rg - gr \rangle = \langle \overline{b} \rangle$$
 "antiblue"

- $\rightarrow$  SU(3)<sub>c</sub> "spontaneously" broken to SU(2)<sub>c</sub>
- → 5 of 8 gluons receive a mass ("Meissner effect")
- more general ansatz?

$$\langle q^T \left( \alpha \lambda_2 + \beta \lambda_5 + \gamma \lambda_7 \right) q \rangle = \alpha \langle \overline{b} \rangle - \beta \langle \overline{g} \rangle + \gamma \langle \overline{r} \rangle \equiv \begin{pmatrix} \gamma \\ -\beta \\ \alpha \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

only red and green guarks are paired:

$$\langle q^T \lambda_2 q \rangle \sim \langle rg - gr \rangle = \langle \overline{b} \rangle$$
 "antiblue"

- $\rightarrow$  SU(3)<sub>c</sub> "spontaneously" broken to SU(2)<sub>c</sub>
- → 5 of 8 gluons receive a mass ("Meissner effect")
- more general ansatz?

$$\langle q^T \left( \alpha \lambda_2 + \beta \lambda_5 + \gamma \lambda_7 \right) q \rangle = \alpha \langle \overline{b} \rangle - \beta \langle \overline{g} \rangle + \gamma \langle \overline{r} \rangle \equiv \begin{pmatrix} \gamma \\ -\beta \\ \alpha \end{pmatrix}$$

 can always be rotated into the "antiblue" direction by a global color transformation  $q \rightarrow \exp(i\theta_a \cdot \frac{\lambda_a}{2}) q$ 

only red and green guarks are paired:

$$\langle q^T \lambda_2 q \rangle \sim \langle rg - gr \rangle = \langle \overline{b} \rangle$$
 "antiblue"

- $\rightarrow$  SU(3)<sub>c</sub> "spontaneously" broken to SU(2)<sub>c</sub>
- → 5 of 8 gluons receive a mass ("Meissner effect")
- more general ansatz?

$$\langle q^T \left( \alpha \lambda_2 + \beta \lambda_5 + \gamma \lambda_7 \right) q 
angle \ = \ lpha \langle \overline{b} 
angle - eta \langle \overline{g} 
angle + \gamma \langle \overline{r} 
angle \ \equiv \left( egin{array}{c} \gamma \\ -eta \\ lpha \end{array} 
ight)$$

- can always be rotated into the "antiblue" direction by a global color transformation  $q \rightarrow \exp(i\theta_a \cdot \frac{\lambda_a}{2}) q$
- → equivalent to the "simple" ansatz

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

# Symmetry properties: global symmetries

• 
$$\delta \equiv \langle q^T C \gamma_5 \tau_2 \lambda_2 q \rangle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

# Symmetry properties: global symmetries

• 
$$\delta \equiv \langle q^T C \gamma_5 \tau_2 \lambda_2 q \rangle$$

baryon number:

*B*: 
$$q \rightarrow e^{i\alpha}q \Rightarrow \delta \rightarrow e^{2i\alpha}\delta$$
 broken

(ロ) (同) (三) (三) (三) (○) (○)

# Symmetry properties: global symmetries

• 
$$\delta \equiv \langle q^T C \gamma_5 \tau_2 \lambda_2 q \rangle$$

baryon number:

*B*:  $q \rightarrow e^{i\alpha}q \Rightarrow \delta \rightarrow e^{2i\alpha}\delta$  broken

but: There is a conserved "modified baryon number":

$$ilde{B} \quad q \; o \; e^{ilpha(1-\sqrt{3}\lambda_8)}q \quad \Rightarrow \quad \delta \; o \; \delta$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Symmetry properties: global symmetries

• 
$$\delta \equiv \langle q^T C \gamma_5 \tau_2 \lambda_2 q \rangle$$

baryon number:

*B*:  $q \rightarrow e^{i\alpha}q \Rightarrow \delta \rightarrow e^{2i\alpha}\delta$  broken

but: There is a conserved "modified baryon number":

$$ilde{B} \quad q \; o \; e^{ilpha(1-\sqrt{3}\lambda_8)}q \quad \Rightarrow \quad \delta \; o \; \delta$$

o chiral symmetry:

• 
$$SU(2)_V$$
:  $q \to e^{i\theta_a \frac{\tau_a}{2}}q \Rightarrow \delta \to \delta$   
•  $SU(2)_A$ :  $q \to e^{i\theta_a \frac{\tau_a}{2}\gamma_5}q \Rightarrow \delta \to \delta$  conserved

scalar color-antitriplet condensates:

• 
$$s_{AA'} = \langle q^T C \gamma_5 \tau_A \lambda_{A'} q \rangle$$

- notation:
  - $\tau_A$  = antisymmetric flavor generator
  - $\lambda_{A'}$  = antisymmetric color generator

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

scalar color-antitriplet condensates:

• 
$$s_{AA'} = \langle q^T C \gamma_5 \tau_A \lambda_{A'} q \rangle$$

- o notation:
  - $\tau_A$  = antisymmetric flavor generator
  - $\lambda_{A'}$  = antisymmetric color generator
- two flavors, three colors:
  - $\tau_A = \tau_2$ ,  $A' \in \{2, 5, 7\}$   $\Rightarrow$   $\vec{s} = (s_{22}, s_{25}, s_{27})$
  - can always be rotated into "antiblue" direction:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$\vec{s} \to \vec{s}' = \vec{s} U = (s'_{22}, 0, 0), \quad U \in SU(3)_c$$

scalar color-antitriplet condensates:

• 
$$s_{AA'} = \langle q^T C \gamma_5 \tau_A \lambda_{A'} q \rangle$$

- o notation:
  - $\tau_A$  = antisymmetric flavor generator
  - $\lambda_{A'}$  = antisymmetric color generator
- two flavors, three colors:
  - $\tau_A = \tau_2$ ,  $A' \in \{2, 5, 7\}$   $\Rightarrow$   $\vec{s} = (s_{22}, s_{25}, s_{27})$
  - can always be rotated into "antiblue" direction:

$$\vec{s} \to \vec{s}' = \vec{s} U = (s'_{22}, 0, 0), \quad U \in SU(3)_c$$

three flavors, three colors:

• 
$$A, A' \in \{2, 5, 7\}$$
  $\Rightarrow$   $s = (s_{AA'}) = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ s_{52} & s_{55} & s_{57} \\ s_{72} & s_{75} & s_{77} \end{pmatrix}$ 

• three flavors, three colors:

• 
$$A, A' \in \{2, 5, 7\}$$
  $\Rightarrow$   $s = (s_{AA'}) = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ s_{52} & s_{55} & s_{57} \\ s_{72} & s_{75} & s_{77} \end{pmatrix}$ 

three flavors, three colors:

• 
$$A, A' \in \{2, 5, 7\}$$
  $\Rightarrow$   $s = (s_{AA'}) = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ s_{52} & s_{55} & s_{57} \\ s_{72} & s_{75} & s_{77} \end{pmatrix}$   
•  $SU(3)_c$  rotation:  $\rightarrow s' = s U = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ 0 & s_{55} & s_{57} \\ 0 & 0 & s_{77} \end{pmatrix}$ 

three flavors, three colors:

• 
$$A, A' \in \{2, 5, 7\}$$
  $\Rightarrow$   $s = (s_{AA'}) = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ s_{52} & s_{55} & s_{57} \\ s_{72} & s_{75} & s_{77} \end{pmatrix}$   
•  $SU(3)_c$  rotation:  $\rightarrow s' = sU = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ 0 & s_{55} & s_{57} \\ 0 & 0 & s_{77} \end{pmatrix}$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

In general, that's all we can do ...

three flavors, three colors:

• 
$$A, A' \in \{2, 5, 7\}$$
  $\Rightarrow$   $s = (s_{AA'}) = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ s_{52} & s_{55} & s_{57} \\ s_{72} & s_{75} & s_{77} \end{pmatrix}$   
•  $SU(3)_c$  rotation:  $\rightarrow s' = sU = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ 0 & s_{55} & s_{57} \\ 0 & 0 & s_{77} \end{pmatrix}$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

In general, that's all we can do ...

- three degenerate flavors:  $M_u = M_d = M_s$ 
  - → SU(3)<sub>f</sub>-symmetric

three flavors, three colors:

• 
$$A, A' \in \{2, 5, 7\}$$
  $\Rightarrow$   $s = (s_{AA'}) = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ s_{52} & s_{55} & s_{57} \\ s_{72} & s_{75} & s_{77} \end{pmatrix}$   
•  $SU(3)_c$  rotation:  $\rightarrow s' = sU = \begin{pmatrix} s_{22} & s_{25} & s_{27} \\ 0 & s_{55} & s_{57} \\ 0 & 0 & s_{77} \end{pmatrix}$ 

In general, that's all we can do ...

- three degenerate flavors:  $M_u = M_d = M_s$ 
  - →  $SU(3)_f$ -symmetric
  - ➔ diagonalization by combined color and flavor rotations:

$$s \to s' = V s U = \begin{pmatrix} s_{22} & 0 & 0 \\ 0 & s_{55} & 0 \\ 0 & 0 & s_{77} \end{pmatrix}, \quad U \in SU(3)_c, \ V \in SU(3)_f$$

• eight possible phases:

normal quark matter (NQ)  $s_{22} = s_{55} = s_{77} = 0$ 



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• eight possible phases:

2SC phase  $s_{22} \neq 0$ ,  $s_{55} = s_{77} = 0$ 

 $+ \mbox{ two more phases of this kind}$ 



• eight possible phases:

uSC phase  $s_{22}, s_{55} \neq 0, s_{77} = 0$ 

 $+\ensuremath{\,\text{two}}$  more phases of this kind



• eight possible phases:

CFL phase  $s_{22}, s_{55}, s_{77} \neq 0$ 



• eight possible phases: CFL phase  $s_{22}$ ,  $s_{55}$ ,  $s_{77} \neq 0$ 



イロト イポト イヨト イヨト

• CFL pairing pattern (more explicitly):

$$(\uparrow\downarrow - \downarrow\uparrow) \otimes \left( \begin{array}{c} \Delta_2 (ud - du) \otimes (\mathbf{r} g - g \mathbf{r}) \\ + \Delta_5 (ds - sd) \otimes (g b - b g) \\ + \Delta_7 (su - us) \otimes (b \mathbf{r} - \mathbf{r} b) \end{array} \right)$$

| overview             | patterns | gap eqs. | realistic masses | inhomogeneous phases | selected topics |  |  |
|----------------------|----------|----------|------------------|----------------------|-----------------|--|--|
| Color-flavor locking |          |          |                  |                      |                 |  |  |

- symmetries:
  - color:  $SU(3)_c$  completely broken  $\rightarrow$  8 massive gluons



| overview | patterns  | gap eqs. | realistic masses | inhomogeneous phases | selected topics |
|----------|-----------|----------|------------------|----------------------|-----------------|
| Color-f  | lavor loc | cking    |                  |                      |                 |

• symmetries:

 $SU(3)_V$ 

o color: SU(3)<sub>c</sub> completely broken → 8 massive gluons
 o chiral: SU(3)<sub>A</sub> " → 8 Goldstone bosons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

,,

symmetries:

 $SU(3)_V$ 

• color:  $SU(3)_c$  completely broken  $\rightarrow$  8 massive gluons • chiral:  $SU(3)_A$ → 8 Goldstone bosons

but: symm. under "locked" color-flavor rotations  $q \rightarrow e^{i\theta_a(\tau_a - \lambda_a^T)}q$ 

(ロ) (同) (三) (三) (三) (○) (○)

,,

- symmetries:
  - color:  $SU(3)_c$  completely broken  $\rightarrow$  8 massive gluons
  - chiral:  $SU(3)_A$ → 8 Goldstone bosons ,,  $SU(3)_V$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

but: symm. under "locked" color-flavor rotations  $q \rightarrow e^{i\theta_a(\tau_a - \lambda_a^T)}q$ 

● baryon #: broken → 1 scalar Goldstone boson

### symmetries:

- color:  $SU(3)_c$  completely broken  $\rightarrow$  8 massive gluons
- chiral:  $SU(3)_A$  "  $\rightarrow$  8 Goldstone bosons  $SU(3)_V$  "

but: symm. under "locked" color-flavor rotations  $q \rightarrow e^{i\theta_a(\tau_a - \lambda_a^T)}q$ 

- baryon #: broken → 1 scalar Goldstone boson
- electromagnetism:
  - invariant under (local)  $q \to \exp(i\alpha \tilde{Q})q$  $\tilde{Q} = Q - \frac{\lambda_3}{2} - \frac{\lambda_8}{2\sqrt{3}} = \operatorname{diag}_f(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}) - \operatorname{diag}_c(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$

A D F A 同 F A E F A E F A Q A

### • symmetries:

- color:  $SU(3)_c$  completely broken  $\rightarrow$  8 massive gluons
- chiral:  $SU(3)_A$  "  $\rightarrow$  8 Goldstone bosons  $SU(3)_V$  "

but: symm. under "locked" color-flavor rotations  $q \rightarrow e^{i\theta_a(\tau_a - \lambda_a^T)}q$ 

- baryon #: broken → 1 scalar Goldstone boson
- electromagnetism:
  - invariant under (local)  $q \rightarrow \exp(i\alpha \tilde{Q})q$  $\tilde{Q} = Q - \frac{\lambda_3}{2} - \frac{\lambda_8}{2\sqrt{3}} = \operatorname{diag}_{f}(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}) - \operatorname{diag}_{c}(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$
  - "rotated photon" =  $\cos \varphi$  photon +  $\sin \varphi$  gluon

### • symmetries:

- color:  $SU(3)_c$  completely broken  $\rightarrow$  8 massive gluons
- chiral:  $SU(3)_A$  "  $\rightarrow$  8 Goldstone bosons  $SU(3)_V$  "

but: symm. under "locked" color-flavor rotations  $q \rightarrow e^{i\theta_a(\tau_a - \lambda_a^T)}q$ 

- baryon #: broken → 1 scalar Goldstone boson
- electromagnetism:
  - invariant under (local)  $q \to \exp(i\alpha \tilde{Q})q$  $\tilde{Q} = Q - \frac{\lambda_3}{2} - \frac{\lambda_8}{2\sqrt{3}} = \operatorname{diag}_{f}(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}) - \operatorname{diag}_{c}(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$
  - "rotated photon" =  $\cos \varphi$  photon +  $\sin \varphi$  gluon
  - ➔ no electromagnetic Meissner effect!

# symmetries:

- color:  $SU(3)_c$  completely broken  $\rightarrow$  8 massive gluons
- chiral:  $SU(3)_A$  "  $\rightarrow$  8 Goldstone bosons  $SU(3)_V$  "

but: symm. under "locked" color-flavor rotations  $q \rightarrow e^{i\theta_a(\tau_a - \lambda_a^T)}q$ 

- baryon #: broken → 1 scalar Goldstone boson
- electromagnetism:
  - invariant under (local)  $q \to \exp(i\alpha \tilde{Q})q$  $\tilde{Q} = Q - \frac{\lambda_3}{2} - \frac{\lambda_8}{2\sqrt{3}} = \operatorname{diag}_f(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}) - \operatorname{diag}_c(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$

- "rotated photon" =  $\cos \varphi$  photon +  $\sin \varphi$  gluon
- ➔ no electromagnetic Meissner effect!
  - all quarks carry integer  $\tilde{Q}$  charge



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



- NJL-type models
  - schematic quark models with point interactions (like BCS!)
  - not predictive
  - suited for explorative studies with competing condensates



• Lagrangian with interaction in the desired channel:

$$\mathcal{L} = \bar{q}(\partial \!\!\!/ - m)q + H \sum_{A=2,5,7} (\bar{q}\,i\gamma_5\tau_2\lambda_A\,C\bar{q}^T)(q^T C\,i\gamma_5\tau_2\lambda_A\,q)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



• Lagrangian with interaction in the desired channel:

$$\mathcal{L} = \bar{q}(\partial - m)q + H \sum_{A=2,5,7} (\bar{q} \, i\gamma_5 \tau_2 \lambda_A \, C \bar{q}^T) (q^T C \, i\gamma_5 \tau_2 \lambda_A \, q)$$

(日) (日) (日) (日) (日) (日) (日)

• Nambu-Gor'kov formalism: artificially double # d.o.f.  $\Psi = \frac{1}{\sqrt{2}} \begin{pmatrix} q \\ C\bar{q}^T \end{pmatrix}, \qquad \bar{\Psi} = \frac{1}{\sqrt{2}} (\bar{q}, q^T C)$ 



Lagrangian with interaction in the desired channel:

$$\mathcal{L} = \bar{q}(\partial - m)q + H \sum_{A=2,5,7} (\bar{q} \, i\gamma_5 \tau_2 \lambda_A \, C \bar{q}^T) (q^T C \, i\gamma_5 \tau_2 \lambda_A \, q)$$

• Nambu-Gor'kov formalism: artificially double # d.o.f.  $\Psi = \frac{1}{\sqrt{2}} \begin{pmatrix} q \\ C\bar{q}^T \end{pmatrix}, \quad \bar{\Psi} = \frac{1}{\sqrt{2}} (\bar{q}, q^T C)$   $\Rightarrow \mathcal{L}_{int} = 4H \sum_{A=2,5,7} \bar{\Psi} \begin{pmatrix} 0 & i\gamma_5 \tau_2 \lambda_A \\ 0 & 0 \end{pmatrix} \Psi \bar{\Psi} \begin{pmatrix} 0 & 0 \\ i\gamma_5 \tau_2 \lambda_A & 0 \end{pmatrix} \Psi$ 

• Lagrangian with interaction in the desired channel:

$$\mathcal{L} = \bar{q}(\partial \!\!\!/ - m)q + H \sum_{A=2,5,7} (\bar{q} \, i\gamma_5 \tau_2 \lambda_A \, C \bar{q}^T) (q^T C \, i\gamma_5 \tau_2 \lambda_A \, q)$$

• Nambu-Gor'kov formalism: artificially double # d.o.f.

→ vertices:  $= 4Hi \Gamma_A^{\uparrow} \otimes \Gamma_A^{\downarrow} = 4Hi \begin{pmatrix} 0 & i\gamma_5 \tau_2 \lambda_A \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ i\gamma_5 \tau_2 \lambda_A & 0 \end{pmatrix}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Nambu-Gorkov propagator

• kinetic term + chemical potential:

$$\mathcal{L}_{kin} + \mu \, q^{\dagger} q \; = \; ar{q} (i \partial \!\!\!/ + \mu \gamma^0) q$$

• kinetic term + chemical potential:

$$\begin{aligned} \mathcal{L}_{kin} + \mu \, q^{\dagger} q \; &= \; \bar{q} (i \partial \!\!\!/ + \mu \gamma^0) q \\ &= \; \frac{1}{2} \left[ \, \bar{q} (i \partial \!\!\!/ + \mu \gamma^0) q \; - \; q^T C (i \overleftarrow{\partial} \!\!\!/ + \mu \gamma^0) C \bar{q}^T \, \right] \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• kinetic term + chemical potential:

$$\begin{aligned} \mathcal{L}_{kin} + \mu \, q^{\dagger} q &= \bar{q} (i \partial \!\!\!/ + \mu \gamma^{0}) q \\ &= \frac{1}{2} \left[ \bar{q} (i \partial \!\!\!/ + \mu \gamma^{0}) q - q^{T} C (i \overleftarrow{\partial} \!\!\!/ + \mu \gamma^{0}) C \bar{q}^{T} \right] \\ &= \bar{\Psi} \begin{pmatrix} i \partial \!\!\!/ + \mu \gamma^{0} & 0 \\ 0 & -i \overleftarrow{\partial} \!\!\!/ - \mu \gamma^{0} \end{pmatrix} \Psi \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• kinetic term + chemical potential:

$$\mathcal{L}_{kin} + \mu q^{\dagger}q = \bar{q}(i\partial \!\!\!/ + \mu\gamma^{0})q$$

$$= \frac{1}{2} \left[ \bar{q}(i\partial \!\!\!/ + \mu\gamma^{0})q - q^{T}C(i\partial \!\!\!/ + \mu\gamma^{0})C\bar{q}^{T} \right]$$

$$= \bar{\Psi} \begin{pmatrix} i\partial \!\!\!/ + \mu\gamma^{0} & 0\\ 0 & -i\partial \!\!\!/ - \mu\gamma^{0} \end{pmatrix} \Psi$$

$$= \bar{\Psi}(x) S_{0}^{-1}(x) \Psi(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• kinetic term + chemical potential:

$$\mathcal{L}_{kin} + \mu q^{\dagger} q = \bar{q}(i\partial \!\!\!/ + \mu\gamma^{0})q$$

$$= \frac{1}{2} \left[ \bar{q}(i\partial \!\!\!/ + \mu\gamma^{0})q - q^{T}C(i\partial \!\!\!/ + \mu\gamma^{0})C\bar{q}^{T} \right]$$

$$= \bar{\Psi} \begin{pmatrix} i\partial \!\!\!/ + \mu\gamma^{0} & 0\\ 0 & -i\partial \!\!\!/ - \mu\gamma^{0} \end{pmatrix} \Psi$$

$$= \bar{\Psi}(x) S_{0}^{-1}(x) \Psi(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

→ inverse bare propagator in momentum space:

$$S_0^{-1}(p) = \begin{pmatrix} p + \mu \gamma^0 & 0 \\ 0 & p - \mu \gamma^0 \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

• dressed propagator (Hartree approximation):  $\frac{1}{iS(p)} = iS_0(p) + iS_0(p) (-i\Sigma) iS(p)$   $\Leftrightarrow S^{-1}(p) = S_0^{-1}(p) - \Sigma$ 



 $iS(p) = iS_0(p) + iS_0(p) (-i\Sigma) iS(p)$ 

$$\Leftrightarrow S^{-1}(p) = S_0^{-1}(p) - \Sigma$$

self-energy:

$$-i\Sigma = \bigcap_{A} = 4iH \sum_{A} \left\{ \Gamma_{A}^{\uparrow} \int \frac{d^{4}k}{(2\pi)^{4}} \left(-\frac{1}{2}\right) \operatorname{Tr}[\Gamma_{A}^{\downarrow} iS(k)] \right. \\ \left. + \Gamma_{A}^{\downarrow} \int \frac{d^{4}k}{(2\pi)^{4}} \left(-\frac{1}{2}\right) \operatorname{Tr}[\Gamma_{A}^{\uparrow} iS(k)] \right\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



• dressed propagator (Hartree approximation):

$$iS(p) = iS_0(p) + iS_0(p)(-i\Sigma)iS(p)$$

$$\Leftrightarrow S^{-1}(p) = S_0^{-1}(p) - \Sigma$$

self-energy:

$$-i\Sigma = \bigcirc = 4iH \sum_{A} \left\{ \Gamma_{A}^{\uparrow} \int \frac{d^{4}k}{(2\pi)^{4}} \left(-\frac{1}{2}\right) \operatorname{Tr}[\Gamma_{A}^{\downarrow} iS(k)] \right. \\ \left. + \Gamma_{A}^{\downarrow} \int \frac{d^{4}k}{(2\pi)^{4}} \left(-\frac{1}{2}\right) \operatorname{Tr}[\Gamma_{A}^{\uparrow} iS(k)] \right\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

→ selfconsistency problem!



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• selfconsistency problem:  $S^{-1} = S_0^{-1} - \Sigma[S]$ 

- selfconsistency problem:  $S^{-1} = S_0^{-1} \Sigma[S]$
- ansatz:

$$\Sigma = \begin{pmatrix} 0 & -\Delta \gamma_5 \tau_2 \lambda_2 \\ \Delta^* \gamma_5 \tau_2 \lambda_2 & 0 \end{pmatrix} \Rightarrow S^{-1} = \begin{pmatrix} \not p + \mu \gamma^0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & \not p - \mu \gamma^0 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- selfconsistency problem:  $S^{-1} = S_0^{-1} \Sigma[S]$
- ansatz:

$$\Sigma = \begin{pmatrix} 0 & -\Delta \gamma_5 \tau_2 \lambda_2 \\ \Delta^* \gamma_5 \tau_2 \lambda_2 & 0 \end{pmatrix} \Rightarrow S^{-1} = \begin{pmatrix} \not p + \mu \gamma^0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & \not p - \mu \gamma^0 \end{pmatrix}$$

strategy:

invert  $S^{-1}$   $\rightarrow$  calculate  $\Sigma[S]$   $\rightarrow$  compare with ansatz

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

overviewpatternsgap eqs.realistic massesinhomogeneous phasesselected topicsGap equation• selfconsistency problem:
$$S^{-1} = S_0^{-1} - \Sigma[S]$$
• ansatz: $\Sigma = \begin{pmatrix} 0 & -\Delta \gamma_5 \tau_2 \lambda_2 \\ \Delta^* \gamma_5 \tau_2 \lambda_2 & 0 \end{pmatrix} \Rightarrow S^{-1} = \begin{pmatrix} p + \mu \gamma^0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & p - \mu \gamma^0 \end{pmatrix}$ 

strategy:
 invert S<sup>-1</sup> → calculate Σ[S] → compare with ansatz

result:

$$\Delta = 16H \,\Delta \,i \int \frac{d^4k}{(2\pi)^4} \left(\frac{1}{k_0^2 - \omega_-^2} + \frac{1}{k_0^2 - \omega_+^2}\right) \qquad \text{``gap equation''}$$

quasiparticle dispersion laws:  $\omega_{\mp} = \sqrt{(|\vec{k}| \mp \mu)^2 + |\Delta|^2}$ 



• dressed propagator: 
$$S = \begin{pmatrix} \not p + \mu \gamma^0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & \not p - \mu \gamma^0 \end{pmatrix}^{-1}$$

• dimension:  $2 \times 4 \times N_f \times N_c$ 

→ 
$$48 \times 48$$
 matrix for  $N_f = 2$ ,  $N_c = 3$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• inversion straight forward, but some work required ....

• dressed propagator: 
$$S = \begin{pmatrix} \not p + \mu \gamma^0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & \not p - \mu \gamma^0 \end{pmatrix}^{-1}$$

• dimension:  $2 \times 4 \times N_f \times N_c$ 

→ 
$$48 \times 48$$
 matrix for  $N_f = 2$ ,  $N_c = 3$ 

• inversion straight forward, but some work required ....

o diagonalization:

$$S(p^{0}, \vec{p}) = U(\vec{p}) \begin{pmatrix} \frac{1}{p^{0} - \lambda_{1}(\vec{p})} & & \\ & \ddots & \\ & & \frac{1}{p^{0} - \lambda_{48}(\vec{p})} \end{pmatrix} U^{\dagger}(\vec{p}) \gamma^{0}$$

•  $U(\vec{p}) =$  unitary matrix, does not depend on  $p^0$  !

## **Dispersion relations**

- 48 eigenvalues
  - = 24 quasiparticle dispersion relations:

• 
$$\omega_{-}(\vec{p}) = \sqrt{(|\vec{p}| - \mu)^2 + |\Delta|^2}$$
 (8-fold)

• 
$$\omega_+(\vec{p}) = \sqrt{(|\vec{p}| + \mu)^2 + |\Delta|^2}$$
 (8-fold

• 
$$\epsilon_{-}(\vec{p}) = \left| |\vec{p}| - \mu \right|$$
 (4-fold)

• 
$$\epsilon_+(\vec{p}) = \left| |\vec{p}| + \mu \right|$$
 (4-fold)

• + 24 quasiholes:  $-\omega_{\mp}(\vec{p}), -\epsilon_{\mp}(\vec{p})$ 



red and green quarks " antiquarks blue quarks " antiquarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Dispersion relations (CFL)

### • 72 eigenvalues

= 36 quasiparticle dispersion relations:

•  $\omega_{8,-}(\vec{p}) = \sqrt{(|\vec{p}| - \mu)^2 + |\Delta|^2}$  (16-fold) •  $\omega_{8,+}(\vec{p}) = \sqrt{(|\vec{p}| + \mu)^2 + |\Delta|^2}$  (16-fold) •  $\omega_{1,-}(\vec{p}) = \sqrt{(|\vec{p}| - \mu)^2 + |2\Delta|^2}$  (2-fold)

•  $\omega_{1,+}(\vec{p}) = \sqrt{(|\vec{p}| + \mu)^2 + |2\Delta|^2}$  (2-fold)

quark octet  $\times$  spin antiquark " quark singlet  $\times$  spin antiquark "

• + 36 quasiholes:  $-\omega_{8,\mp}(\vec{p}), -\omega_{1,\mp}(\vec{p})$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

| 00010100      | patterne | gap oqs. |     |  |
|---------------|----------|----------|-----|--|
|               |          |          |     |  |
| Gap equation: |          | soluti   | ons |  |
|               |          |          |     |  |

selected tonics

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• gap equation: 
$$\Delta = 16H \Delta i \int \frac{d^4k}{(2\pi)^4} (\frac{1}{k_0^2 - \omega_-^2} + \frac{1}{k_0^2 - \omega_+^2})$$

natterns

nan ens



• gap equation: 
$$\Delta = 16H\Delta \int \frac{d^3k}{(2\pi)^3} T \sum_n \left(\frac{1}{\omega_n^2 + \omega_-^2} + \frac{1}{\omega_n^2 + \omega_+^2}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• gap equation: 
$$\Delta = 16H\Delta \int \frac{d^3k}{(2\pi)^3} T \sum_n (\frac{1}{\omega_n^2 + \omega_-^2} + \frac{1}{\omega_n^2 + \omega_+^2})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• turning out the sum,  $T \rightarrow 0$ :

$$\Delta = \frac{4H}{\pi^2} \Delta \int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\}$$

• gap equation: 
$$\Delta = 16H \Delta \int \frac{d^3k}{(2\pi)^3} T \sum_n (\frac{1}{\omega_n^2 + \omega_-^2} + \frac{1}{\omega_n^2 + \omega_+^2})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• turning out the sum,  $T \rightarrow 0$ :

$$\Delta = \frac{4H}{\pi^2} \Delta \int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\}$$

solutions:

• trivial solution:  $\Delta = 0$ 

• gap equation: 
$$\Delta = 16H \Delta \int \frac{d^3k}{(2\pi)^3} T \sum_n (\frac{1}{\omega_n^2 + \omega_-^2} + \frac{1}{\omega_n^2 + \omega_+^2})$$

• turning out the sum,  $T \rightarrow 0$ :

$$\Delta = \frac{4H}{\pi^2} \Delta \int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\}$$

solutions:

- trivial solution:  $\Delta = 0$
- other solutions?  $\int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\} \stackrel{!}{=} \frac{\pi^2}{4H}$

• gap equation: 
$$\Delta = 16H \Delta \int \frac{d^3k}{(2\pi)^3} T \sum_n (\frac{1}{\omega_n^2 + \omega_-^2} + \frac{1}{\omega_n^2 + \omega_+^2})$$

• turning out the sum,  $T \rightarrow 0$ :

$$\Delta = \frac{4H}{\pi^2} \Delta \int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\}$$

solutions:

- trivial solution:  $\Delta = 0$
- other solutions?  $\int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\} \stackrel{!}{=} \frac{\pi^2}{4H}$

$$\Delta \to 0 \; \Rightarrow \; \frac{1}{\omega_{-}(k)} = \frac{1}{\sqrt{(k-\mu)^2 + |\Delta|^2}} \to \frac{1}{|k-\mu|} \; \Rightarrow \; \int \dots \to \infty$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• gap equation: 
$$\Delta = 16H \Delta \int \frac{d^3k}{(2\pi)^3} T \sum_n (\frac{1}{\omega_n^2 + \omega_-^2} + \frac{1}{\omega_n^2 + \omega_+^2})$$

• turning out the sum,  $T \rightarrow 0$ :

$$\Delta = \frac{4H}{\pi^2} \Delta \int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\}$$

solutions:

- trivial solution:  $\Delta = 0$
- other solutions?  $\int k^2 dk \left\{ \frac{1}{\omega_-(k)} + \frac{1}{\omega_+(k)} \right\} \stackrel{!}{=} \frac{\pi^2}{4H}$

$$\Delta \to 0 \; \Rightarrow \; rac{1}{\omega_-(k)} = rac{1}{\sqrt{(k-\mu)^2 + |\Delta|^2}} \to rac{1}{|k-\mu|} \; \Rightarrow \; \int \dots \to \infty$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

→ nontrivial solutions always exist for H > 0 !

#### 0 0

• back to our Lagrangian:

$$\hat{\mathcal{L}} = \bar{q}(i\partial \!\!\!/ + \mu\gamma^0)q + H\sum_{A=2,5,7} (\bar{q}\,i\gamma_5\tau_2\lambda_A\,C\bar{q}^T)(q^T C\,i\gamma_5\tau_2\lambda_A\,q)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

back to our Lagrangian:

$$\hat{\mathcal{L}} = \bar{q}(i\partial \!\!\!/ + \mu\gamma^0)q + H\sum_{A=2,5,7} (q^T C \gamma_5 \tau_2 \lambda_A q)^{\dagger} (q^T C \gamma_5 \tau_2 \lambda_A q)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

# Mean-field Lagrangian

back to our Lagrangian:

$$\hat{\mathcal{L}} = \bar{q}(i\partial \!\!\!/ + \mu\gamma^0)q + H\sum_{A=2,5,7} (q^T C \gamma_5 \tau_2 \lambda_A q)^{\dagger} (q^T C \gamma_5 \tau_2 \lambda_A q)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

bosonization:

$$\mathcal{L}_{int} = \frac{1}{2} \sum_{A} \left\{ \left( q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q \right)^{\dagger} \varphi_{A} + h.c. - \frac{1}{2H} \varphi_{A}^{\dagger} \varphi_{A} \right\}$$
  
with diquark fields  $\varphi_{A} = -2H \left( q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q \right)$ 

# Mean-field Lagrangian

• back to our Lagrangian:

$$\hat{\mathcal{L}} = \bar{q}(i\partial \!\!\!/ + \mu\gamma^0)q + H\sum_{A=2,5,7} (q^T C \gamma_5 \tau_2 \lambda_A q)^{\dagger} (q^T C \gamma_5 \tau_2 \lambda_A q)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

bosonization:

$$\mathcal{L}_{int} = \frac{1}{2} \sum_{A} \left\{ \left( q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q \right)^{\dagger} \varphi_{A} + h.c. - \frac{1}{2H} \varphi_{A}^{\dagger} \varphi_{A} \right\}$$
  
with diquark fields  $\varphi_{A} = -2H \left( q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q \right)$ 

• mean-field approximation:  $\varphi_A \rightarrow \langle \varphi_A \rangle = \Delta \, \delta_{A,2}$ 

# Mean-field Lagrangian

back to our Lagrangian:

$$\hat{\mathcal{L}} = \bar{q}(i\partial \!\!\!/ + \mu\gamma^0)q + H\sum_{A=2,5,7} (q^T C \gamma_5 \tau_2 \lambda_A q)^{\dagger} (q^T C \gamma_5 \tau_2 \lambda_A q)$$

bosonization:

$$\mathcal{L}_{int} = \frac{1}{2} \sum_{A} \left\{ \left( q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q \right)^{\dagger} \varphi_{A} + h.c. - \frac{1}{2H} \varphi_{A}^{\dagger} \varphi_{A} \right\}$$
  
with diquark fields  $\varphi_{A} = -2H \left( q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q \right)$ 

- mean-field approximation:  $\varphi_A \rightarrow \langle \varphi_A \rangle = \Delta \, \delta_{A,2}$
- result, using Nambu-Gorkov spinors:

$$\mathcal{L}_{MF} = \bar{\Psi} \begin{pmatrix} i\partial \!\!\!/ + \mu\gamma^0 & \Delta\gamma_5\tau_2\lambda_2 \\ -\Delta^*\gamma_5\tau_2\lambda_2 & -i\partial \!\!\!/ - \mu\gamma^0 \end{pmatrix} \Psi - \frac{|\Delta|^2}{4H}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- mermodynamic potential
  - (grand canonical) thermodynamic potential:

$$\Omega(T,\mu) = -\frac{T}{V} \ln \mathcal{Z} = -\frac{T}{V} \ln \operatorname{Tr} \exp\left(-\frac{1}{T} \int d^3 x \left(\mathcal{H} - \mu q^{\dagger} q\right)\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Thermodynamic potential

• (grand canonical) thermodynamic potential:

$$\Omega(T,\mu) = -\frac{T}{V} \ln \mathcal{Z} = -\frac{T}{V} \ln \operatorname{Tr} \exp\left(-\frac{1}{T} \int d^3 x \left(\mathcal{H} - \mu q^{\dagger} q\right)\right)$$

• mean-field Lagrangian:

$$\mathcal{L}_{MF} = \bar{\Psi}S^{-1}\Psi - \frac{|\Delta|^2}{4H} = \mathcal{T} - \mathcal{V}$$

• bilinear "kinetic" term - field-independent "potential"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの
## Thermodynamic potential

• (grand canonical) thermodynamic potential:

$$\Omega(T,\mu) = -\frac{T}{V} \ln \mathcal{Z} = -\frac{T}{V} \ln \operatorname{Tr} \exp\left(-\frac{1}{T} \int d^3 x \left(\mathcal{H} - \mu q^{\dagger} q\right)\right)$$

• mean-field Lagrangian:

$$\mathcal{L}_{MF} = \bar{\Psi}S^{-1}\Psi - \frac{|\Delta|^2}{4H} = \mathcal{T} - \mathcal{V}$$

bilinear "kinetic" term – field-independent "potential"

#### general result:

$$\Omega(T,\mu) = -T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T} S^{-1}(i\omega_{n},\vec{k})\right) + \mathcal{V}$$

• 
$$\ln A = \ln \left( (1 - (1 - A)) \right) = \sum_{n=1}^{\infty} \frac{1}{n} (1 - A)^n$$

• useful formula: Tr  $\ln A = \ln \operatorname{Det} A$ 

◆□ → ◆□ → ◆ = → ◆ = → のへで

#### Thermodynamic potential

#### • result after Matsubara summation:

$$\begin{split} \Omega(T,\mu) \; = \; - \int \frac{d^3p}{(2\pi)^3} \left\{ & 8 \left( \frac{\omega_-}{2} + \; T \ln(1 + e^{-\omega_-/T}) \right. \\ & + \frac{\omega_+}{2} + \; T \ln(1 + e^{-\omega_+/T}) \right) \\ & + 4 \left( \frac{\epsilon_-}{2} + \; T \ln(1 + e^{-\epsilon_-/T}) \right. \\ & + \frac{\epsilon_+}{2} + \; T \ln(1 + e^{-\epsilon_+/T}) \right) \left. \right\} \\ & + \; \frac{|\Delta|^2}{4H} \end{split}$$



$$\Omega(T,\mu) = -T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T} S^{-1}(i\omega_{n},\vec{k})\right) + \frac{|\Delta|^{2}}{4H}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



$$\Omega(T,\mu) = -T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T} S^{-1}(i\omega_{n},\vec{k})\right) + \frac{|\Delta|^{2}}{4H}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• stable solutions = minima

$$\Rightarrow \frac{\partial\Omega}{\partial\Delta^*} = -T\sum_n \int \frac{d^3k}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \left(S \frac{\partial S^{-1}}{\partial\Delta^*}\right) + \frac{\Delta}{4H} \stackrel{!}{=} 0$$



$$\Omega(T,\mu) = -T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T} S^{-1}(i\omega_{n},\vec{k})\right) + \frac{|\Delta|^{2}}{4H}$$

stable solutions = minima

$$\Rightarrow \frac{\partial \Omega}{\partial \Delta^*} = -T \sum_n \int \frac{d^3k}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \left( S \frac{\partial S^{-1}}{\partial \Delta^*} \right) + \frac{\Delta}{4H} \stackrel{!}{=} 0$$

inverse propagator:

$$S^{-1}(p) = \begin{pmatrix} \not p + \mu \gamma^0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & \not p - \mu \gamma^0 \end{pmatrix}$$
$$\Rightarrow \quad \frac{\partial S^{-1}}{\partial \Delta^*} = \begin{pmatrix} 0 & 0 \\ -\gamma_5 \tau_2 \lambda_2 & 0 \end{pmatrix} = i \Gamma_2^{\perp}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



$$\Omega(T,\mu) = -T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T} S^{-1}(i\omega_{n},\vec{k})\right) + \frac{|\Delta|^{2}}{4H}$$

stable solutions = minima

$$\Rightarrow \frac{\partial \Omega}{\partial \Delta^*} = -T \sum_n \int \frac{d^3k}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \left( S \frac{\partial S^{-1}}{\partial \Delta^*} \right) + \frac{\Delta}{4H} \stackrel{!}{=} 0$$

inverse propagator:

$$S^{-1}(p) = \begin{pmatrix} \not p + \mu \gamma^0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & \not p - \mu \gamma^0 \end{pmatrix}$$
$$\Rightarrow \quad \frac{\partial S^{-1}}{\partial \Delta^*} = \begin{pmatrix} 0 & 0 \\ -\gamma_5 \tau_2 \lambda_2 & 0 \end{pmatrix} = i \Gamma_2^{\downarrow}$$

→  $\Delta = 4H T \sum_{n} \int \frac{d^3k}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \left[ iS \Gamma_2^{\downarrow} \right]$  gap equation!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• free energy gain:  $\delta \Omega = \Omega(\Delta) - \Omega(0)$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- free energy gain:  $\delta \Omega = \Omega(\Delta) \Omega(0)$
- simplifications: neglect antiparticles, T = 0

→ 
$$\Omega(\Delta) = -\frac{2}{\pi^2} \int p^2 dp \sqrt{(p-\mu)^2 + |\Delta|^2} + \frac{|\Delta|^2}{4H}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- free energy gain:  $\delta \Omega = \Omega(\Delta) \Omega(0)$
- simplifications: neglect antiparticles, T = 0

→ 
$$\Omega(\Delta) = -\frac{2}{\pi^2} \int p^2 dp \sqrt{(p-\mu)^2 + |\Delta|^2} + \frac{|\Delta|^2}{4H}$$

gap equation:

$$rac{\partial\Omega}{\partial\Delta^*} = -rac{1}{\pi^2}\int p^2\,dp\,\,rac{\Delta}{\sqrt{(p-\mu)^2+|\Delta|^2}} + rac{\Delta}{4H} = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Condensation energy

- free energy gain:  $\delta \Omega = \Omega(\Delta) \Omega(0)$
- simplifications: neglect antiparticles, T = 0

→ 
$$\Omega(\Delta) = -\frac{2}{\pi^2} \int p^2 dp \sqrt{(p-\mu)^2 + |\Delta|^2} + \frac{|\Delta|^2}{4H}$$

gap equation:

$$\frac{\partial\Omega}{\partial\Delta^*} = -\frac{1}{\pi^2} \int p^2 dp \, \frac{\Delta}{\sqrt{(p-\mu)^2 + |\Delta|^2}} + \frac{\Delta}{4H} = 0$$
  
$$\Rightarrow \ \delta\Omega = -\frac{2}{\pi^2} \int p^2 dp \, \left(\frac{(p-\mu)^2 + \frac{1}{2}|\Delta|^2}{\sqrt{(p-\mu)^2 + |\Delta|^2}} - |p-\mu|\right)$$

#### Condensation energy

- free energy gain:  $\delta \Omega = \Omega(\Delta) \Omega(0)$
- simplifications: neglect antiparticles, T = 0

→ 
$$\Omega(\Delta) = -\frac{2}{\pi^2} \int p^2 dp \sqrt{(p-\mu)^2 + |\Delta|^2} + \frac{|\Delta|^2}{4H}$$

gap equation:

-

$$\frac{\partial\Omega}{\partial\Delta^*} = -\frac{1}{\pi^2} \int p^2 dp \, \frac{\Delta}{\sqrt{(p-\mu)^2 + |\Delta|^2}} + \frac{\Delta}{4H} = 0$$
  
$$\Rightarrow \, \delta\Omega = -\frac{2}{\pi^2} \int p^2 dp \, \left(\frac{(p-\mu)^2 + \frac{1}{2}|\Delta|^2}{\sqrt{(p-\mu)^2 + |\Delta|^2}} - |p-\mu|\right)$$

• integrand strongly peaked at  $|\vec{p}| = \mu \rightarrow \int p^2 dp \approx \mu^2 \int dp$ 

- free energy gain:  $\delta \Omega = \Omega(\Delta) \Omega(0)$ 
  - simplifications: neglect antiparticles, T = 0

→ 
$$\Omega(\Delta) = -\frac{2}{\pi^2} \int p^2 dp \sqrt{(p-\mu)^2 + |\Delta|^2} + \frac{|\Delta|^2}{4H}$$

gap equation:

$$\frac{\partial\Omega}{\partial\Delta^*} = -\frac{1}{\pi^2} \int p^2 \, dp \, \frac{\Delta}{\sqrt{(p-\mu)^2 + |\Delta|^2}} + \frac{\Delta}{4H} = 0$$

$$\Rightarrow \delta\Omega = -\frac{2}{\pi^2} \int p^2 dp \left( \frac{(p-\mu)^2 + \frac{1}{2}|\Delta|^2}{\sqrt{(p-\mu)^2 + |\Delta|^2}} - |p-\mu| \right)$$

• integrand strongly peaked at  $|\vec{p}| = \mu \Rightarrow \int p^2 dp \approx \mu^2 \int dp$ 

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Taylor expansion of the remaining integral in  $\Delta$ 

$$\bullet$$
  $-\delta\Omega\propto\mu^2\Delta^2$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Thermodynamic quantities

- standard thermodynamic relations:
  - pressure:  $p = -\Omega$
  - density:  $n = -\frac{\partial \Omega}{\partial \mu}$
  - entropy density:  $s = -\frac{\partial \Omega}{\partial T}$
  - energy density:  $\varepsilon = -p + Ts + \mu n$



• realistic quark masses:  $M_u, M_d \ll M_s < \infty$ 

→ unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 - M_a^2}$ 





• realistic quark masses:  $M_u, M_d \ll M_s < \infty$ 

→ unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 - M_a^2}$ 

- recall argument about Cooper instability:
  - pairing close to the Fermi surface (no free energy cost for pair creation)



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@



• realistic quark masses:  $M_u, M_d \ll M_s < \infty$ 

→ unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 - M_a^2}$ 

- recall argument about Cooper instability:
  - pairing close to the Fermi surface (no free energy cost for pair creation)
- Cooper pairs in BCS theory:
  - opposite momenta





• realistic quark masses:  $M_u, M_d \ll M_s < \infty$ 

→ unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 - M_a^2}$ 

- recall argument about Cooper instability:
  - pairing close to the Fermi surface (no free energy cost for pair creation)
- Cooper pairs in BCS theory:
  - opposite momenta

• unequal Fermi momenta: 
$$p_F^{a,b} = \bar{p}_F \pm \delta p_F$$

#### free energy





• realistic quark masses:  $M_u, M_d \ll M_s < \infty$ 

→ unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 - M_a^2}$ 

- recall argument about Cooper instability:
  - pairing close to the Fermi surface (no free energy cost for pair creation)
- Cooper pairs in BCS theory:
  - opposite momenta

• unequal Fermi momenta: 
$$p_F^{a,b} = \bar{p}_F \pm \delta p_F$$

#### free energy





• realistic quark masses:  $M_u, M_d \ll M_s < \infty$ 

→ unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 - M_a^2}$ 

- recall argument about Cooper instability:
  - pairing close to the Fermi surface (no free energy cost for pair creation)
- Cooper pairs in BCS theory:
  - opposite momenta

• unequal Fermi momenta: 
$$p_F^{a,b} = \bar{p}_F \pm \delta p_F$$

#### free energy





- realistic quark masses:  $M_{\mu}, M_{d} \ll M_{s} < \infty$ 
  - → unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 M_a^2}$
- recall argument about Cooper instability:
  - pairing close to the Fermi surface (no free energy cost for pair creation)
- Cooper pairs in BCS theory:
  - opposite momenta
- unequal Fermi momenta:
  - BCS pairing favored if

$$p_F^{a,b} = \bar{p}_F \pm \delta p_F$$

 $E_{binding} > E_{pair\ creation}$ 

#### free energy







- realistic quark masses:  $M_u, M_d \ll M_s < \infty$ 
  - → unequal Fermi momenta,  $p_F^a = \sqrt{\mu^2 M_a^2}$
- recall argument about Cooper instability:
  - pairing close to the Fermi surface (no free energy cost for pair creation)
- Cooper pairs in BCS theory:
  - opposite momenta
- unequal Fermi momenta:  $p_F^{a,b}$  =
  - BCS pairing favored if
  - approximately:

$$p_F^{a,b} = \bar{p}_F \pm \delta p_F$$

 $E_{binding} > E_{pair\ creation}$  $\frac{\Delta}{\sqrt{2}} \gtrsim \delta p_F$ 

#### free energy







• precondition for standard BCS pairing:

$$|p_F^a - p_F^b| \lesssim \sqrt{2} \Delta_{ab}$$

- Fermi momenta:  $p_F = \sqrt{\mu^2 M^2}$
- realistic quark masses:  $M_s \gg M_d \approx M_u$



precondition for standard BCS pairing:

$$|p_F^a - p_F^b| \lesssim \sqrt{2} \Delta_{ab}$$

- Fermi momenta:  $p_F = \sqrt{\mu^2 M^2}$
- realistic quark masses:  $M_s \gg M_d \approx M_u$
- case 1: high densities  $\mu \gg M_s \Rightarrow p_F^s \approx p_F^d \approx p_F^u \Rightarrow \mathsf{CFL}$





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• precondition for standard BCS pairing:

$$|p_F^a - p_F^b| \lesssim \sqrt{2} \Delta_{ab}$$

• Fermi momenta: 
$$p_F = \sqrt{\mu^2 - M^2}$$

• realistic quark masses:  $M_s \gg M_d \approx M_u$ 



• case 2: moderate densities  

$$M_s \gtrsim \mu \gg M_{u,d} \rightarrow p_F^s \ll p_F^d \approx p_F^u \rightarrow 2SC$$



ഒ

• precondition for standard BCS pairing:

$$|p_F^a - p_F^b| \lesssim \sqrt{2} \Delta_{ab}$$

• Fermi momenta:  $p_F = \sqrt{\mu^2 - M^2}$ 

• realistic quark masses:  $M_s \gg M_d \approx M_u$ 

• <u>case 1</u>: high densities  $\mu \gg M_s \Rightarrow p_F^s \approx p_F^d \approx p_F^u \Rightarrow CFL$ 

• case 2: moderate densities  

$$M_s \gtrsim \mu \gg M_{u,d} \rightarrow p_F^s \ll p_F^d \approx p_F^u \rightarrow 2SC$$



K. Rajagopal (1999)

ഭ

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ക



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- quark star or quark core of a neutron star:
  - quarks (u, d, s) + leptons
  - after a few minutes: neutrinos untrapped



- quark star or quark core of a neutron star:
  - quarks (u, d, s) + leptons
  - after a few minutes: neutrinos untrapped
- additional constraints:
  - $\beta$  equilibrium:  $d, s \leftrightarrow u + e^- + \bar{\nu}_e \rightarrow \mu_d = \mu_s = \mu_u + \mu_e$

(日) (日) (日) (日) (日) (日) (日)

- electric neutrality:  $n_Q = \frac{2}{3}n_u \frac{1}{3}n_d \frac{1}{3}n_s n_e = 0$
- color singletness  $\rightarrow$  color neutrality:  $n_r = n_g = n_b$

#### Compact star matter

• guark star or guark core of a neutron star:

- quarks (u, d, s) + leptons
- after a few minutes: neutrinos untrapped
- additional constraints:

•  $\beta$  equilibrium:  $d, s \leftrightarrow u + e^- + \bar{\nu}_e \rightarrow \mu_d = \mu_s = \mu_u + \mu_e$ 

• electric neutrality:  $n_0 = \frac{2}{3}n_u - \frac{1}{3}n_d - \frac{1}{3}n_s - n_e = 0$ 

• color singletness  $\rightarrow$  color neutrality:  $n_r = n_g = n_b$ 

• four conserved charges; densities:  $n_r$ ,  $n_g$ ,  $n_b$ ,  $n_Q$ 

$$\Rightarrow n = n_r + n_g + n_b, \quad n_3 = n_r - n_g, \quad n_8 = \frac{1}{\sqrt{3}}(n_r + n_g - 2n_b), \quad n_Q$$

→ four independent chemical potentials:  $\mu$ ,  $\mu_3$ ,  $\mu_8$ ,  $\mu_Q$ 



- QCD (after gauge-fixing):
  - homogeneous color superconducting ground state automatically color neutralized by gluon background (A<sup>0</sup><sub>a</sub>)



- QCD (after gauge-fixing):
  - homogeneous color superconducting ground state automatically color neutralized by gluon background (A<sup>0</sup><sub>a</sub>)
- NJL model:
  - no gluons → introduce "color chemical potentials" by hand:

$$\mathcal{L} = \bar{q}(i\partial \!\!\!/ + \mu_a \lambda_a \gamma^0 - \hat{m})q + \dots \qquad \Rightarrow \qquad \mu_a \equiv g \langle A_a^0 \rangle$$

- QCD (after gauge-fixing):
  - homogeneous color superconducting ground state automatically color neutralized by gluon background  $\langle A_a^0 \rangle$
- NJL model:
  - no gluons → introduce "color chemical potentials" by hand:

$$\mathcal{L} = \bar{q}(i\partial \!\!\!/ + \mu_a \lambda_a \gamma^0 - \hat{m})q + \dots \qquad \Rightarrow \qquad \mu_a \equiv g \langle A_a^0 \rangle$$

• color neutrality:

$$n_a = \langle q^{\dagger} \lambda_a q \rangle = - \frac{\partial \Omega}{\partial \mu_a} = 0 , \qquad a = 1, \dots, 8$$

includes non-diagonal  $\lambda_a$  !



- QCD (after gauge-fixing):
  - homogeneous color superconducting ground state automatically color neutralized by gluon background (A<sup>0</sup><sub>a</sub>)
- NJL model:
  - no gluons → introduce "color chemical potentials" by hand:

$$\mathcal{L} = \bar{q}(i\partial \!\!\!/ + \mu_a \lambda_a \gamma^0 - \hat{m})q + \dots \qquad \Rightarrow \qquad \mu_a \equiv g \langle A_a^0 \rangle$$

• color neutrality:

$$n_a = \langle q^{\dagger} \lambda_a q \rangle = - \frac{\partial \Omega}{\partial \mu_a} = 0 , \qquad a = 1, \dots, 8$$

includes non-diagonal  $\lambda_a$  !

(ロ) (同) (三) (三) (三) (○) (○)

• standard phases: only  $\mu_3, \mu_8 \neq 0$  are needed  $\checkmark$ 

- QCD (after gauge-fixing):
  - homogeneous color superconducting ground state automatically color neutralized by gluon background (A<sup>0</sup><sub>a</sub>)
- NJL model:
  - no gluons → introduce "color chemical potentials" by hand:

$$\mathcal{L} = \bar{q}(i\partial \!\!\!/ + \mu_a \lambda_a \gamma^0 - \hat{m})q + \dots$$
  $\Rightarrow$   $\mu_a \equiv g \langle A_a^0 \rangle$ 

• color neutrality:

$$n_a = \langle q^{\dagger} \lambda_a q \rangle = - \frac{\partial \Omega}{\partial \mu_a} = 0 , \qquad a = 1, \dots, 8$$

- includes non-diagonal  $\lambda_a$  !
- standard phases: only  $\mu_3, \mu_8 \neq 0$  are needed  $\checkmark$ but one should always check ...

### Neutral quark matter

- o constraints in compact stars:
  - color neutrality:  $n_3 = n_8 = 0$ • electric neutrality:  $n_5 = \frac{2}{n} = \frac{1}{n} = \frac{1}{n} = n$
  - electric neutrality:  $n_Q = \frac{2}{3}n_u \frac{1}{3}n_d \frac{1}{3}n_s n_e = 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

•  $\beta$  equilibrium:  $\mu_e = \mu_d - \mu_u \Rightarrow n_e \ll n_{u,d}$ 



#### o constraints in compact stars:

- color neutrality: (minor effect)
- electric neutrality:
- $\beta$  equilibrium:

$$\frac{2}{3}n_u-\frac{1}{3}n_d-\frac{1}{3}n_s\approx 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで



- o constraints in compact stars:
  - color neutrality: (minor effect)
  - electric neutrality:
  - $\beta$  equilibrium:

$$\frac{2}{3}n_u-\frac{1}{3}n_d-\frac{1}{3}n_s\approx 0$$

• consequence: all flavors have different Fermi momenta




- o constraints in compact stars:
  - color neutrality: (minor effect)
  - electric neutrality:
  - $\beta$  equilibrium:

$$\frac{2}{3}n_u-\frac{1}{3}n_d-\frac{1}{3}n_s\approx 0$$

\_\_\_\_\_ d

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• consequence: all flavors have different Fermi momenta

• 
$$\mu \gg M_s \Rightarrow n_d \approx n_u \approx n_s \Rightarrow \mathsf{CFL}$$

# Neutral quark matter

- o constraints in compact stars:
  - color neutrality: (minor effect)
  - electric neutrality:
  - $\beta$  equilibrium:

$$\frac{2}{3}n_u-\frac{1}{3}n_d-\frac{1}{3}n_s\approx 0$$

- consequence: all flavors have different Fermi momenta
- $\mu \gg M_s \Rightarrow n_d \approx n_u \approx n_s \Rightarrow \mathsf{CFL}$
- $\mu \lesssim M_s \rightarrow n_d \approx 2n_u$ no 2SC in compact stars ?



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Neutral quark matter

- o constraints in compact stars:
  - color neutrality: (minor effect)
  - electric neutrality:
  - $\beta$  equilibrium:

$$\frac{2}{3}n_u-\frac{1}{3}n_d-\frac{1}{3}n_s\approx 0$$

- consequence: all flavors have different Fermi momenta
- $\mu \gg M_s \Rightarrow n_d \approx n_u \approx n_s \Rightarrow \mathsf{CFL}$
- $\mu \lesssim M_s \rightarrow n_d \approx 2n_u$ no 2SC in compact stars ? M. Alford, K. Rajagopal, JHEP (2002)

strong coupling: 2SC possible !



- - Lagrangian:  $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{\bar{q}q} + \mathcal{L}_{qq}$ 
    - free part:  $\mathcal{L}_0 = \bar{q}(i\partial \!\!\!/ \hat{m})q$ ,  $\hat{m} = diag_f(m_u, m_d, m_s)$
    - quark-quark interaction:

$$\mathcal{L}_{qq} = H \sum_{A,A'} \left( \bar{q} \, i \gamma_5 \tau_A \lambda_{A'} \, C \bar{q}^T \right) \left( q^T C \, i \gamma_5 \tau_A \lambda_{A'} \, q \right)$$

• standard SU(3) quark-antiquark interaction:

$$\mathcal{L}_{\bar{q}q} = G \sum_{a=0}^{8} \left\{ (\bar{q}\tau_a q)^2 + (\bar{q}i\gamma_5\tau_a q)^2 \right\} - K \left\{ \det_f \left( \bar{q}(1+\gamma_5)q \right) + \det_f \left( \bar{q}(1-\gamma_5)q \right) \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Lagrangian:  $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{\bar{a}a} + \mathcal{L}_{aa}$ 
  - free part:  $\mathcal{L}_0 = \bar{q}(i\partial \hat{m})q$ ,  $\hat{m} = diag_f(m_u, m_d, m_s)$
  - quark-quark interaction:

$$\mathcal{L}_{qq} = H \sum_{A,A'} \left( \bar{q} \, i \gamma_5 \tau_A \lambda_{A'} \, C \bar{q}^T \right) \left( q^T C \, i \gamma_5 \tau_A \lambda_{A'} \, q \right)$$

standard SU(3) quark-antiquark interaction:

$$\mathcal{L}_{\bar{q}q} = G \sum_{a=0}^{8} \left\{ (\bar{q}\tau_a q)^2 + (\bar{q}i\gamma_5\tau_a q)^2 \right\} - K \left\{ \det_f \left( \bar{q}(1+\gamma_5)q \right) + \det_f \left( \bar{q}(1-\gamma_5)q \right) \right\}$$

- mean-field approximation:
  - qq-condensates:  $\langle ud \rangle$ ,  $\langle us \rangle$ ,  $\langle ds \rangle \leftrightarrow$  diquark gaps
  - $\bar{q}q$ -condensates:  $\langle \bar{u}u \rangle$ ,  $\langle \bar{d}d \rangle$ ,  $\langle \bar{s}s \rangle \leftrightarrow$  dynamical masses



NJL model without imposing neutrality



• quark phases at T=0:  $(\chi SB \rightarrow) 2SC \rightarrow CFL$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



- NJL model with neutrality constraints (assuming homogeneous phases)
  - "strong diquark coupling": H = G



- quark phases at T=0:
  - "strong coupling":  $2SC \rightarrow CFL$

also: Blaschke, Fredrikson, Grigorian, Öztaş, Sandin, PRD (2005); Abuki & Kunihiro, NPA (2006).



- NJL model with neutrality constraints (assuming homogeneous phases)
- "intermediate diquark coupling": H = 0.75 G



- quark phases at T=0:
  - "strong coupling":  $2SC \rightarrow CFI$
  - "intermediate coupling": *normal* → gCFL → CFL
    - no 2SC!
    - gapless phases

also: Blaschke, Fredrikson, Grigorian, Öztaş, Sandin, PRD (2005); Abuki & Kunihiro, NPA (2006).

• unequal Fermi momenta:





◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• unequal Fermi momenta:

 $p_F^{a,b} = \bar{p}_F \pm \delta p_F$ 

• splitting of the quasiparticle modes:

$$\omega_- \to \omega_-(\bar{p}_F) \pm \delta p_F$$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• unequal Fermi momenta:

 $p_F^{a,b} = \bar{p}_F \pm \delta p_F$ 

• splitting of the quasiparticle modes:

$$\omega_{-} \rightarrow \omega_{-}(\bar{p}_{F}) \pm \delta p_{F}$$

•  $\delta p_F > \Delta \rightarrow$  gapless modes



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

unequal Fermi momenta:

 $p_F^{a,b} = \bar{p}_F \pm \delta p_F$ 

• splitting of the quasiparticle modes:

$$\omega_{-} \to \omega_{-}(\bar{p}_F) \pm \delta p_F$$

- $\delta p_F > \Delta \rightarrow$  gapless modes
- gapless 2SC phase (g2SC)
  - unstable at fixed µ<sub>Q</sub>
  - can be most favored neutral homogeneous solution



I. Shovkovy, M. Huang, PLB (2003).

unequal Fermi momenta:

 $p_F^{a,b} = \bar{p}_F \pm \delta p_F$ 

• splitting of the quasiparticle modes:

$$\omega_{-} \to \omega_{-}(\bar{p}_F) \pm \delta p_F$$

- $\delta p_F > \Delta \rightarrow$  gapless modes
- gapless 2SC phase (g2SC)
  - unstable at fixed µ<sub>Q</sub>
  - can be most favored neutral homogeneous solution
- similar solutions for CFL, uSC, etc.



I. Shovkovy, M. Huang, PLB (2003).

#### ・ロト・(部・・用・・日・・日・ のへぐ

Alford, Kouvaris, Rajagopal, PRL (2004).

• unequal Fermi momenta:

 $p_F^{a,b} = \bar{p}_F \pm \delta p_F$ 

• splitting of the quasiparticle modes:

$$\omega_- \to \omega_-(\bar{p}_F) \pm \delta p_F$$

- $\delta p_F > \Delta \rightarrow$  gapless modes
- gapless 2SC phase (g2SC)
  - unstable at fixed  $\mu_Q$
  - can be most favored neutral homogeneous solution
- similar solutions for CFL, uSC, etc.
- problem: imaginary Meissner masses → instability !



Alford, Kouvaris, Rajagopal, PRL (2004).

(日) (日) (日) (日) (日) (日) (日)

I. Shovkovy, M. Huang, PLB (2003).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

## Inhomogeneous phases

 alternative to BCS pairing: pairs with nonzero total momentum

→  $p_F^a \neq p_F^b$  no problem

#### Inhomogeneous phases

 alternative to BCS pairing: pairs with nonzero total momentum

→  $p_F^a \neq p_F^b$  no problem

- FF (Fulde, Ferrell, 1964):
  - single plane wave
    - $\langle q(\vec{x})q(\vec{x})
      angle\sim\Delta\,e^{2i\vec{q}\cdot\vec{x}}~~{\rm for~fixed}~\vec{q}$
  - disfavored by phase space



#### Inhomogeneous phases

 alternative to BCS pairing: pairs with nonzero total momentum

→  $p_F^a \neq p_F^b$  no problem

- FF (Fulde, Ferrell, 1964):
  - single plane wave
    - $\langle q(\vec{x})q(\vec{x}) \rangle \sim \Delta e^{2i\vec{q}\cdot\vec{x}}$  for fixed  $\vec{q}$
  - disfavored by phase space
- LO (Larkin, Ovchinnikov, 1964):
  - multiple plane waves (e.g.,  $\cos(2\vec{q} \cdot \vec{x})$ )





• Model Lagrangian with NJL-type qq interaction:

$$egin{aligned} \mathcal{L} &= ar{q} \left( i \partial \!\!\!/ + \hat{\mu} \gamma^0 
ight) q + \mathcal{L}_{int} \ \mathcal{L}_{int} &= H \sum_{A,A'=2,5,7} (ar{q} \, i \gamma_5 au_A \lambda_{A'} \, q_c) (ar{q}_c \, i \gamma_5 au_A \lambda_{A'} \, q) \,, \qquad q_c = C ar{q}^T \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



Model Lagrangian with NJL-type qq interaction:

• bosonize:  $\varphi_{AA'}(x) = -2H \bar{q}_c(x) \gamma_5 \tau_A \lambda_{A'} q(x)$  $\Rightarrow \quad \mathcal{L}_{int} = \frac{1}{2} \sum_{A,A'} \left\{ \left( \bar{q} \gamma_5 \tau_A \lambda_{A'} q_c \right) \varphi_{AA'} + h.c. - \frac{1}{2H} \varphi_{AA'}^{\dagger} \varphi_{AA'} \right\}$ 



• Model Lagrangian with NJL-type qq interaction:

• bosonize: 
$$\varphi_{AA'}(x) = -2H \bar{q}_c(x) \gamma_5 \tau_A \lambda_{A'} q(x)$$
  
 $\Rightarrow \quad \mathcal{L}_{int} = \frac{1}{2} \sum_{A,A'} \left\{ \left( \bar{q} \gamma_5 \tau_A \lambda_{A'} q_c \right) \varphi_{AA'} + h.c. - \frac{1}{2H} \varphi_{AA'}^{\dagger} \varphi_{AA'} \right\}$ 

mean-field approximation:

$$\langle \varphi_{AA'}(x) \rangle = \Delta_A(x) \,\delta_{AA'} \,, \qquad \langle \varphi^{\dagger}_{AA'}(x) \rangle = \Delta^*_A(x) \,\delta_{AA'}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\Delta_A(x)$  *classical* fields
- retain space-time dependence!

## Mean-field model

#### • Lagrangian:

$$\mathcal{L}_{MF}(x) = \bar{\Psi}(x) S^{-1}(x) \Psi(x) - \frac{1}{4H} \sum_{A} |\Delta_A(x)|^2$$
Nambu-Gor'kov bispinors:  $\Psi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} q(x) \\ q_c(x) \end{pmatrix}$ 

inverse dressed propagator:

$$S^{-1}(x) = \begin{pmatrix} i\partial \!\!\!/ + \hat{\mu}\gamma^0 & \hat{\Delta}(x)\gamma_5 \\ -\hat{\Delta}^*(x)\gamma_5 & i\partial \!\!\!/ - \hat{\mu}\gamma^0 \end{pmatrix}, \quad \hat{\Delta}(x) := \sum_A \Delta_A(x)\tau_A\lambda_A$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Mean-field model

• Lagrangian:

•

$$\mathcal{L}_{MF}(x) = \bar{\Psi}(x) S^{-1}(x) \Psi(x) - \frac{1}{4H} \sum_{A} |\Delta_A(x)|^2$$
Nambu-Gor'kov bispinors:  $\Psi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} q(x) \\ q_c(x) \end{pmatrix}$ 

inverse dressed propagator:

$$S^{-1}(x) = \begin{pmatrix} i\partial \!\!\!/ + \hat{\mu}\gamma^0 & \hat{\Delta}(x)\gamma_5 \\ -\hat{\Delta}^*(x)\gamma_5 & i\partial \!\!\!/ - \hat{\mu}\gamma^0 \end{pmatrix}, \quad \hat{\Delta}(x) := \sum_A \Delta_A(x)\tau_A\lambda_A$$

• Thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{1}{2} \frac{T}{V} \text{Tr} \ln \frac{S^{-1}}{T} + \frac{T}{V} \sum_{A} \int_{[0,\frac{1}{T}] \otimes V} d^4x \frac{|\Delta_A(x)|^2}{4H}$$

• Tr ln S<sup>-1</sup> nontrivial because of *x*-dependent gap functions!



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• gap functions: time-independent, periodic in space  $\hat{\Delta}(x) \equiv \hat{\Delta}(\vec{x}) = \hat{\Delta}(\vec{x} + \vec{a}_i), \quad i = 1, 2, 3$ 



(日) (日) (日) (日) (日) (日) (日)

- gap functions: time-independent, periodic in space  $\hat{\Delta}(x) \equiv \hat{\Delta}(\vec{x}) = \hat{\Delta}(\vec{x} + \vec{a}_i), \quad i = 1, 2, 3$
- Fourier decomposition:

$$\hat{\Delta}(x) = \sum_{q_k} \hat{\Delta}_{q_k} e^{-iq_k \cdot x}, \qquad q_k = \begin{pmatrix} 0 \\ \vec{q}_k \end{pmatrix}, \quad \frac{\vec{q}_k \cdot \vec{a}_i}{2\pi} \in \mathbb{Z}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Crystalline ansatz

- gap functions: time-independent, periodic in space  $\hat{\Delta}(x) \equiv \hat{\Delta}(\vec{x}) = \hat{\Delta}(\vec{x} + \vec{a}_i), \quad i = 1, 2, 3$
- Fourier decomposition:

$$\hat{\Delta}(x) = \sum_{q_k} \hat{\Delta}_{q_k} e^{-iq_k \cdot x}, \qquad q_k = \begin{pmatrix} 0 \\ \vec{q}_k \end{pmatrix}, \quad \frac{\vec{q}_k \cdot \vec{a}_i}{2\pi} \in \mathbb{Z}$$

inverse propagator:

$$S_{p_m,p_n}^{-1} = \begin{pmatrix} (\not\!p_n + \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} & \sum_{q_k} \hat{\Delta}_{q_k} \delta_{q_k,p_m-p_n} \gamma_5 \\ -\sum_{q_k} \hat{\Delta}_{q_k}^* \delta_{q_k,p_n-p_m} \gamma_5 & (\not\!p_n - \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} \end{pmatrix}$$

## Crystalline ansatz

- gap functions: time-independent, periodic in space  $\hat{\Delta}(x) \equiv \hat{\Delta}(\vec{x}) = \hat{\Delta}(\vec{x} + \vec{a}_i), \quad i = 1, 2, 3$
- Fourier decomposition:

$$\hat{\Delta}(x) = \sum_{q_k} \hat{\Delta}_{q_k} e^{-iq_k \cdot x}, \qquad q_k = \begin{pmatrix} 0 \\ \vec{q}_k \end{pmatrix}, \quad rac{\vec{q}_k \cdot \vec{a}_i}{2\pi} \in \mathbb{Z}$$

inverse propagator:

$$S_{p_m,p_n}^{-1} = \begin{pmatrix} (\not\!p_n + \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} & \sum_{q_k} \hat{\Delta}_{q_k} \delta_{q_k,p_m-p_n}\gamma_5 \\ -\sum_{q_k} \hat{\Delta}_{q_k}^* \delta_{q_k,p_n-p_m}\gamma_5 & (\not\!p_n - \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} \end{pmatrix}$$

condensates couple different momenta!



## Crystalline ansatz

- gap functions: time-independent, periodic in space  $\hat{\Delta}(x) \equiv \hat{\Delta}(\vec{x}) = \hat{\Delta}(\vec{x} + \vec{a}_i), \quad i = 1, 2, 3$
- Fourier decomposition:

$$\hat{\Delta}(x) = \sum_{q_k} \hat{\Delta}_{q_k} \, e^{-iq_k \cdot x} \,, \qquad q_k = \begin{pmatrix} 0 \\ \vec{q}_k \end{pmatrix} \,, \quad rac{\vec{q}_k \cdot \vec{a}_i}{2\pi} \in \mathbb{Z}$$

inverse propagator:

$$S_{p_m,p_n}^{-1} = \begin{pmatrix} (\not\!p_n + \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} & \sum_{q_k} \hat{\Delta}_{q_k} \delta_{q_k,p_m-p_n} \gamma_5 \\ -\sum_{q_k} \hat{\Delta}_{q_k}^* \delta_{q_k,p_n-p_m} \gamma_5 & (\not\!p_n - \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} \end{pmatrix}$$

condensates couple different momenta!



- - gap functions: time-independent, periodic in space  $\hat{\Delta}(x) \equiv \hat{\Delta}(\vec{x}) = \hat{\Delta}(\vec{x} + \vec{a}_i), \quad i = 1, 2, 3$
  - Fourier decomposition:

$$\hat{\Delta}(x) = \sum_{q_k} \hat{\Delta}_{q_k} \, e^{-iq_k \cdot x} \,, \qquad q_k = \begin{pmatrix} 0 \\ \vec{q}_k \end{pmatrix} \,, \quad rac{\vec{q}_k \cdot \vec{a}_i}{2\pi} \in \mathbb{Z}$$

• inverse propagator:

$$S_{p_m,p_n}^{-1} = \begin{pmatrix} (\not\!p_n + \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} & \sum_{q_k} \hat{\Delta}_{q_k} \delta_{q_k,p_m-p_n}\gamma_5 \\ -\sum_{q_k} \hat{\Delta}_{q_k}^* \delta_{q_k,p_n-p_m}\gamma_5 & (\not\!p_n - \hat{\mu}\gamma^0) \,\delta_{p_m,p_n} \end{pmatrix}$$

- condensates couple different momenta!
- diagonal in energy → Matsubara sum as usual

 $\Delta_{q_1}$ 

p<sub>m</sub>

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



• The inverse propagator can be put into the form

$$S_{p_m,p_n}^{-1} = \gamma^0 \left( i\omega_{p_n} - \mathcal{H}_{\vec{p}_m,\vec{p}_n} \right) \delta_{\omega_{p_m},\omega_{p_n}}$$

- $\mathcal{H} = effective Hamilton operator$ 
  - *ω<sub>n</sub>* independent
  - not diagonal in 3-momentum
  - hermitean → can be diagonalized (in principle)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• The inverse propagator can be put into the form

$$S_{p_m,p_n}^{-1} = \gamma^0 \left( i\omega_{p_n} - \mathcal{H}_{\vec{p}_m,\vec{p}_n} \right) \delta_{\omega_{p_m},\omega_{p_n}}$$

- $\mathcal{H} = effective Hamilton operator$ 
  - $\omega_n$  independent
  - not diagonal in 3-momentum
  - hermitean → can be diagonalized (in principle)
- thermodynamic potential:

$$\Omega_{MF} = -\frac{1}{4V} \sum_{\lambda} \left[ E_{\lambda} + 2T \ln \left( 1 + 2e^{-E_{\lambda}/T} \right) \right] + \sum_{A} \sum_{q_k} \frac{|\Delta_{A,q_k}|^2}{4H}$$

•  $E_{\lambda}$ : eigenvalues of  $\mathcal{H}$ 

## Thermodynamic potential

• remaining problem: diagonalize  $\mathcal{H}$ 

$$\mathcal{H}_{\vec{p}_m,\vec{p}_n} = \begin{pmatrix} (\gamma^0 \vec{p}_n - \hat{\mu}) \, \delta_{\vec{p}_m,\vec{p}_n} & -\sum_{\vec{q}_k} \hat{\Delta}_{q_k} \gamma^0 \gamma_5 \, \delta_{\vec{q}_k,\vec{p}_m - \vec{p}_n} \\ \sum_{\vec{q}_k} \hat{\Delta}_{q_k}^* \gamma_0 \gamma_5 \, \delta_{\vec{q}_k,\vec{p}_n - \vec{p}_m} & (\gamma^0 \vec{p}_n + \hat{\mu}) \, \delta_{\vec{p}_m,\vec{p}_n} \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Thermodynamic potential

• remaining problem: diagonalize  $\mathcal{H}$ 

$$\mathcal{H}_{\vec{p}_m,\vec{p}_n} = \begin{pmatrix} (\gamma^0 \vec{p}_n - \hat{\mu}) \, \delta_{\vec{p}_m,\vec{p}_n} & -\sum_{\vec{q}_k} \hat{\Delta}_{q_k} \gamma^0 \gamma_5 \, \delta_{\vec{q}_k,\vec{p}_m - \vec{p}_n} \\ \sum_{\vec{q}_k} \hat{\Delta}^*_{q_k} \gamma_0 \gamma_5 \, \delta_{\vec{q}_k,\vec{p}_n - \vec{p}_m} & (\gamma^0 \vec{p}_n + \hat{\mu}) \, \delta_{\vec{p}_m,\vec{p}_n} \end{pmatrix}$$

- $\vec{q}_k$  form a discrete "reciprocal lattice"
- → *H* is block diagonal in momentum space (one block *H*(*k*) for each vector *k* in the Brioullin zone)

(日) (日) (日) (日) (日) (日) (日)

# Thermodynamic potential

• remaining problem: diagonalize  $\mathcal{H}$ 

$$\mathcal{H}_{\vec{p}_m,\vec{p}_n} = \begin{pmatrix} (\gamma^0 \vec{p}_n - \hat{\mu}) \, \delta_{\vec{p}_m,\vec{p}_n} & -\sum_{\vec{q}_k} \hat{\Delta}_{q_k} \gamma^0 \gamma_5 \, \delta_{\vec{q}_k,\vec{p}_m - \vec{p}_n} \\ \sum_{\vec{q}_k} \hat{\Delta}^*_{q_k} \gamma_0 \gamma_5 \, \delta_{\vec{q}_k,\vec{p}_n - \vec{p}_m} & (\gamma^0 \vec{p}_n + \hat{\mu}) \, \delta_{\vec{p}_m,\vec{p}_n} \end{pmatrix}$$

- $\vec{q}_k$  form a discrete "reciprocal lattice"
- → *H* is block diagonal in momentum space (one block *H*(*k*) for each vector *k* in the Brioullin zone)
- ➔ We finally obtain:

$$\Omega_{MF} = -\frac{1}{4} \int_{B.Z.} \frac{d^{3}k}{(2\pi)^{3}} \sum_{\lambda} \left[ E_{\lambda}(\vec{k}) + 2T \ln\left(1 + 2e^{-E_{\lambda}(\vec{k})/T}\right) \right] + \sum_{A} \sum_{q_{k}} \frac{|\Delta_{A,q_{k}}|^{2}}{4H}$$

•  $E_{\lambda}(\vec{k})$ : eigenvalues of  $\mathcal{H}(\vec{k})$ .



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- consider only 2SC-like pairing
  - → strange quarks and blue quarks decouple

- consider only 2SC-like pairing
  - strange guarks and blue guarks decouple
- chemical potentials:  $\mu_u = \bar{\mu} + \delta \mu$ ,  $\mu_d = \bar{\mu} \delta \mu$

- consider only 2SC-like pairing
  - → strange quarks and blue quarks decouple
- chemical potentials:  $\mu_u = \bar{\mu} + \delta \mu$ ,  $\mu_d = \bar{\mu} \delta \mu$
- high-density approximations to simplify Dirac structure

(日) (日) (日) (日) (日) (日) (日)
- consider only 2SC-like pairing
  - → strange quarks and blue quarks decouple
- chemical potentials:  $\mu_u = \bar{\mu} + \delta \mu$ ,  $\mu_d = \bar{\mu} \delta \mu$
- high-density approximations to simplify Dirac structure
- remaining diagonalization problem:

$$(\mathcal{H}_{\Delta,\delta\mu})_{\vec{p}_m,\vec{p}_n} = \begin{pmatrix} (p_m - \bar{\mu} - \delta\mu) \,\delta_{\vec{p}_m,\vec{p}_n} & \Delta_{p_m - p_n} \\ \Delta^*_{p_n - p_m} & -(p_m - \bar{\mu} + \delta\mu) \,\delta_{\vec{p}_m,\vec{p}_n} \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- unregularized expression for  $\Omega_{MF}$  divergent
  - ➔ needs to be regularized
- 3-momentum cutoff ?
- inhom. phases:  $\mathcal{H}$  depends on two momenta!
  - cut off both of them, e.g.,  $|\vec{p}_m|, |\vec{p}_n| \leq \Lambda$  ?
  - → strong regularization artifacts:
    - large  $|\vec{q}|$  suppressed, e.g.,  $|\vec{q}| < 2\Lambda$
    - violates "model independent" low-energy results

(日) (日) (日) (日) (日) (日) (日)

→ Pauli-Villars-like scheme:

$$F(E_{\lambda}) \rightarrow \sum_{j=0}^{2} F(E_{\lambda,j}), \qquad E_{\lambda,j}(\vec{k}) = \sqrt{E_{\lambda}^{2}(\vec{k}) + j\Lambda^{2}}$$

## Numerical investigation

- o crystal structure:
  - general problem (too) difficult
  - → consider one-dimensional modulations (in 3+1 D):

$$\Delta(z) = \sum_{k} \Delta_k \, e^{2ikqz}$$

• further restriction:  $\Delta(z) = \text{real} \quad \Leftrightarrow \quad \Delta_k = \Delta_{-k}^*$ 

・ロト・日本・日本・日本・日本・日本

## Numerical investigation

- o crystal structure:
  - general problem (too) difficult
  - → consider one-dimensional modulations (in 3+1 D):

$$\Delta(z) = \sum_{k} \Delta_k \, e^{2ikqz}$$

• further restriction:  $\Delta(z) = \text{real} \quad \Leftrightarrow \quad \Delta_k = \Delta_{-k}^*$ 

- external parameters:  $T, \bar{\mu}, \delta\mu$ 
  - here: T = 0,  $\bar{\mu} = 400 \text{ MeV} \rightarrow \text{only } \delta \mu \text{ is varied}$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

## step 1: minimize $\Omega$ at fixed q

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

## step 1: minimize $\Omega$ at fixed q

• example: 
$$\delta \mu = 0.7 \Delta_{BCS}$$



## step 1: minimize $\Omega$ at fixed q

• example:  $\delta \mu = 0.7 \Delta_{BCS}$ 



•  $q \gtrsim 0.5 \Delta_{BCS}$ : sinusoidal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# step 1: minimize $\Omega$ at fixed q

• example:  $\delta \mu = 0.7 \Delta_{BCS}$ 



- $q\gtrsim 0.5~\Delta_{BCS}$ : sinusoidal
- $q \lesssim 0.5 \Delta_{BCS}$ : soliton lattice
  - shape of transition region almost independent of q

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• amplitude  $\simeq \Delta_{BCS}$ 

## step 1: minimize $\Omega$ at fixed q

• example:  $\delta \mu = 0.7 \Delta_{BCS}$ 



• parametrization of the gap function:

$$\Delta(z) = A \operatorname{sn}(\kappa(z-z_0);\nu)$$

(works extremely well)

- $q \gtrsim 0.5 \Delta_{BCS}$ : sinusoidal
- $q \lesssim 0.5 \Delta_{BCS}$ : soliton lattice
  - shape of transition region almost independent of q

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• amplitude  $\simeq \Delta_{BCS}$ 

#### step 2: minimize $\Omega$ w.r.t. q

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

## step 2: minimize $\Omega$ w.r.t. q

#### • preferred q:



• inhom. - BCS:  $q \rightarrow 0$   $\rightarrow$  2nd order (FF - BCS: 1st order)!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## step 2: minimize $\Omega$ w.r.t. q

• preferred q:



- inhom. BCS:  $q \rightarrow 0$   $\rightarrow$  2nd order (FF BCS: 1st order)!
- inhom. normal: 1st order (FF normal:  $\Delta \rightarrow 0 \Rightarrow$  2nd order)!

#### amplitude:

amplitude:

## step 2: minimize $\Omega$ w.r.t. q

• preferred q:



- inhom. BCS:  $q \rightarrow 0$   $\rightarrow$  2nd order (FF BCS: 1st order)!
- inhom. normal: 1st order (FF normal:  $\Delta \rightarrow 0 \Rightarrow$  2nd order)!

• 
$$\Delta_{inhom.} \gg \Delta_{FF}$$

・ロト・日本・モート ヨー うへで

















amplitude: (0) [MeV] \_\_\_\_\_Δ<sub>1D</sub> 0.72 0.74 δμ/Δ<sub>BCS</sub> 0.78 preferred q: 0.6 50 0.4 \_\_\_\_\_ q\_{1D} ..... q\_{pp} 0.2 0.72 0.74 δμ/Δ<sub>BCS</sub> 0.76































amplitude:













< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### General one-dimensional solutions

#### • free-energy gain:



#### General one-dimensional solutions

#### free-energy gain:



• LO window  $\sim$  2  $\times$  FF window

▲口 > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• anisotropic dispersion relations:  $E_{\lambda}(\vec{k}) = E_{\lambda}(\vec{k}_{\perp}, k_z)$ 

### Quasiparticle spectra

- anisotropic dispersion relations:  $E_{\lambda}(\vec{k}) = E_{\lambda}(\vec{k}_{\perp}, k_{z})$
- typical examples at fixed  $k_{\perp}$ :



・ロット (雪) (日) (日) э.



• superposition of the eigenvalue spectra of all k<sub>z</sub>:



• "almost gapped" regions between low- and high-lying modes

• low-lying modes related to solitons:  $q \rightarrow 0 \Rightarrow E \rightarrow 0$ 



 gluon propagator from DSE + particle-hole corrections (Debye screening and Landau damping)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

include quark pairing



(Debye screening and Landau damping)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- include quark pairing
- features:
  - weak coupling limit for very large densities
  - contact to lattice results in vacuum
  - no free parameters

#### 

 gluon propagator from DSE + particle-hole corrections (Debye screening and Landau damping)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- include quark pairing
- features:
  - weak coupling limit for very large densities
  - contact to lattice results in vacuum
  - no free parameters
  - truncation
  - rather involved calculations ....

inhomogeneous phases

# DSE highlights: pairing gaps



moderate densities:

3 times larger than extrapolated weak coupling results

Nickel, Alkofer, Wambach, PRD (2006)

・ロト・西ト・西ト・西ト・日・ シック

## DSE highlights: role of the strange quark mass





◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# DSE highlights: role of the strange quark mass







## CFL + Goldstone phases

- CFL: chiral symmetry broken → Goldstone bosons
  - " $\pi$ ", "K", " $\eta$ " (by quantum numbers), but mainly diquarks

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• EFT prediction: very light,  $m \sim O(10 \text{ MeV})$ 

(Son & Stephanov, PRD 2000)

## CFL + Goldstone phases

- - " $\pi$ ", "K", " $\eta$ " (by quantum numbers), but mainly diquarks
  - EFT prediction: very light,  $m \sim O(10 \text{ MeV})$

(Son & Stephanov, PRD 2000)

• stress imposed by  $M_s \rightarrow K^0$  condensation

T. Schäfer, PRL (2000); Bedaque & Schäfer, NPA (2002).

- heuristic argument:  $p_F^s = \sqrt{\mu^2 M_s^2} \simeq \mu \frac{M_s^2}{2\mu}$ 
  - → effective strangeness chemical potential:  $\mu_s \simeq \frac{M_s^2}{2\mu}$
  - →  $K^0$  condensation if  $\mu_s > m_{K^0}$
### Goldstone bosons in the CFL phase

### • explicit construction in NJL:

Kleinhaus, M.B., Nickel, Oertel, PRD (2007)



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Goldstone bosons in the CFL phase

#### • explicit construction in NJL:



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Kleinhaus, M.B., Nickel, Oertel, PRD (2007)

#### meson masses



# Goldstone bosons in the CFL phase

• explicit construction in NJL:

Kleinhaus, M.B., Nickel, Oertel, PRD (2007)



meson masses







### CFL+Goldstone phases

• phase diagram:

include pseudoscalar diquark condensates

• result (for 
$$H = 0.75G$$
):

H. Warringa, hep-ph/0606063



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @



- M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Rev. Mod. Phys. 80, 1455 (2008)
- K. Rajagopal and F. Wilczek, hep-ph/0011333.
- M. Alford, Ann. Rev. Nucl. Part. Sci. 51, 131 (2001).
- T. Schäfer, hep-ph/0304281.
- D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004).
- M. Buballa, Phys. Rep. 407, 205 (2005).
- I. A. Shovkovy, Found. Phys. 35, 1309 (2005).
- Many others: Nardulli (2002), Ren (2004), Huang (2005), ...