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X1 = {E1, N1, V1, …}  => S1(X1)  

X2 = {E2, N2, V2, …}  => S2(X2)  

X = {E, N, V, …} = X1+X2+ …  

S = S1+S2+ …  

The combined system is in equilibrium 
provided S has a local maximum  -  
which requires δS = 0 and δ2S < 0: 

δV = 0  
δN = 0  
δE = 0  

=>  Only negative eigenvalues of the entropy curvature matrices: 

T1 = T2 = …  

p1 = p2 = …  
µ1 = µ2 = …  

δS: 

δ2S: 

Basic thermodynamics 
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Thermodynamics with no conserved charge: 

Control parameter(s) {X}:   
Volume V –› ∞ 

Energy E = Vε 

Entropy function S{X}: 

β = 1/T  =  ∂ES(E,V)  =  ∂εσ(ε)  

π = p/T   =  ∂VS(E,V)  = σ ‒ βε 
Derivative(s)  λX = ∂XS: 

Thermodynamic coexistence:   
 =>  T1 = T2   &  p1 = p2   

 Thermodynamic (local) stability:  δ2Stot < 0        
 =>  Entropy curvature ∂ε2σ  must be negative   

S(E,V) = Vσ(ε) 

Statistical  
equilibrium 
in bulk matter 

<=>  σ(ε) has common tangent! 

temperature 

pressure 

ε 

σ 

E, V 

concave 

1 

2 

ε = E/V 

?! 
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First order   <=>   Phase coexistence   <=>   Spinodal instability 

Extensive variable X 

Entropy function S(X) 

Intensive variable:  

X=E  =>  λ=β 

… occur when S(X) is locally convex: 

Maxwell 
construction: 

∂εσ(ε) = β:  β1 = β2    

π = σ ‒ βε:  π1 = π2  
X=E: 
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Phase transformation with no conserved charge:	


Equation of State 



Thermodynamics with one conserved charge: 

Control parameter(s) {X}:   

Volume V –› ∞ 

Energy E = Vε 

Charge N = Vρ 

Entropy function S{X}: 

β = 1/T  =  ∂ES(E,N,V)  =  ∂εσ(ε,ρ)  

α = -µ/T =  ∂NS(E,N,V)  = ∂ρσ(ε,ρ) 	


π = p/T   =  ∂VS(E,N,V)  = σ - βε - αρ 

Derivative(s)  λX = ∂XS: 

Thermodynamic coexistence:   δStot = 0 
 => T1 = T2  &  µ1 = µ2  &  p1 = p2   

Thermodynamic (local) stability:  δ2Stot < 0        
=>  Curvature matrix {∂χ ∂ χ’ σ(ε,ρ) } has only negative eigenvalues   

S(E,N,V) = Vσ(ε,ρ) 

Statistical  
equilibrium 
in bulk matter 

<=>  σ(ε,ρ) has common tangent! 

E, N, V 

JRandrup: Dubna School, 2010 

1 

2 

ε = E/V 

ρ = N/V 

?! 
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Microcanonical   ->  Canonical: 

entropy 
density 

temperature 

chemical potential 

pressure 

enthalpy density 

Canonical representation: only <E> is specified 

free 
energy  
density 

Phase coexistence     fT(ρ) has common tangent! 

Then replace S by S’ = S–βE  and require δS’=0 & δ2S’<0 

Or, equivalently, consider F = -TS’ = E-TS and require δF=0 & δ2F>0 

fT(ρ) 

?! 1 

2 
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Van der Waals fluid 

Equation of State: 

stable 

meta 
    stable 

unstable 

unstable 

stable 

meta 
    stable 

Phase Diagram 

?! 



Net quark number susceptibility at T=50 MeV  
as a function of the quark number density  
across the first-order phase transition  

The net quark number susceptibility 
in the stable and meta-stable regions 

C. Sasaki, B. Friman, K. Redlich, Phys. Rev. Lett. 99, 232301 (2007) 

Density fluctuations in the presence of spinodal instabilities 

Nambu – Jona-Lasino model: 

< 0! 
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Inclusion of interaction energy 

Entropy density of non-interacting system: 

Interaction-energy density: 

Entropy density with interaction included: 

=> 

Chemical potential is shifted: 

Free energy density is shifted: 

Note: 

Pressure is augmented by  since 
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Phase diagram 

Equation of state: 
           pT(ρ) 

Nuclear matter 

meta 
    stable 

stable 

unstable 
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ρ	


T 

ε 

µ 

Nuclear phase diagram in different representations 
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Isentropic changes 

Entropy density: σ(ε,ρ) 

Net baryon density:  ρ	


Entropy per (net) baryon: s(ε,ρ) = σ/ρ 

ρ2Tδs  =  ρ2Tδ(σ/ρ) = ρTδσ  – Tσδρ  =  ρδε ‒ µρδρ ‒ [h-µρ]δρ  =  ρδε - hδρ  	


Chemical potential:  µ(ε,ρ) = -Τσρ	

Energy density:  ε	


Temperature:  T(ε,ρ) = 1/σε	


Pressure:  p(ε,ρ) = Tσ – ε + µρ 	


Enthalpy density:  h(ε,ρ) = p + ε	


Changes: (δε,δρ)  =>  δs : 

δs  =  0    =>   ρδε  =  hδρ  	
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Isentropic phase trajectories in different representations 

ρ	


T 

ε 

µ 
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Canonical description: T specified 

Free 
energy  
density 

Phase coexistence     common tangent: 

common tangent 
  = Maxwell line fT(ρ) 
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common tangent 
  = Maxwell line 

uniform 
 matter 
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Nuclear liquid-gas phase coexistence 

nuclear liquid phase 
   (nuclear matter) 

nucleon gas phase 

can coexist in mutual  equilibrium 

≠ 

phase mixture 
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fragments nucleons 



F(                        )   =  F(                        ) 

Local density approximation: 

Equation of state: Finite range 

Free energy density for uniform matter: 

But we need to treat non-uniform systems:  ρ(r), T(r)  

No good! 

… implies: 

=>   Finite range must be taken into account 
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local pressure &  local enthalpy density & … 

Canonical scenario: constant temperature T 

Free energy density: 

Non-uniform density  

   gradient 
contribution 

local entropy density: 

total entropy: 

J. Randrup, Phys. Rev. C 79, 054911 (2009) JRandrup: Dubna School, 2010 

Note:  Constant T(r) and µ(r)  => constant p(r) 

?! 



The gradient term modifies the local pressure 

Small deviations from uniformity: 

Small harmonic density undulations: 
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PHASE 1 PHASE 2 

Global equilibrium requires constant T, µ, p: 

The interface density profile is determined by  

where 

The interface tension is given by 

ρ(x) not 
Needed! 

J. Randrup, Phys. Rev. C 79, 054911 (2009) JRandrup: Dubna School, 2010 

The gradient term generates a phase boundary 

?! 



Separated phases: 

Mixed phase: 
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common tangent 
  = Maxwell line 

uniform 
 matter 
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Hadron Gas versus Quark-Gluon Plasma      
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Hadron Gas versus Quark-Gluon Plasma      

Phase crossing Phase “boundaries’’ 
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Nuclear dynamics at  Ecoll ≈  EFermi 

Individual nucleons move in common one-body field while 
occasionally experiencing Pauli-suppressed binary collisions 

One-particle Hamiltonian 

mean 
field 

Two-body collisions 

position 
space 

momentum 
space 

The state of the system is characterized by 
its reduced one-particle phase-space density: 
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Instabilities in Fermi liquids: Nuclear matter 

Finite range: 

=> 

=> 

?! 
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Nuclear spinodal instabilities 
Nuclear Matter Equation of State: 

The Landau parameter F0 depends on ρ,T, λ: 

Spinodal region: F0 < -1 
Matter is thermodynamically 
and mechanically unstable 

Density undulations 
may be amplified: 

) 

?! 
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   Spinodal boundary  
for given wave length λ	
 Growth times tλ for λ = 8 fm 

Spinodal boundaries in the (ρ,T) phase plane: 
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Dependence of growth rates on density, temperature and wave length: 
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M. Colonna, Ph. Chomaz, S. Ayik,  Phys. Rev. Lett. 88 (2002) 122701 

RPA calculations for unstable octupole modes in Sn isotopes: 
(a)  radial dependence of the form factor at the dilution D = 1:5 
       for neutrons (solid), protons (dotted), and nucleons (dashed); 
 (b) contour plots of the perturbed neutron density; 
 (c) contour plots of the perturbed proton density. 

Spinodal instabilities in finite nuclear systems 
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Statistical multifragmentation: Spinodal fragmentation: 

=> Different fragment sizes => Equal sizes 

(Igor Mishustin, 2003) 



too fast 

too slow 

just right 

Optimal collision energy 
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B. Borderie et al, Phys. Rev. Lett. 86 (2001) 3252 

32 MeV/A Xe + Sn (b=0) 

Experiment: INDRA @ GANIL 

For each event having M IMFs,   
calculate mean IMF charge <Z>  
and IMF charge dispersion ΔZ.    

Make LEGO plot of (<Z>, ΔZ): 

Analysis: 

For events with ΔZ=0, all M 
IMFs have the same charge 

<Z> 

ΔZ 

5 

0 

10 

10 20 

INDRA 

(L.G. Moretto) 

M 
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Brownian One-Body dynamics *) 
≈ Boltzmann-Langevin 

*) Ph. Chomaz, M. Colonna, A. Guarnera, J. Randrup,  
     Physical Review Letters 73 (1994) 3512 

Transport calculations 

M = 4 

M = 6 

32 MeV/A Xe + Sn (b=0): 

… suggest a visible spinodal signal: 
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[Brownian One-Body model] 



Brownian One-Body dynamics 
≈ Boltzmann-Langevin 
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Experiment: INDRA @ GANIL 
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