

Outline

Motivation

- The Physics of Core Collapse Supernovae
- Ore Collapse Supernova Phenomenology
- Explosions of Massive Stars
- Ouark Matter in Proto-Neutron Stars
- Summary

Motivation

The Fundamental Forces of Nature in Core Collapse Supernovae

Gravity	Electromagnetism	Weak interactions	Strong interactions
 General relativity Ideal fluid dynamics Strong gravitational fields Relativistic matter velocities Time dilation → ∞ α(x, t) ∈ [0, 1] (Lapse function) 	 Charged particles (protons, ions) Magneto-hydrodynamics Initial <i>B</i>-field: 10⁹⁻¹⁰ G Magnetars (<i>B</i> ~ 10¹⁵ G) 	 ν's (mass-less ultra-relativistic fermions) f_ν(t, x, p) Radiation transport (Boltzmann transport) <u>df_ν(t, x, p)</u>/<u>dt</u> = Ω(f_ν) Diffusion/free-streeming (neutrino mean free path) 	 The state of matter T ∈ [10⁶, 10¹³] K (T ∈ [10⁻³, 10³] MeV) ρ ∈ [1, 10¹⁵] g/cm³ (n_B ∈ [10⁻¹⁶, 0.6] fm⁻³) Isospin asymmetry (Y_e = n_p/n_B ∈ [0, 0.6]) Time-dependent nuclear reaction Hot and dense nuclear matter

The Global Picture: The Fate of Massive Stars

The Physics of Core Collapse Supernovae

General Relativistic (Radiation) Hydrodynamics in Spherical Symmetry

The concept

Spherically symmetric and non-stationary spacetime ^a

$$ds^{2} = -\alpha^{2}dt^{2} + \frac{r^{\prime 2}}{\Gamma^{2}}da^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Conservation equations for energy and momentum

$$abla_{
u} T^{\mu
u} = \mathbf{0}$$

$$\begin{array}{cccc} matter & microphysics\\ \hline T^{tt} &=& \rho(1+e &+ &)\\ T^{ta} &=& T^{at} &=& \\ T^{aa} &=& p &+ \\ T^{\theta\theta} &=& T^{\phi\phi} &=& p &+ \end{array}$$

The co-moving reference frame

- (t, a) (eigentime, baryon mass)
- (θ, ϕ) (2-sphere of radius r(t, a))

The metric functions

$$egin{aligned} G_{\mu
u} &= R_{\mu
u} - rac{R}{2}g_{\mu
u} = 8\kappa T_{\mu
u} & ext{(Einstein equation)} \ & lpha(t,a) & ext{(lapse function)} \ & \Gamma(t,a) = \sqrt{1 - 2m/r + u^2} \ & u = rac{\partial r}{lpha \partial t} & ext{(matter velocity)} \ & m(t,a) & ext{(gravitational mass)} \end{aligned}$$

^aMisner & Sharp (1964), Liebendörfer et al. (2001a,b, 2004)

Bo

General Relativistic Radiation Hydrodynamics in Spherical Symmetry

The concept

Spherically symmetric and non-stationary spacetime ^a

$$ds^{2} = -\alpha^{2}dt^{2} + \frac{r^{\prime 2}}{\Gamma^{2}}da^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}$$

Conservation equations for energy and momentum 2

$$abla_
u T^{\mu
u} = 0$$

	matter		microphysics	
T^{tt}	=	ρ(1 + e	+	J)
$T^{ta} = T^{at}$	=			$ ho \dot{H}$
T ^{aa}	=	р	+	ho K
$T^{ heta heta}=T^{\phi\phi}$	=	р	+	$\frac{1}{2}\rho(J-K)$

The neutrino distribution functions 3

 $F_{\nu}(t, \vec{x}, \vec{v})$

^aMisner & Sharp (1964), Liebendörfer et al. (2001a,b, 2004)

The neutrino moments / moment equations

$$n^{\mu}(x) = \int_{-\infty}^{\infty} d^{3}p \ p^{\mu} F(x, \mathbf{p})$$
$$\varepsilon^{\mu\nu} = \int_{-\infty}^{\infty} d^{3}p \ p^{\mu} p^{\nu} F(x, \mathbf{p})$$

$$\int_{-\infty}^{\infty} d^{3}p \left(p^{\mu} \frac{\partial F_{\nu}}{\partial x^{\mu}} - \Gamma^{\mu}_{\nu\tau} p^{\nu} p^{\tau} \frac{\partial F_{\nu}}{\partial p^{\mu}} \right) = \nabla_{\mu} n^{\mu}(x)$$
$$= \int_{-\infty}^{\infty} d^{3}p \Omega (F_{\nu})$$

$$\int_{-\infty}^{\infty} d^{3}p \, p^{\delta} \left(p^{\mu} \frac{\partial F_{\nu}}{\partial x^{\mu}} - \Gamma^{\mu}_{\nu\tau} p^{\nu} p^{\tau} \frac{\partial F_{\nu}}{\partial p^{\mu}} \right) = \nabla_{\mu} \varepsilon^{\mu\delta}(x)$$
$$= \int_{-\infty}^{\infty} d^{3}p \, p^{\delta} \, \Omega(F_{\nu})$$

General Relativistic Radiation Hydrodynamics in Spherical Symmetry

The concept

Spherically symmetric and non-stationary spacetime ^a

$$ds^{2} = -\alpha^{2}dt^{2} + \frac{r^{\prime 2}}{\Gamma^{2}}da^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Conservation equations for energy and momentum

$$\nabla_{\nu} T^{\mu\nu} = \mathbf{0}$$

 $\begin{array}{rcl} & \mbox{matter} & \mbox{microphysics} \end{array} \\ \hline T^{tt} &=& \rho(1+e \ + \ \ J) \\ T^{ta} &=& T^{at} \ \ T^{aa} &=& p \ \ + \ \ \rho K \\ T^{\theta\theta} &=& T^{\phi\phi} \ \ = \ \ p \ \ + \ \ \frac{1}{2}\rho(J-K) \end{array}$

On the specific provide the second stribution of the second stributi

$$F_
u(t, oldsymbol{a}, \mu = \cos heta, oldsymbol{E}) = rac{f_
u(t, oldsymbol{a}, \mu, oldsymbol{E})}{
ho}$$

The neutrino (energy) moments

$$J = \frac{2\pi}{(hc)^3} \int_{-1}^{+1} d\mu \int_0^\infty E^3 dE F_\nu(t, a, \mu, E)$$

$$H = \frac{2\pi}{(hc)^3} \int_{-1}^{+1} \mu d\mu \int_0^\infty E^3 dE F_\nu(t, a, \mu, E)$$

$$K = \frac{2\pi}{(hc)^3} \int_{-1}^{+1} \mu^2 d\mu \int_0^\infty E^3 dE F_\nu(t, a, \mu, E)$$

^aMisner & Sharp (1964), Liebendörfer et al. (2001a,b, 2004)

Three Flavor Boltzmann Neutrino Transport in Spherical Symmetry

$$dF_{\nu}/dt: \quad \left(\nu = \{\nu_{e}, \bar{\nu}_{e}, \nu_{\mu/\tau}, \bar{\nu}_{\mu/\tau}\}\right)$$

$$\begin{aligned} \frac{\partial F}{\alpha \partial t}(\mu, E) &= \frac{\mu}{\alpha} \frac{\partial}{\partial a} \left(4\pi r^2 \alpha \rho F\right) \\ &+ \Gamma \left(\frac{1}{r} - \frac{1}{\alpha} \frac{\partial \alpha}{\partial r}\right) \frac{\partial}{\partial \mu} \left[\left(1 - \mu^2\right) F\right] \\ &+ \left(\frac{\partial \ln \rho}{\alpha \partial t} + \frac{3u}{r}\right) \frac{\partial}{\partial \mu} \left[\mu \left(1 - \mu^2\right) F\right] \\ &- \mu \Gamma \frac{1}{\alpha} \frac{\partial \alpha}{\partial r} \frac{1}{E^2} \frac{\partial}{\partial E} \left(E^3 F\right) \\ &+ \left[\mu^2 \left(\frac{\partial \ln \rho}{\alpha \partial t} + \frac{3u}{r}\right) - \frac{u}{r}\right] \frac{1}{E^2} \frac{\partial}{\partial E} \left(E^3 F\right) \\ &+ \frac{j(E)}{\rho} + \tilde{\chi}(E) F(\mu, E) \\ &+ \frac{1}{c} \frac{E^2}{h^3 c^3} \int d\mu' R_{lS}(\mu', \mu, E) F(\mu', E) - \frac{1}{c} \frac{E^2 F(\mu, E)}{h^3 c^3} \int d\mu' R_{lS}(\mu, \mu', E) \\ &+ \frac{1}{c} \frac{1}{h^3 c^3} \left(\frac{1}{\rho} - F(\mu, E)\right) \int dE' E'^2 d\mu' R_{NES}^{in}(\mu, \mu', E, E') F(\mu', E') \\ &- \frac{1}{c} \frac{1}{h^3 c^3} F(\mu, E) \int dE' E'^2 d\mu' R_{NES}^{out}(\mu, \mu', E, E') \left(\frac{1}{\rho} - F(\mu', E')\right) \end{aligned}$$

The collision term

(2a) Electronic charged current reactions $e^- + p \rightleftharpoons n + \nu_e$ $e^+ + n \rightleftharpoons p + \overline{\nu}_e$ $e^- + \langle A, Z \rangle \rightleftharpoons \langle A, Z - 1 \rangle + \nu_e$ (2b) Neutral current reactions $e^- + e^+ \rightleftharpoons \nu + \overline{\nu}$ $N + N \rightleftharpoons N + N + \nu + \overline{\nu}$ $\nu_e + \overline{\nu}_e \rightleftharpoons \nu_{\mu/\tau} + \overline{\nu}_{\mu/\tau}$ $\nu + e^{-/+} \rightleftharpoons \nu' + e^{-/+}$ $\nu + N \rightleftharpoons \nu + N$ (iso-energetic)

Lepton number conservation:

$$\frac{\partial Y_{L}}{\partial t} + 4\pi m_{B} \frac{\partial \left(r^{2} N_{L}\right)}{\partial a} = 0$$

$$\downarrow$$

The equation for the neutrino number:

$$\frac{\partial Y_{\nu_e}}{\partial t} + 4\pi m_B \frac{\partial \left(r^2 N_{\nu_e}\right)}{\partial a} = \frac{2\pi m_B c}{(h c)^3} \int_{-1}^{+1} d\mu \int_0^\infty E^2 dE \left(\frac{j}{\rho} + \tilde{\chi}F\right) \quad \longrightarrow$$

Evolution of the electron fraction

$$\frac{\partial Y_e}{\partial t} = -\frac{2\pi m_B c}{(h c)^3 \rho} \int_{-1}^{+1} d\mu \int_0^\infty E^2 dE(j - \tilde{\chi} f)$$

Summary

The Neutrino Observables

$$L_{\nu} = 4\pi r^{2} \rho \frac{2\pi c}{(hc)^{3}} \int_{-1}^{+1} \mu \, d\mu \int_{0}^{\infty} E^{3} \, dE \, F_{\nu}(t, a, \mu, E)$$

$$\langle E_{\nu}(t, a) \rangle_{\rm rms} = \sqrt{\frac{\int_{-1}^{+1} d\mu \int_{0}^{\infty} E^{4} \, dE \, F_{\nu}(t, a, \mu, E)}{\int_{-1}^{+1} d\mu \int_{0}^{\infty} E^{2} \, dE \, F_{\nu}(t, a, \mu, E)}}$$

Definition: Neutrinosphere

In the transition from a dense and for neutrinos opaque regime to a (semi-)transparent environment, the neutrino flavor $\{\nu_e, \bar{\nu}_e, \nu_{\mu/\tau}, \bar{\nu}_{\mu/\tau}\}$ and energy *E* dependent sphere of last scattering is defined via the optical depth as follows

$$\tau(E) := \frac{r}{\lambda(E)} \equiv \frac{2}{3},\tag{1}$$

where λ is the neutrino energy dependent total neutrino transport mean free path and *r* is the distance to the center.

$$\lambda = \lambda_{\nu en} + \lambda_{\bar{\nu} ep} + \lambda_{\nu N} + \lambda_{\nu e^{\pm}} + \lambda_{\nu \bar{\nu}}$$

Remark

- The neutrinospheres are typically expressed via the radii R_{ν} , obtained from the energy integration of (1).
- Due to the different reactions contributing to the different flavors, the following hierarchy holds

$$R_{
u_e} > R_{ar
u_e} > R_{
u_{\mu/ au}} > R_{ar
u_{\mu/ au}}$$

Simple From expression (1) follows, inside R_{ν} neutrinos are trapped (diffusion) where outside R_{ν} neutrinos can be considered free-streaming.

Explosions of Massive Stars

Summary

The Equation of State in Core Collapse Supernova Simulations

The different regimes: the baryons

 $| T \leq 0.5 \text{ MeV} |$ (time-dependent nuclear reactions)

The nuclear abundances $n_i = \rho Y_i / m_B$

 $(n, p, {}^{2}H, {}^{3}H, {}^{3}He, {}^{4}He, {}^{6}Li, \ldots, {}^{12}C, \ldots, {}^{54}Fe, {}^{56}Fe, {}^{56}Ni, {}^{60}Zn)$

$$\frac{\partial n_i}{\partial t} = \frac{m_B}{\rho} \frac{\partial Y_i}{\partial t} = \frac{m_B}{\rho} \sum_j N_j^i \lambda_j Y_j + \sum_{j,k} \frac{N_{j,k}^i}{1 + \delta_{jk}} \langle \sigma \mathbf{v} \rangle_{j,k} Y_j Y_k.$$

- \longrightarrow Maxwell-Boltzmann gas + nuclear binding energy ^a
- 2 T > 0.5 MeV (nuclear statistical equilibrium, NSE)
- Compressible liquid-drop model incl. surface effects ^b
- RMF (TM1) and Thomas-Fermi approximation ^c
- The composition: (single nucleus approximation) $({\rm n, \, p, \, ^4He, \,} \langle A, Z \rangle)$
- Compressibilities, symmetry energies:

((180, 220, 375), 29.3 MeV)^b, (281, 36.9 MeV)^c

^aThielemann et al. (2004), Audi et al. (2003) ^bLattimer and Swesty (1991) ^cShen et al. (1998)

Non-baryonic contributions

((e^- , e^+), γ , ion-ion-correlations) ^a

^aTimmes and Arnett (1999)

The independent variables

 $T(e), n_B, Y_p$

The EoS output

hydrodynamics: p, s, e

neutrino transport: $\mu_n, \mu_p, \mu_e, X_n, X_p, X_{\langle A, Z \rangle}$ (weak interactions)

Core Collapse Supernova Phenomenology

The End of Stellar Evolution of Massive Stars

- Onion-like shape

(due to the nuclear burning history of the stars)

- The most stable elements: ⁵⁶Fe, ⁵⁶Ni (largest binding energy per nucleon)
- The origin of heavier elements ?

^{232–238}U, ^{238–244}Pu, ^{202–208}Pb

Summary

The Fe-core Collapse and Bounce

^aWoosley, Heger & Weaver (2002)

10²

0.5

The Fe-Core Collapse and Bounce in the Phasediagram

0 ms

500 16/35

The Fe-Core Collapse and Bounce in the Phasediagram

The different phases

- $T \leq 0.5 \text{ MeV} (\text{non-NSE})$
- Time-dependent nuclear reactions (¹²C, ¹⁶O, ²⁸Si, ³²S)
- Heavy nuclei up to ⁵⁶Fe and ⁵⁶Ni
- 2 T > 0.5 MeV (NSE)

(nuclear statistical equilibrium)

- 3 $T \simeq 2$ MeV, $n_B \simeq 10^{-3}$
- heavy nuclei $\langle A \rangle \geq 200$
- $x_{\langle A,Z\rangle}$ decreases, $x_{\text{light cluster}}$, x_n , x_p increase
- Y_e reduces: nuclei become neutron-rich
- \longrightarrow The neutron drip line ($n_B \simeq 10^{-3}$ fm⁻³)

The Fe-Core Collapse and Bounce in the Phasediagram

The different phases T < 0.5 MeV (non-NSE)</p> - Time-dependent nuclear reactions - Heavy nuclei up to ⁵⁶Fe and ⁵⁶Ni **2** T > 0.5 MeV (NSE) (nuclear statistical equilibrium) 3 $T \simeq 2$ MeV, $n_B \simeq 10^{-3}$ - heavy nuclei $\langle A \rangle > 200$ - $x_{(A,Z)}$ decreases, $x_{\text{light cluster}}$, x_n , x_p increase \bigcirc Y_e reduces: nuclei become neutron-rich

- ightarrow The neutron drip line ($n_B \simeq 10^{-3}$ fm⁻³)
- Transition to in-homogeneous nuclear matter

 $n_B \simeq 10^{-2} \mbox{ fm}^{-3}$ (structure formation: pasta, spaghetti, Swiss-cheese)

• Homogeneous nuclear matter ($n_B \simeq 0.1 \text{ fm}^{-3}$)

Proto-Neutron Star evolution

- Sources of energy loss:
 - Dissociation of heavy nuclei ($\sim 8~\text{MeV/n}_\text{B})$
 - Neutrino escape: $4 5 \times 10^{53}$ erg/s (deleptonization, $Y_e \simeq 0.1$ near ν -spheres)

The Post-Bounce Evolution in the Phasediagram

Explosions of Massive Stars

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Concept of Neutrino-Driven Explosions of Massive Stars in Theory

Why neutrinos?

- $\sim 10^{53}$ erg (energy of the neutrino radiation field)
- $\sim 10^{51}$ erg (explosion energy, observations)

Alternative scenarios:

- (a) Magneto-rotational ^{*a b c*} (10^{14–16} G, rotation rates)
- (b) Acoustic mechanism^d (controversal)

^aLeBlank and Wilson (1970) ^bBisnovatyi-Kogan et al. (2008) ^cTakiwaki et al. (2010) ^dBurrows et al. (1995, 2006)

Charged current reactions: heating/cooling

$$\begin{array}{rcl} e^- + p &\rightleftharpoons& n + \nu_e, \\ (e^- + \langle A, Z \rangle &\rightleftharpoons& \langle A, Z - 1 \rangle + \nu_e), \\ e^+ + n &\rightleftharpoons& p + \bar{\nu}_e, \end{array}$$

Neutral current reactions: thermalization

scattering
$$\begin{cases} \nu + N \rightleftharpoons \nu + N \quad (N = n, p), \\ (\nu + \langle A, Z \rangle \rightleftharpoons \nu + \langle A, Z \rangle), \\ \nu + e^{\pm} \rightleftharpoons \nu + e^{\pm}, \end{cases}$$
pair reactions
$$\begin{cases} e^{-} + e^{+} \rightleftharpoons \nu + \bar{\nu}, \\ N + N \rightleftharpoons N + N + \nu + \bar{\nu} \ (N = n, p,), \\ \nu_{e} + \bar{\nu}_{e} \rightleftharpoons \nu_{\mu/\tau} + \bar{\nu}_{\mu/\tau}, \end{cases}$$

22/35

Neutrino-Driven Explosions in Simulations

Spherical symmetry

- S.8 M_☉ O-Ne-Mg-core ^{a b c}
 - Steep density profile
 - $\nu\text{-heating timescale}\sim$ 10 ms
 - Nuclear energy deposition
- 2 \geq 9 M $_{\odot}$ Fe-cores
 - $\nu\text{-heating timescale}\sim$ 100 ms
- ν-heating not efficient enough
- ightarrow No explosions !

^aKitaura et al. (2006) ^bFischer et al. (2009) ^cNomoto (1983,1984,1987)

Multi-dimensional models

- Rotation, convection, fluid instabilities
- More efficient *v*-heating
- 3 Low $E_{explosion} \simeq 0.5 \times 10^{51} \mbox{ erg}$
- v-transport approximations^a
- Axial symmetry only

^aBurrows (1995, 2006) (acoustic mechanism), Blondin & Mezzacappa (2003) (MGFL, SASI), Bruenn et al. (2009) (MGFL, nucl. reaction network), Kotake et al. (2005) (SASI, GW), Foglizo et al. (2007) (SASI) Figure: 15 M_{\odot} , Marek & Janka (2009) (ray-by-ray)

First (Preliminary) Results from 3D MHD Simulations (*v*-transport approximation IDSA)

Liebendörfer et al. (2010) in preparation

- Spherical Fe-core collapse
- Spherical core bounce
- Asphericities shortly after bounce
- Convection
- Increased ν-heating efficiency
- Hydrodynamic instabilities

(e.g. SASI, advective acoustic cycle)

Summary

Quark Matter in Proto-Neutron Stars

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ 一の へ ペ 25/35

The QCD Phase Diagram ¹

The QCD Phase Diagram

Construction of the Quark Hadron Phase Diagram

Figure: The MIT bag model^a, $Y_p \simeq 0.3$

Figure: The PNJL model^b, $Y_{p} \simeq 0.3$

^aSagert et al. (2009) ^bSandin and Blaschke (2008)

Quark matter descriptions and the mixed phase

The MIT bag model

(Fermi-gas, the bag pressure *B* defines confinement)

- The PNJL model (Based on the QCD Lagrangian)
 - Similar critical densities:

 $n_c(T \simeq 0) \simeq 0.17 \text{ fm}^{-3}$ (MIT bag)

- $n_c(T \simeq 0) \simeq 0.18 \text{ fm}^{-3}$ (PNJL)
- Different behavior of the critical density for finite T $n_c(T)$ reduces for increasing T (MIT bag) $n_c(T)$ increases for increasing T (PNJL)
- The problem: the transition from quarks confined in hadrons to the quark-gluon plasma at finite T and n_B
- → Construction of the coexistence region/mixed phase (Maxwell construction, Gibbs conditions)
- Thermodynamics (required for use in astrophysical applications)

Evolution of the Central Mass Elements in the QCD Phasediagram (PNJL)

Figure: 20 M_o, non-exploding model

Figure: 20 M_{\odot} , ν -driven explosion

The appearance of quark matter in PNSs

- Non-exploding models
 - \cdot Central $\textit{n}_{\textit{B}}$ and T increase on timescale \sim 1 second
 - · Continued rise of the enclosed mass

2 Explosion models

Evolution of the Central Mass Elements in the QCD Phasediagram (MIT bag)

Figure: 20 $M_{\odot},$ non-exploding model

Summary

Phase Diagram for 3-flavor Quark Matter Based on MIT Bag

Figure: (MIT bag) $Y_p \simeq 0.1$, $Y_p \simeq 0.3$, $Y_p \simeq 0.5$

Requirements of the model and dependencies

Isospin asymmetry

$$n_c = n_c(T, Y_p)$$

Proto-Neutron Star Collapse due to the Quark Hadron Phasetransition

∽ ৭ ে 32/35

Additional Neutrino Burst from the Quark Hadron Phasetransition

The neutrino observables

- No direct signal form the phase transition
- Shock crossing over the neutrinospheres
- ightarrow Neutrino burst dominated by $ar{
 u}_{e}$

QCD degrees of freedom: possible site for the *r*-process

Summary

Summary

Summary

- The standard scenario of core collapse supernovae assumes pure hadronic matter only
- The phase space occupied in core collapse supernovae:
 - $T \simeq 10, ..., 100 \text{ MeV}$ $n_B \simeq 0.1, ..., 0.5 \text{ fm}^{-3}$ $Y_p \simeq 0.05, ..., 0.3$
- ightarrow Conditions may favor quark matter over hadronic matter
- Ouark-hadron (hybrid) EoS, $n_c(T, Y_p)$: (Non)Explosion models
- Onstruction of a co-existence region (mixed phase): reduced adiabatic index
- bydrodynamical contraction (collapse) and formation of a strong hydrodynamic shock front
- \longrightarrow Explosions (even in spherical symmetry)
- The remnant: neutron star with quark matter at the interior (hybrid star)
- Observations?
- · Release of an additional outburst of neutrinos! (dominated by $\bar{\nu}_e$ and $\nu_{\nu/\tau}$)
- Gravitational waves ?
- Nucleosynthesis (*r*-rpocess) ?