
The full path integral 

After integrating over the field fluctuations

All plasma information is contained in            (~ density-
density correlation function)



Subtract Coulomb interaction (density-density correlation fct)

Logarithmic UV divergence at r=0 (for t=0)



Monte Carlo evaluation of the path 
integral



analytic behavior at small τ . Assume indeed that a Taylor expansion of Eq. (3.15)

exists. Then, the leading term in this expansion, of order τ 2, is obtained by setting
τ ′ = τ ′′ = 0 in the integrand, leading to the result

G1(τ)/e
−Mτ =

g2τ 2

2

∫

dk

(2π)3
∆(0,k) =

g2τ 2

2
∆(τ=0, r=0), (3.17)

which would be independent of the mass M . However, as already stressed, ∆(τ =

0, r=0) is divergent, so that Eq. (3.15) has no Taylor expansion. The integral over τ ′

and τ ′′ in Eq. (3.15) exists however, and because of the exponential factor, it acquires

a dependence on the mass M : it is largest in the limit M → ∞, and decreases as
M/T decreases. This is the trend seen in Fig. (9).

4. Numerical results: MC simulations and MEM analysis
{sec:numerical

In this section we present the results of the numerical evaluation of the path integral
for the heavy-quark correlator. We shall also discuss the spectral density obtained
from the latter through an analysis based on the Maximum Entropy Method (MEM)

[24]. Since no ambiguity can arise, we use in this section the simplified notation
G(τ, r) for the Euclidean correlator in place of G>(−iτ, r) used in the rest of the

paper. This correlator is obtained from the path integral derived in Sect. 2.3. By
taking the ratio of G(τ, r) with the free propagator G0(τ, r) (see Eq. (2.12)) one
obtains

G(τ, r)

G0(τ, r)
=

∫ r

0
Dz e−S0[z] eF̄ (z)

∫ r

0
Dz e−S0[z]

= 〈eF̄ [z,τ ]〉, (4.1) {eq:geucl}

with

S0[z, τ ] =

∫ τ

0

dτ ′
1

2
M ż2, (4.2)

and

F̄ [z, τ ] =
g2

2

∫ τ

0

dτ ′
∫ τ

0

dτ ′′∆(τ ′ − τ ′′, z(τ ′)− z(τ ′′)). (4.3) {eq:geucl2}

The functional F̄ [z, τ ] is a known functional of the path, with ∆(τ, r) an intrinsic
property of the plasma, calculated as indicated in Sect. 2.2. The calculation of G(τ, r)

according to Eq. (4.1) amounts to an average that can be performed using Monte
Carlo (MC) techniques.

4.1 Monte Carlo evaluation of the path integral

In fact, to proceed with the MC calculation, we shall take a slightly different route

than that suggested by Eq. (4.1). This is because we want to include the effects of
the interaction in the samples of paths used in the averaging. While this may not be

necessary in the present one particle problem, this is essential when dealing with the
two particle problem that we plan to address in the future. Thus, using a standard
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Strategy of MC calculation

Include interaction effects in the sampling of paths

Hence



However, most results (appropriately scaled) depend only 
on T/M.

Choice of parameters for the MC calculation



Euclidean correlator (p=0)



One-loop Euclidean correlator



Euclidean correlator  
Comparison with one-loop



MEM reconstruction of the spectral 
density



Recovering the spectral function from the (numerical) 
correlator is a difficult problem

We have used the Maximum Entropy Method.
Results are sensitive to the choice of the default 
model 

Sum rules imposed on the default model



One-loop spectral function(exact)



One-loop spectral function(reconstructed)

(sensitivity to the default model)



Spectral function 
(MC vs one-loop)



A solvable toy model



A toy model

Fermion coupled to a single mode (harmonic oscillator)



Euclidean correlator



(artificial width)

Spectral function


