

ВНУТРЕННЕЕ СТРОЕНИЕ НЕЙТРОННЫХ ЗВЕЗД Теория и наблюдения

Д.Г. ЯКОВЛЕВ

Физико-технический институт им. А.Ф. Иоффе, С.-Петербург

Лекция 1. Теория

- Введение
- Уравнение состояния в коре и ядре
- Модели нейтронных звезд
- Выводы

Дубна, 6 февраля 2014 г.

Общее строение нейтронной звезды

Четыре основных слоя:

- 1. Внешняя кора
- 2. Внутренняя кора
- 3. Внешнее ядро
- 4. Внутреннее ядро

Основная загадка: 1. Состав ядра звезды+ 2. Давление плотного вещества= Проблема уравнения состояния (EOS)

Поиски: рентгеновская астрономия

Серьезные поиски: эра практической рентгеновской астрономии в 1960-х Идея: обнаружить тепловое излучение (T_s~10⁶ K) с поверхности остывающей нейтронной звезды Первый космический рентгеновский источник несолнечного происхождения: Sco X-1, Giacconi et al. (1962)

Riccardo Giacconi Нобелевская премия: 2002

Рентгеновский детектор на ракете (1962)

К 1968 г. – обнаружено около 20 рентгеновских источников!

Открытие пульсаров: А. HEWISH & J. BELL

Публикация: Hewish A., Bell S.J., Pilkington, J.D.H., Scott P.F., Collins R.A., Observation of a rapidly rotating radio source, Nature 217, 709—713, 1968. Статья послана в печать 9 февраля, опубликована, 24 февраля 1968 г.

Нобелевская премия: А. Hewish – 1974 г.

Ранее: Hewish & Okoye (1965) обнаружили сцинтиллирующий радиоисточник в Крабовидной туманности (по архивным данным он наблюдался в апреле 1962 г.). Значит знаменитый пульсар в действительности наблюдался с 1962 г!

КРАТКАЯ СПРАВКА

Chandra image of the Vela pulsar wind nebula NASA/PSU Pavlov et al

$$M \sim 1.4 M_{\rm SUN}, \quad R \sim 10 \,\rm km$$

 $U \sim GM^2 / R \sim 5 \times 10^{53} \text{ erg} \sim 0.2 Mc^2$ Состоят, в основном, $g \sim GM / R^2 \sim 2 \times 10^{14} \text{ cm/s}^2$ из плотно упакованных нейтронов $\overline{\rho} \approx 3M / (4\pi R^3) \approx 7 \times 10^{14} \text{ g/cm}^3 \sim (2-3) \rho_0$ $\rho_0 = 2.8 \times 10^{14}$ g/cm³ = стандартная ядерная плотность $N_{h} \sim N / m_{N} \sim 10^{57} = число барионов$ $\overline{P} \sim G\overline{\rho}M / R \sim 10^{35} \text{ dyn/cm}^2 = оценка давления$ $R / \overline{v} \sim 1 \text{ ms}$ = гидродинамическое время В нашей Галактике: по теории : ~ $10^8 - 10^9$ нейтронных звезд наблюдаются: более 2000 нейтронных звезд

УРАВНЕНИЕ СОСТОЯНИЯ В КОРЕ И ЯДРЕ

- 1. Уравнение состояния определяется давлением вещества Р.
- Вещество нейтронных звезд настолько плотное, что *P* почти не зависит от температуры *T* и определяется только массовой плотностью, а также составом вещества. Обычно пишут P = P(ρ).
- 3. Массовая плотность определяется как *ρ* ≡ E / *c*², где E [erg/cc] плотность энергии (включая энергию покоя частиц)
- 4. Часто вводят локальный показатель адиабаты *gamma* или индекс политропы *n*, которые характеризуют жесткость уравнения состояния:

$$\gamma \equiv 1 + \frac{1}{n} = \frac{d \ln P}{d \ln n_b}$$

п_ь – концентрация барионов

ВНЕШНЯЯ КОРА

Строение: электроны + (ионы) атомные ядра

Электроны (е): образуют сильно вырожденный, почти, идеальный газ, дают главный вклад в давление

Ионы (A,Z): полностью ионизованы давлением, электронов, дают главный вклад в плотность

Электронейтральность: $n_e = Zn_i$ Массовая плотность: $\rho \approx m_i n_i$ Давление: $P \approx P_e$

$$n_{e} = \frac{2}{(2\pi\hbar)^{3}} \int d\mathbf{p} f(\varepsilon), \qquad E = \frac{2V}{(2\pi\hbar)^{3}} \int d\mathbf{p} \varepsilon f(\varepsilon),$$

 $f = \frac{1}{\exp((\varepsilon - \mu)/T) + 1} = \phi$ ункция распределения Ферми - Дирака

Холодный газ: $T \to 0$, $f(\varepsilon) = 1$ при $\varepsilon \le \mu$ $f(\varepsilon) = 0$ при $\varepsilon > \mu$

$$n_e = \frac{p_F^3}{3\pi^2\hbar^3} \implies p_F = \hbar(3\pi^2 n_e)^{1/3} =$$
импульс Ферми, $\mu = (m^2c^4 + p_F^2c^2)^{1/2}$

Электронейтральность: $n_e = Zn_i \Rightarrow$ плотность $\rho \approx m_i n_i = (A/Z)m_u n_e$ $m_u = m(^{12}\text{C})/12 = 1.66055 \times 10^{-24}$ g = атомная единица массы

$$x = \frac{p_F}{m_e c} \approx 1.009 \left(\frac{\rho_6 Z}{A}\right)^{1/3} =$$
параметр релятивизма электронов

 $x \ll 1 \Rightarrow \rho \ll 10^6 g/cc \Rightarrow$ нерелятивистский электронный газ $x \gg 1 \Rightarrow \rho \gg 10^6 g/cc \Rightarrow$ ультрарелятивистский электронный газ

$$E = \frac{2V}{(2\pi\hbar)^3} 4\pi \int_0^{p_F} dp \ p^2 \varepsilon, \quad \varepsilon = (m^2 c^4 + p^2 c^2)^{1/2}, \quad p = mc \text{ sh } \varphi$$

$$P = -\frac{\partial E(V, x)}{\partial V} = -\frac{E}{V} - \frac{\partial E}{\partial x} \frac{\partial x}{\partial V}, \quad x = \frac{\hbar}{mc} \left(3\pi^2 \frac{N_e}{V}\right)^{1/3}$$

$$E = P_0 V \left\{ x \ (1 + x^2)^{1/2} (2x^2 + 1) - \ln(x + (1 + x^2)^{1/2}) \right\}$$

$$P = P_0 \left\{ x \ (1 + x^2)^{1/2} \left(\frac{2}{3}x^2 - 1\right) + \ln(x + (1 + x^2)^{1/2}) \right\}$$

$$P_0 = \frac{m_e^4 c^5}{8\pi^2 \hbar^3} \approx 1.801 \times 10^{23} \frac{\text{dyn}}{\text{cm}^2}$$

- - -

Френкель (1928) **Stoner (1932)** Chandrasekhar (1935)

Равновесный ядерный состав во внешней коре

(Cold catalyzed matter)

Table 3.1. Nuclei in the ground state of cold dense matter (after Haensel & Pichon 1994). Upper part is obtained with experimental nuclear masses. Lower part: from mass formula of Möller. Last line corresponds to the neutron drip point.

Baym, Pethick, Sutherland (1971) Haensel, Pichon (1994)	element	Z	Ν	Z/A	$ ho_{ m max} \ ({ m g~cm}^{-3})$	μ _e (MeV)	$\Delta ho / ho$ (%)
	⁵⁶ Fe	26	30	0.4643	$7.96 imes10^6$	0.95	2.9
	⁶² Ni	28	34	0.4516	$2.71 imes 10^8$	2.61	3.1
	⁶⁴ Ni	28	36	0.4375	$1.30 imes10^9$	4.31	3.1
	⁶⁶ Ni	28	38	0.4242	$1.48 imes10^9$	4.45	2.0
Недостатки BPS71	⁸⁶ Kr	36	50	0.4186	$3.12 imes10^9$	5.66	3.3
(а) Ядерное равновесие ———	⁸⁴ Se	34	50	0.4048	$1.10 imes10^{10}$	8.49	3.6
может устанавливаться	⁸² Ge	32	50	0.3902	$2.80 imes10^{10}$	11.4	3.9
слишком медленно	⁸⁰ Zn	30	50	0.3750	$5.44 imes 10^{10}$	14.1	4.3
(б) Кинетика не учитывается	⁷⁸ Ni	28	50	0.3590	$9.64 imes10^{10}$	16.8	4.0
(в) Альтернатива:	126 Ru	44	82	0.3492	$1.29 imes10^{11}$	18.3	3.0
аккреционная кора	124 Mo	42	82	0.3387	$1.88 imes10^{11}$	20.6	3.2
Haensel, Zdunik (1990)	122 Zr	40	82	0.3279	$2.67 imes10^{11}$	22.9	3.4
В паборатории	120 Sr	38	82	0.3167	$3.79 imes10^{11}$	25.4	3.6
$N=48 \longrightarrow$	¹¹⁸ Kr	36	82	0.3051	(4.32×10^{11})	(26.2)	-

ВНУТРЕННЯЯ КОРА

 $(4 \times 10^{11} \text{ g/cc} < \rho < \rho_0 / 2)$

e+n background

Состав: электроны + ядра + свободные нейтроны

Электроны (е): образуют сильно вырожденный ультрарелятивистский газ

Ядра (A,Z): обогащены нейтронами, занимают значительную часть объема

Свободные нейтроны (n): образуют сильно вырожденную фермижидкость, которая может быть сверхтекучей $N_b = N_i A + N_n$ $V_n = V - N_i v_N = V(1 - n_i v_N) =$ объем, занимаемый свободными нейтронами $n_n = N_n / V =$ концентрация свободных нейтронов

$$n_b = An_i + n_n (1 - n_i v_N)$$
$$n_e = Zn_i$$

соотношения концентраций

$$e_b(n_b, n_i, n_e, n_n, A, Z, R_N) = \frac{E}{Vn_b}$$
$$P = P_e + P_n + P_N$$

 n_b – задается $n_i, n_e, n_n, A, Z, R_N =$ 6 величин и 2 уравнения связи –

4 параметра для минимизации

Sly EOS; Douchin & Haensel (2001)

DH: Douchin & Haensel (2000) RBP: Ravenhall et al. (1971) FPS: as quoted by Pethick & Ravenhall (1995) Crosses: Negele & Vautherin (1973)

Negele & Vautherin (1973)

Max. density g/cc	Z	A (bound)	A (WS)	Nucleus
6.70e11	40	115	180	Zr
1.00e12	40	115	200	Zr
1.47e12	40	115	250	Zr
2.66e12	40	115	320	Zr
6.25e12	40	117	500	Zr
9.66e12	50	159	950	Sn
1.49e13	50	161	1100	Sn
3.41e13	50	164	1350	Sn
7.96e13	50	193	1800	Sn
1.32e14	40	183	1500	Zr
	32	232	982	Ge

В лаборатории: A(Zr)=91, A(Sn)=119, A(Ge)=72

ВНЕШНЕЕ ЯДРО

0.5 $\rho_0 < \rho < 2 \rho_0$

Электроны – ультрарелятивистские, мюоны – произвольные, нуклоны – нерелятивистские Состав: однородная материя из нейтронов (п), протонов (р), электронов (е) и мюонов (м)

Все частицы сильно вырождены;

 $p_{Fi} = \hbar (3\pi^2 n_i)^{1/3} (i = n, p, e, \mu), \mu_i -$

ферми-импульсы и химические потенциалы

Электроны и мюоны образуют почти идеальные ферми-газы

Нуклоны образуют сильно неидеальную ферми-жидкость, которая может быть сверхтекучей (сверхпроводящей)

Двухчастичное взаимодействие между свободными нуклонами хорошо известно из эксперимента

Что нужно? – многочастичная теория

- 1. Электронейтральность: $n_p = n_e + n_\mu$ $n_p = n_e, \quad p_{Fp} = p_{Fe}$ при $n_\mu = 0$
- 2. Бета равновесие:

$$\begin{split} \sum_{j} dN_{j} \quad \mu_{j} &= 0 \\ (1) \quad n \to p + e + \overline{v}_{e}, \qquad p + e \to n + v_{e} \\ dN_{n} &= -1, \quad dN_{p} = +1, \quad dN_{e} = +1, \quad \mu_{v} = 0 \\ &\Rightarrow \qquad \mu_{n} = \mu_{p} + \mu_{e} \\ (2) \quad n \to p + \mu + \overline{v}_{\mu}, \qquad p + \mu \to n + v_{\mu} \quad \Rightarrow \quad \mu_{n} = \mu_{p} + \mu_{\mu} \end{split}$$

Модель свободных частиц (*n*, *p*, *e*)

$$\mu_{n} = \mu_{p} + \mu_{e}, \quad n_{p} = n_{e}, \quad p_{p} = p_{e}$$

$$\mu_{e} = (m_{e}^{2}c^{4} + p_{e}^{2}c^{2})^{1/2} \approx p_{e}c$$

$$\mu_{n} = (m_{n}^{2}c^{4} + p_{n}^{2}c^{2})^{1/2}$$

$$\mu_{p} = (m_{p}^{2}c^{4} + p_{p}^{2}c^{2})^{1/2}, \quad m_{n} \approx m_{p}$$

Из условия бета-равновесия:

$$(m_n^2 c^4 + p_n^2 c^2)^{1/2} = (m_p^2 c^4 + p_p^2 c^2)^{1/2} + cp_p$$
$$\left[(m_n^2 c^4 + p_n^2 c^2)^{1/2} - cp_p\right]^2 = m_n^2 c^4 + c^2 p_p^2$$
$$\Rightarrow p_p = \frac{cp_n^2}{2\sqrt{m_n^2 c^4 + p_n^2 c^2}} = \text{общее решение}$$

Очень мягкое уравнение состояния

Задаем
$$n_n \Rightarrow p_n \Rightarrow p_p \Rightarrow$$

 $E = \rho c^2 = E_e + E_p + E_n$
 $P = P_e + P_p + P_n$ $P = P(\rho)$

Oppenheimer & Volkoff (1939) M _{max}=0.7 M _{sun}

ρ выше ~ $2\rho_0$

Состав: неизвестен

Гипотезы:

- 1. Нуклонно-гиперонное вещество } стандарт
- 2. Пионный конденсат
- 3. Каонный конденсат
- 4. Кварковое вещество
- 5. Смешанные фазы

Основные проблемы

- 1. Появление новых фаз вещества
- Взаимодействие между частицами во многом неизвестно (ни экспериментально, ни теоретически)
- 3. Многочастичная теория крайне важна, но отсутствует

Что есть?

Много разных, часто взаимоисключающих теоретических моделей, почти не подтвержденных экспериментом

Нуклонно-гиперонное вещество

 Σ^{-} -гиперон; $m_{\Sigma} = 1197.34$ MeV; S = -1; $\Sigma^{-} \rightarrow n + e + v_{e}$ ($\tau \sim 1.5 \times 10^{-10}$ s) Порог: $\mu_n + \mu_e = m_{\Sigma}c^2$; после порога: $\mu_n + \mu_e = \mu_{\Sigma}$ Λ -гиперон; $m_{\Lambda} = 1115.60$ MeV; S = -1; $\Lambda \rightarrow p + e + v_e$ ($\tau \sim 1.5 \times 10^{-10}$ s) Порог: $\mu_p + \mu_e = m_{\Lambda}c^2$; после порога: $\mu_p + \mu_e = \mu_{\Lambda}$ Другие гипероны : Σ^0 , Σ^+ , Ξ^0 , Ξ^- Эксперимент: гиперядра

Модель свободных частиц:

Пример:
$$n, p, e, \Sigma^{-}, \Lambda$$

 $\mu_n = \mu_p + \mu_e$
 $\mu_{\Sigma} = \mu_n + \mu_e$
 $\mu_{\Lambda} = \mu_p + \mu_e$
 $n_p = n_e + n_{\Sigma}$

$$\rho_{\Sigma} = 4.00 \ \rho_0$$

Общие особенности:

- 1. Появление гиперонов смягчает уравнение состояния
- 2. Вещество приобретает странность
- 3. Сигма-гипероны обычно рождаются раньше, чем лямбда-гипероны
- 4. Появление сигма-минус гиперонов уменьшает концентрацию электронов

Идея: Амбарцумян и Саакян (1960)

Основные проблемы:

(1) Описание сильного взаимодействия между частицами

(2) Описание многочастичных эффектов

Основные подходы:

(1) Исходя из ядерных взаимодействий в вакууме («точный гамильтониан»)

- (a) Диаграммная техника; частичное суммирование диаграмм (e.g., Brueckner-Bethe-Goldstone theory)
- (б) Формализм функций Грина
- (в) Вариационный метод

(2) Исходя из эффективных взаимодействий («эффективный гамильтониан»)

(а) Нерелятивистская теория среднего поля

(б) Релятивистская теория среднего поля

Проверка:

- (1) атомные ядра
- (2) столкновения ядер и элементарных частиц
- (3) гиперядра
- (4) наблюдения нейтронных звезд

Примеры фракций частиц в гиперонном веществе

Effective chiral model of Hanauske et al. (2000)

Relativistic mean-field model TM1 of Sugahara & Toki (1971)

Появление гиперонов (и других новых фаз) всегда смягчает уравнение состояния

Table 5.3. Selected EOSs of neutron-star cores

EOS	model	reference		
BPAL12	$npe\mu$ energy density functional	Bombaci (1995)		
BGN1H1	$np\Lambda \Xi e\mu$ energy density functional	Balberg & Gal (1997)		
FP S	$npe\mu$ energy density functional	Pandharipande & Ravenhall (1989)		
BGN2H1	$np\Lambda \Xi e\mu$ energy density functional	Balberg & Gal (1997)		
BGN1	$npe\mu$ energy density functional	Balberg & Gal (1997)		
BBB2	преµ Brueckner theory, Paris NN plus Urbana UVII NNN potentials	Baldo et al. (1997)		
BBB1	npeµ Brueckner theory, Argonne A14 NN plus Urbana UVII NNN potentials	Baldo et al. (1997)		
SLy	$npe\mu$ energy density functional	Douchin & Haensel (2001)		
APR	$npe\mu$ variational theory, Argonne A18 NN plus Urbana UIX NNN potentials	Akmal et al. (1998)		
APRb*	$npe\mu$ variational theory, Argonne A18 NN with boost correction plus adjusted Urbana UIX* NNN potentials	Akmal et al. (1998)		
BGN2	$npe\mu$ effective nucleon energy functional	Balberg & Gal (1997)		

Уравнения состояния: (1) мягкие; (2) умеренные; (3) жесткие Очень жесткие уравнения состояния отвечают нуклонной материи

 $n_b = 0.16 \text{ fm}^{-3} = \text{standard nuclear}$ matter (1 fm = 10⁻¹³ cm)

Выводы: уравнение состояния нейтронных звезд

- 1. Уравнение состояния в коре звезды известно достаточно хорошо
- 2. Уравнение состояния во внешнем ядре звезды известно неточно; неопределенность усиливается с ростом плотности
- 3. Уравнение состояния во внутреннем ядре звезды загадка (однако в любом случае в пределе высоких плотностей при реалистических моделях взаимодействий уравнение состояния должно смягчаться)
- Неопределенность уравнения состояния в ядрах нейтронных звезд – фундаментальная проблема физики, следствие нашего плохого знания сильных взаимодействий и многочастичных эффектов в плотном веществе
- 5. Проблему можно решать, сравнивая теорию и наблюдения нейтронных звезд.

МОДЕЛИ НЕЙТРОННЫХ ЗВЕЗД

Уравнения равновесия сферически симметричной звезды

(1)
$$\frac{dP}{dr} = -\frac{Gm\rho}{r^2}$$
 $m = m(r)$ гидростатическое равновесие(2) $\frac{dm}{dr} = 4\pi\rho r^2$ рост массы(3) $\frac{dS}{dt} = Q$ тепловой баланс(4) $P = P(\rho)$ уравнение состояния

Нейтронные звезды: при изучении внутреннего строения можно использовать приближение $T \rightarrow 0$ и не рассматривать уравнение (3)

Эффекты ОТО:
$$r_g = \frac{2GM}{c^2} \approx 2.95 \frac{M}{M_{SUN}}$$
 km

Для нейтронной звезды: $\frac{r_g}{R} \sim 0.3 \Rightarrow эффекты ОТО важны!$

$$ds^{2} = c^{2} dt^{2} e^{2\Phi} - e^{2\lambda} dr^{2} - r^{2} d\Omega^{2}$$
$$d\Omega^{2} = d\theta^{2} + \sin^{2}\theta d\varphi^{2}$$

метрика для сферически -симметричной статической звезды

 $\Phi(r), \ \lambda(r) = ?$ метрические функции r радиальная координата $\Phi(r) = \lambda(r) = 0$ в плоском пространстве

Можно показать, что:

1

радиальная координата r определяет длину окружности экватора – «окружный радиус»

t = шварцшильдово время (для удаленного наблюдателя)

3
$$V_{\infty} = V_r e^{\Phi} \implies \Phi(r)$$
 определяет гравитационное красное смещение частоты сигнала

Вместо $\lambda(r)$ удобно ввести новую функцию m(r):

$$e^{2\lambda} \equiv \frac{1}{1 - \frac{2Gm}{c^2 r}}$$

m(r) – гравитационная масса внутри сферы с координатой *r* Уравнения Эйнштейна

$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik}$$

$$T_{ik} = (P + E) \ u_i u_k - P \ g_{ik}$$

Уравнения Эйнштейна для звезды

(1)
$$\frac{dP}{dr} = -\frac{G\rho m}{r^2} \left(1 + \frac{P}{\rho c^2} \right) \left(1 + \frac{4\pi r^3 P}{mc^2} \right) \left(1 - \frac{2Gm}{rc^2} \right)^{-1} \quad \begin{array}{l} \text{Tolman-}\\ \text{Oppenheimer-}\\ \text{Volkoff (1939)} \end{array}$$

(2)
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

(3)
$$\frac{d\Phi}{dr} = -\frac{1}{\rho c^2} \frac{dP}{dr} \left(1 + \frac{P}{\rho c^2} \right)^{-1}$$

(4)
$$P = P(\rho)$$

На поверхности звезды r=R – окружный радиус звезды, P(R)=0 m(R)=M – гравитационная масса всей звезды

При $r > R \implies m(r) = M = \text{const}$ из (3) и (1)

$$e^{2\Phi} = 1 - \frac{2GM}{c^2 r} = 1 - \frac{r_g}{r}, \qquad r_g = \frac{2GM}{c^2}$$

$$ds^{2} = \left(1 - \frac{r_{g}}{r}\right)c^{2} dt^{2} - \left(1 - \frac{r_{g}}{r}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$

метрика Шварцшильда, горизонт событий при *r=r_a*

3 $v_{\infty} = v_r \sqrt{1 - \frac{r_g}{r}}$

гравитационное красное смещение

Часто вводят M_b=N_b m_b – барионную массу звезды, N_b – полное число барионов, m_b масса бариона

 $\Delta M = M_b - M \sim 0.2 \ M_{sun}$ энергия связи звезды (деленная на с²) $R_{\infty} = R / \sqrt{1 - r_g / R}$ «видимый» («apparent») радиус (>R)

Нерелятивистский предел

$$(P << \rho c^2; r^3 P << mc^2; Gm << rc^2)$$

$$\begin{aligned} \frac{dP}{dr} &= -\frac{G\rho m}{r^2}; \\ \frac{dm}{dr} &= 4\pi r^2 \rho; \\ \frac{d\Phi}{dr} &= -\frac{1}{\rho c^2} \frac{dP}{dr} \Rightarrow \\ \Rightarrow \quad \frac{1}{r^2} \frac{d}{dr} r^2 \frac{d}{dr} \Phi = \frac{4\pi G\rho}{c^2} \Rightarrow \\ \Rightarrow \quad \Phi(r)c^2 = \mathbf{F}$$
гравитационный потенциал

Расчет моделей нейтронных звезд

Physics input: уравнение состояния Схема расчета: интегрирование уравнений гидростатического равновесия от центра звезды к поверхности Единственный параметр: центральная плотность

(1)
$$\frac{dP}{dr} = -\frac{G\rho m}{r^2} \left(1 + \frac{P}{\rho c^2} \right) \left(1 + \frac{4\pi r^3 P}{mc^2} \right) \left(1 - \frac{2Gm}{rc^2} \right)^{-1}$$

(2)
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

(3)
$$\frac{d\Phi}{dr} = -\frac{1}{\rho c^2} \frac{dP}{dr} \left(1 + \frac{P}{\rho c^2} \right)^{-1}$$

При каждом $\rho_c \Rightarrow \rho(r), P(r), m(r), \Phi(r)$

$$\Rightarrow$$
 $M(\rho_{\rm c})$ и $R(\rho_{\rm c})$

 \Rightarrow семейство моделей, параметризованных $\rho_{\rm c}$. Исключая $\rho_{\rm c}$ \Rightarrow M(R) = СООТНОШЕНИЕ МАССА-РАДИУС Стабильность по отношению к малым деформациям

Среднее по звезде $\overline{\gamma} > 4/3$ ($\overline{n} < 3$)

2

M увеличивается с ростом ρ_c

БЕЛЫЕ КАРЛИКИ И НЕЙТРОННЫЕ ЗВЕЗДЫ

Максимальная масса:

(1) Обусловлена смягчением любого реалистического уравнения состояния с ростом плотности вещества

- (2) Также обусловлена эффектами ОТО и достигается даже для несжимаемого вещества
- (3) Модельно зависима. Наиболее высока для жестких уравнений состояния
- (4) Может быть немного увеличена вращением

Минимальная масса:

- (1) Обусловлена оврагом неустойчивости (мягкостью уравнения состояния) во внутренней коре
- (2) Слабо зависит от модели уравнения состояния
- (3) Может быть сильно увеличена вращением

МОДЕЛИ НЕЙТРОННЫХ ЗВЕЗД

Чем мягче уравнение состояния, тем компактнее звезда и выше центральная плотность При одном уравнении состояния более массивная заезда более компактна

СТРАННЫЕ ЗВЕЗДЫ

Содержат странную кварковую материю

Маломассивные странные звезды состоят из почти несжимаемого вещества. Эти звезды не связаны гравитационными силами и имеют малые радиусы (в отличие от нейтронных звезд) История: Иваненко и Курдгелаидзе

(1965)

Witten (1984)

Itoh (1970)

Следует различать:

- 1. Нейтронные звезды с кварковыми ядрами
- 2. Странные звезды с кварковой материей до самой поверхности
- 3. Странные звезды с обычной корой

Зоопарк теоретических уравнений состояния

Table 5.3. Selected EOSs of neutron-star cores

EOS	model	reference	37
BPAL12	$npe\mu$ energy density functional	Bombaci (1995)	APR APRb*
BGN1H1	$np\Lambda \Xi e\mu$ energy density functional	Balberg & Gal (1997)	
FPS	$npe\mu$ energy density functional	Pandharipande &	36
		Ravenhall (1989)	PDP1
BGN2H1	$np\Lambda \Xi e\mu$ energy density functional	Balberg & Gal (1997)	SIN BBB2
BGN1	npeµ energy density functional	Balberg & Gal (1997)	
BBB2	npeµ Brueckner theory, Paris NN plus Urbana	Baldo et al. (1997)	34
	UVII NNN potentials		e l
BBB1	$npe\mu$ Brueckner theory, Argonne A14 NN plus	Baldo et al. (1997)	
	Urbana UVII NNN potentials		
SLy	$npe\mu$ energy density functional	Douchin & Haensel	
		(2001)	
APR	$npe\mu$ variational theory, Argonne A18 NN plus	Akmal et al. (1998)	33 7 33 4 4
	Urbana UIX NNN potentials		
APRb*	$npe\mu$ variational theory, Argonne A18 NN with	Akmal et al. (1998)	0.1 0.2
	boost correction plus adjusted Urbana UIX*		
	NNN potentials		0.2 0.4 0.6 0.8 1 $1.2n$ (fm ⁻³)
BGN2	$npe\mu$ effective nucleon energy functional	Balberg & Gal (1997)	ть (тт.)

Уравнения состояния: (1) мягкие; (2) умеренные; (3) жесткие Жесткость зависит от плотности; самое интересное – при сверхъядерной плотности

Барионная и гравитационная масса звезды

BBB2 EOS; Haensel et al. (2007)

Момент инерции в зависимости от массы

Гравитационное красное смещение в зависимости от массы

EOS	$M_{\rm max}$	R	$r_{\rm g}/R$	$n_{ m c}$	$ ho_{ m c}$	$E_{\rm bind}^{\rm (Fe)}$
	$[M_{\odot}]$	[km]		$[\mathrm{fm}^{-3}]$	$[10^{15} \mathrm{~g~cm^{-3}}]$	$[10^{53} \text{ erg}]$
BPAL12	1.46	9.00	0.480	1.76	3.94	3.19
BGN1H1	1.64	9.38	0.519	1.60	3.72	3.82
BBB1	1.79	9.66	0.547	1.37	3.09	5.26
FPS	1.80	9.27	0.572	1.46	3.40	5.37
BGN2H1	1.82	9.53	0.564	1.45	3.48	4.83
BBB2	1.92	9.49	0.596	1.35	3.20	6.16
SLy4	2.05	9.99	0.605	1.21	2.86	6.79
BGN1	2.18	10.9	0.592	1.05	2.26	7.27
APR	2.21	10.0	0.651	1.15	2.73	9.13
BGN2	2.48	11.7	0.626	0.86	2.02	9.40

выводы

- 1. Разные теоретические модели уравнения состояния приводят к разным теоретическим моделям нейтронных звезд
- 2. Чем жестче уравнение состояния, тем ниже центральные плотности и выше радиусы звезд той же массы
- 3. Чем жестче уравнение состояния, тем выше максимальная масса нейтронной звезды
- Разумно считать, что все нейтронные звезды имеют одно и то же уравнение состояния вещества внутренних слоев. Тогда только одно семейство теоретических моделей нейтронных звезд правильно.
- 5. Можно ли определить истинное уравнение состояния, сравнивая теорию и наблюдения нейтронных звезд? Об этом дальше.